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The kappa opioid receptor (KOR) and the endogenous peptide-ligand dynorphin have
received significant attention due the involvement in mediating a variety of behavioral
and neurophysiological responses, including opposing the rewarding properties of drugs
of abuse including opioids. Accumulating evidence indicates this system is involved in
regulating states of motivation and emotion. Acute activation of the KOR produces an
increase in motivational behavior to escape a threat, however, KOR activation associated
with chronic stress leads to the expression of symptoms indicative of mood disorders.
It is well accepted that KOR can produce analgesia and is engaged in chronic pain
states including neuropathic pain. Spinal studies have revealed KOR-induced analgesia
in reversing pain hypersensitivities associated with peripheral nerve injury. While systemic
administration of KOR agonists attenuates nociceptive sensory transmission, this effect
appears to be a stress-induced effect as anxiolytic agents, including delta opioid receptor
agonists, mitigate KOR agonist-induced analgesia. Additionally, while the role of KOR and
dynorphin in driving the dysphoric and aversive components of stress and drug withdrawal
has been well characterized, how this system mediates the negative emotional states
associated with chronic pain is relatively unexplored. This review provides evidence that
dynorphin and the KOR system contribute to the negative affective component of pain
and that this receptor system likely contributes to the high comorbidity of mood disorders
associated with chronic neuropathic pain.
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INTRODUCTION
Chronic pain may be considered an epidemic in many west-
ernized countries affecting 25% of the population, and where
quality of life of chronic pain patients is reported to be lower
than other disorders such as heart failure, renal failure and even
depression (O’Connor, 2009). Pain is a multidimensional experi-
ence comprised of sensory, cognitive, and emotional (subjective)
components, which are processed within discreet but interacting
brain structures. Many chronic pain states are accompanied by
dramatic sensory disturbances that result in pain hypersensitiv-
ity (allodynia and hyperalgesia) and tonic (unprovoked) ongoing
pain. However, the negative affect, or how much the pain is
‘bothersome’ significantly impacts the quality of life of the suf-
ferer. Notably, the emotional component of pain has been argued
to be a greater metric of quality of life than its sensory com-
ponent, and thus understanding the processes that influence
this pain characteristic is essential to developing novel treatment
strategies.

Neuroplasticity in brain regions important for the expression of
affect may underlie the comorbidity between chronic pain and Axis
I disorders of the DSM-V, including depression, anxiety disorders,

bipolar disorder, and ADHD. Comorbidities with each of these
disorders in chronic pain patients have has been well documented,
where depression is the most common comorbidity, with some
studies finding a prevalence rate approaching 100% among clin-
ical chronic pain samples (reviewed by Nicholson and Verma,
2004). In fact, chronic pain is second only to bipolar disorder
as the major cause of suicide among all medical illnesses, further
highlighting the importance of negative affect in this condition
(Juurlink et al., 2004; Asmundson and Katz, 2009; Elman et al.,
2013). Nevertheless, it remains debated whether mood disorders
are a consequence of, or a pre-existing susceptibility for the gen-
esis of chronic pain (Von Korff et al., 1993; Fishbain et al., 1997;
Blackburn-Munro and Blackburn-Munro, 2001; Miller and Cano,
2009). Clinical studies specifically aimed at identifying risk fac-
tors that may predict the incidence of or transition to chronic
pain are now being pursued (Attal et al., 2014; Mundal et al.,
2014).

Dysfunction of reward mesolimbic circuitry underlies the etiol-
ogy of many psychiatric disorders, including depression. Because
it is common for chronic pain to be comorbid with diseases known
to have deficits in the dopamine mesolimbic system, it is posited
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that this dysfunction also contributes to the genesis of chronic
pain (Taylor, 2013; Cahill et al., 2014). For example, a high preva-
lence of chronic pain is common in disorders linked with deficits
in the dopamine system, including disorders of mood and affect,
substance abuse, and Parkinson’s disease (Jarcho et al., 2012). The
statistic that substance abusers are six times more likely to develop
chronic pain than its prevalence in society (Gureje et al., 1998;
Verhaak et al., 1998; Jamison et al., 2000; Rosenblum et al., 2003) is
not surprising, if dysfunction of mesolimbic reward system con-
tributes to chronic pain states. In contrast, clinical conditions
associated with elevated mesolimbic dopamine (e.g., schizophre-
nia) have higher pain thresholds (Dworkin, 1994; Boettger et al.,
2013). It should be noted that an alternative explanation for
the increased prevalence of chronic pain in substance abusers is
the occurrence of opioid-induced hyperalgesia. Opioid-induced
hyperalgesia is a paradoxical increase in pain sensitivity following
opioid administration via either chronic exposure [e.g., morphine,
hydrocodone, oxycodone and methadone, or single exposure (e.g.,
Remifentanil) Chu et al., 2008; Lee et al., 2011; Fletcher and Mar-
tinez, 2014]. Studies have identified various mechanisms that
may account for the occurrence of opioid-induced hyperalgesia
including sensitization of pro-nociceptive pathways caused by long
term potentiation of synapses between nociceptive C fibers and
spinal dorsal horn neurons (Drdla et al., 2009) and neuroimmune
responses reducing GABAergic inhibition (Ferrini et al., 2013).

Pain and reward are considered opponent processes but are
processed within overlapping or interacting brain structures (e.g.,
anterior cingulate cortex, dorsal and ventral striatum, and amyg-
dala). It has been demonstrated that rewarding stimuli such as
food and pleasurable music decrease pain sensitivity (Leknes
and Tracey, 2008), whereas pain can impair reward process-
ing, which can lead to an anhedonic state (Marbach and Lund,
1981; Nicholson and Verma, 2004; Elman et al., 2013). Canoni-
cal neurotransmitters involved in affect and reward are dopamine,
serotonin, norepinephrine, and endogenous opioids. Modulating
the function of these neurotransmitters is associated with altered
mood states. The mesolimbic system, which includes the ventral
tegmental area (VTA) and the nucleus accumbens (NAc, part of
the ventral striatum), is responsible for the expression of posi-
tively motivated behaviors and reinforcement learning produced
by natural and drug rewarding stimuli (Fields et al., 2007; Sun,
2011). Few studies have examined dysfunction of this circuitry
in chronic pain, and whether the mesolimbic dopaminergic sys-
tem contributes to the aversive component of ongoing persistent
pain. Some clues have emerged from functional imaging studies on
healthy volunteers and chronic pain patients. Functional magnetic
resonance imaging studies of clinical pain cohorts demonstrate
altered connectivity between the mesolimbic system and vari-
ous cortical structures (Apkarian et al., 2005; Jensen et al., 2013;
Ichesco et al., 2014). For example, greater functional connectivity
of the NAc with the prefrontal cortex predicted pain persis-
tence, implying that corticostriatal circuitry is causally involved
in the transition from acute to chronic pain (Baliki et al., 2012).
Functional connectivity analysis in neuropathic pain animals also
revealed that changes in connectivity were primarily (97%) local-
ized within the limbic system (NAc, septum and ventral pallidum,
amygdala and hippocampus), as well as between the limbic and

nociceptive systems (thalamus, primary sensory cortices, insula
cortex, and periaqueductal gray; Baliki et al., 2012, yet no connec-
tivity changes were observed within the nociceptive network). A
corollary study in patients reported that chronic back pain patients
exhibited brain activity in regions responsible for emotion-related
circuitry, whereas acute back pain patients demonstrated activity
in nociceptive circuitry (Hashmi et al., 2013). These studies sug-
gest that the limbic system is engaged in clinical and experimental
models of chronic pain. It is unknown how or why greater func-
tional connectivity with limbic structures contributes to chronic
pain, although this system is likely engaged to modulate the affec-
tive component of pain and gives salience to the pain experience
via release of dopamine. The fact that dopamine release in the
ventral striatum is associated with placebo-induced analgesia and
anticipation of analgesia (Scott et al., 2008; Tracey, 2010; Abhishek
and Doherty, 2013) also suggests that dopamine release in the
mesolimbic system may be important in modulating the neg-
ative affect component of pain. The interplay between reward
pathways and pain validate the importance of this circuitry, not
only in the chronicity of pain, but also the lack of opioid effec-
tiveness in treating chronic pain (including that of neuropathic
origin).

Opioids and their receptors play a central role in various phys-
iological effects throughout the peripheral and central nervous
systems. In addition to their ability to modulate the sensory
component of pain (the intensity), opioids also modulate the
emotional, aversive component of pain (affective, unpleasant com-
ponent). For example, a patient being treated with opioids for
post-operative pain may still feel the sensory component of pain,
but it no longer bothers them. There is strong evidence that release
of dopamine within the ventral striatum is responsible for the
mood altering properties of opioids. However, opioid-evoked
release of dopamine also contributes to their abuse potential,
where an allostatic shift in reward signaling leads to the patho-
logical state of addiction. Mu opioid receptor (MOR) agonists
positively modulate mood and are the predominant opioid drugs
used for clinical and recreational purposes. However, both delta
(DOR) and kappa opioid receptors (KORs) also modulate mood
and emotion, but in opposite directions (Lutz and Kieffer, 2013).
Activation of the KOR causes dysphoria (defined as unpleasant
or profound feeling of unwell/unease) in humans and an aversive
response in animals, evidenced by its ability to produce a condi-
tioned place aversion in animals (Land et al., 2009; Tejeda et al.,
2013). One of the underlying mechanisms thought to account
for the dysphoric effects of KOR drugs is their ability to sup-
press mesolimbic dopamine release within reward circuitry. This
review will posit that disruption in mesolimbic cortical circuitry
plays an important role in chronic pain and that activity at the
KOR is an important regulator of this circuitry. It will also high-
light inferences that this opioid receptor contributes to the high
incidence of mood disorder comorbidity in various chronic pain
states.

THE VENTRAL TEGMENTAL AREA IS A CENTRAL LOCUS FOR
PAIN AND PLEASURE
A decrease or suppression of mesolimbic dopaminergic transmis-
sion that originates in the VTA is one mechanistic commonality
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between a stress response, the precipitation of an aversive state,
and chronic pain. Salience is one of the key functions of the
mesolimbic dopaminergic circuitry that is encoded via inter-
actions between tonic and phasic spikes in dopamine neurons
(McClure et al., 2003). The ‘pain neuromatrix’ has been described
as a salience network where the neurocircuitry related to emo-
tion rather than the sensory aspects of pain are considered to have
salient value (Legrain et al., 2011; Mouraux et al., 2011). It was
recently hypothesized that aberrant functioning of the brain cir-
cuits which assign salience values to stimuli may contribute to
chronic pain (Borsook et al., 2013). We will focus the discussion
on the circuitry of inputs and outputs of midbrain dopaminergic
neurons, as this neurocircuitry is engaged by salience attributed
to a range of stimuli, including pain (Berridge, 2007; Leknes
and Tracey, 2008; Elman et al., 2013). Moreover, this system is
engaged by punishment and contributes to negative reinforce-
ment learning (i.e., removal of a negative stimulus, including
pain, is rewarding). Alterations in dopamine signaling are asso-
ciated with motivational deficits, and animals in chronic pain
show impaired motivated responses to natural and drug reward
(Navratilova and Porreca, 2014; Schwartz et al., 2014). The moti-
vational effect for place preference of analgesic drugs hypothesized
to reflect the rewarding component of pain relief is currently
being used to assess the affective or tonic-aversive component of
pain. Magnussen et al. (2009) were the first to report that non-
rewarding analgesics produce a place preference in chronic pain,
but not in pain-naïve animals. Subsequently, King et al. (2009)
reported that intrathecal lidocaine produced a place preference
in an animal model of neuropathic pain, but not in pain-naïve
animals. Many studies have now used this paradigm to under-
stand the mechanisms underlying the tonic-aversive component
of pain (De Felice et al., 2013; Cahill et al., 2014; Roughan et al.,
2014; Xie et al., 2014), which is predicted to have construct valid-
ity for screening novel analgesic drugs for clinical development.
Analgesic place preference was blocked by intra-NAc injections
of dopamine receptor antagonists (Navratilova et al., 2012), sug-
gesting that dopamine release is important for the expression
of negative reinforcement associated with pain relief. A clinical
correlate to these studies has been described whereby recipro-
cal negative/positive signals in the NAc correlated with pain
onset/offset, respectively (Becerra and Borsook, 2008). Addition-
ally, negative correlations between pain and mesolimbic dopamine
activity in humans has been described (Borsook et al., 2007; Wood
et al., 2007; Jarcho et al., 2012). It is worth noting that there is no
evidence that non-rewarding drugs that produce negative rein-
forcement in models of chronic pain become rewarding after
prolonged use, (i.e., produce psychological dependence). Evidence
against this argument is the lack of reported dependence for non-
rewarding analgesics including local anesthetic patches, clonidine
or tricyclic antidepressants used to manage pain in various clinical
pain populations.

The VTA is the origin of dopaminergic neurons within the
mesocorticolimbic system that mediates reward, motivation, and
arousal. There are various inputs to the VTA that result in the
inhibition of VTA dopaminergic neurons and are attributed to the
expression of an aversive state (Figure 1). These brain structures
include the habenula, rostromedial tegmental nucleus (RMTg),

FIGURE 1 | Schematic illustration of major brain networks involved in

pain and reward processes (A,B). (A) Ascending projections convey pain
signaling to multiple brain structures including the periaqueductal gray,
thalamus, and parabrachial nucleus. Continued and distinct processing
occurs for both sensory (red arrows) and affective (blue arrows) dimensions
of pain perception. (B) Reward/aversion processes involve multiple
overlapping and interacting networks. Shown are the major structures
involved in reward (blue) and aversion (magenta). (C) KOR abundance in
relevant brain structures. Heat map color-coded (Red = most abundant) by
reported radioligand binding (Mansour et al., 1987; Le Merrer et al., 2009).
ACC, anterior cingulate cortex; Amy, amygdala; BST, bed nucleus of the
stria terminalis; DS, dorsal striatum; LHb, lateral habenula; NAc, nucleus
accumbens; OFC, orbitofrontal cortex; PAG, periaqueductal gray; PB,
parabrachial nucleus; PFC, prefrontal cortex; PPN, pedunculopontine
nucleus/pedunculopontine tegmental nucleus; S1, primary somatosensory
cortex; S2, secondary somatosensory cortex; VP, ventral pallidum; VTA,
ventral tegmental area. (A,B) adapted from Cahill et al. (2014).

and ventral pallidum. The habenula is a small brain structure
located near the pineal gland and the third ventricle, sometimes
called the tail of the VTA. Recent reviews highlight the critical
role this brain structure has in influencing the brain’s response
to pain, stress, anxiety, sleep, and reward (Shelton et al., 2012;
Velasquez et al., 2014). The habenula evaluates external stimuli
and directs the motivation of appropriate behavioral response,
thereby contributing to reward-related learning to reinforce or
avoid actions based on previous outcomes. It primarily contains
GABAergic neurons that control activity of the VTA, substantia
nigra, locus coeruleus, and raphe nucleus. The RMTg is a mid-
brain structure located at the caudal tail of the VTA. Its function
is to convey salient positive and negative signals to dopamine neu-
rons and participate in appetitive behavioral responses (Bourdy
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and Barrot, 2012). The ventral pallidum is a brain structure
within the basal ganglia located along the external segment of
the globus pallidus. It projects to the VTA (Haber et al., 1985),
subthalamic nucleus, thalamus, and lateral hypothalamus, and
has reciprocal projections to the ventral striatum (including
the NAc). It is part of the striatopallidal indirect cortico-basal
ganglia pathway that regulates emotion, motivation, and move-
ment. The periaqueductal gray (PAG) also projects directly to
the VTA, providing the third heaviest subcortical source of glu-
tamate input to the VTA (Geisler et al., 2007) synapsing onto both
gamma-aminobutyric acid (GABA) and dopaminergic neurons
(Omelchenko and Sesack, 2010). Based on its functions, the PAG
is likely to supply VTA neurons with information important for
processing nociceptive signals, defensive and stress behaviors, and
rewarding responses to opiates.

Gamma-aminobutyric acid is the primary neurotransmitter in
RMTg neurons that project to the VTA (Jhou et al., 2009). Activa-
tion of these neurons release GABA directly on VTA dopamine
neurons leading to suppression of dopaminergic transmission.
Functionally, when the RMTg is surgically lesioned, the response
to aversive stimuli is attenuated, which suggests a convergence of
aversive inputs within the RMTg (Jhou et al., 2009). The habenula
is another input to the VTA that suppresses VTA dopaminergic
transmission, and it does so via a direct and indirect pathway
(Omelchenko and Sesack, 2010). The habenula is divided into
medial and lateral (LHb) components that have different affer-
ent and efferent connections (Velasquez et al., 2014). The LHb
is topographically organized with the medial division sending
excitatory glutamatergic projections to the VTA that synapse
on GABAergic interneurons (Ji and Shepard, 2007; Gonçalves
et al., 2012). Activation of this pathway leads to an increase
in inhibitory postsynaptic currents in dopamine neurons. The
lateral division of the LHb sends excitatory projections to the
GABAergic neurons in the RMTg (Gonçalves et al., 2012). Hence,
LHb glutamatergic terminals in the RMTg excite GABAergic
neurons that in turn synapse with VTA dopaminergic neu-
rons, resulting in an inhibition of dopaminergic neuronal firing
(Figure 2).

One prominent feature of the habenula is that it is involved in
the processing of aversive information, including pain. In addi-
tion, repeated or continuous stress can lead to expression of
depression-like behavior and exacerbate chronic pain. Impor-
tantly, sensitization of the LHb-dopamine circuitry occurs in
depressive states (Hikosaka, 2010). Indeed, humans with depres-
sion or animal models of depression exhibit hyperactivity within
the LHb (Caldecott-Hazard et al., 1988; Morris et al., 1999).
Whether the LHb exhibits hyperactivity in chronic pain and con-
tributes to the high comorbidity of mood disorders with chronic
pain states remains unexplored. Pain transmission directly and
indirectly activates the habenula. Reports show that an aver-
sive stimulus increases the LHb excitatory drive onto GABAergic
RMTg neurons (Jhou et al., 2009; Hong et al., 2011; Stamatakis
and Stuber, 2012), leading to a decrease in dopamine output (Ji
and Shepard, 2007; Matsui and Williams, 2011). The spinal cord
projects to the Lhb directly (Craig, 2003) or indirectly via the
lateral hypothalamus (Dafny et al., 1996), another brain region
well established to modulate pain. Studies using anterograde

tracing identified that while spinal cord lamina I nociceptive neu-
rons project primarily to thalamic nuclei, some terminals were
found in the dorsomedial hypothalamus (Craig, 2003). The deep
dorsal spinal cord projects to the thalamus, globus pallidus, sub-
stantia innominata, amygdala, and hypothalamus (Gauriau and
Bernard,2004), and many of these structures influence mesolimbic
dopamine circuitry.

Because the habenula is such as small brain structure, imag-
ing studies to examine changes in activity within this region
are challenging. Nevertheless, the habenula circuitry is proposed
to undergo neuroplastic changes in chronic pain (Shelton et al.,
2012), where the hedonic deficit due to dysfunction of reward
systems generates a facilitation of pain. Several lines of evidence
suggest that LHb neurons are hyperactive in individuals with
depression. Such studies led to the successful use of deep brain
stimulation (DBS) to manipulate the activity of the habenula as a
treatment of major depression (Sartorius and Henn, 2007; Haupt-
man et al., 2008; Sartorius et al., 2010). The positive outcomes are
thought to result from the ability of DBS to suppress the abnor-
mally elevated activity of the habenula. Interestingly the habenula
has one of the richest MOR expression patterns in the brain
(Zastawny et al., 1994; Bunzow et al., 1995; Kitchen et al., 1997).
Morphine injection into the habenula produces analgesia (Cohen
and Melzack, 1986; Darcq et al., 2012), and intra-habenular injec-
tion of the opioid antagonist naloxone blocks the analgesic effects
that result from an injection of morphine into the PAG (Ma et al.,
1992). Taken together, pain modulatory systems likely engage this
structure for the expression of pain affect.

It cannot be assumed that the inputs to the VTA discussed above
result in modulation of the dopaminergic projections to the NAc
implicated in reward. The VTA-NAc projection is also implicated
in the pathogenesis of stress-related behaviors. Dopaminergic neu-
rons within the VTA project to various brain structures, including
the medial prefrontal cortex (mPFC), amygdala, and hippocam-
pus, as well as the NAc. Importantly, there is evidence that
discrete subpopulations of VTA dopaminergic neurons exclusively
project to only one of these regions and that they are engaged
by different stimuli and inputs (Volman et al., 2013). It is well
accepted that activation of the VTA dopaminergic neurons pro-
jecting to the NAc produces reward-like behavior. Thus, it is not
unexpected that aversive stimuli strongly inhibit VTA dopamine
neurons (Ungless et al., 2004; Hong et al., 2011; Tan et al., 2012),
and optogenetic activation of VTA GABAergic neurons or inhibi-
tion of VTA dopaminergic neurons produces a conditioned place
aversion (Tan et al., 2012). Similarly, dopamine neurons in the
caudal VTA increase firing to aversive stimuli such as a foot shock
(Brischoux et al., 2009). However, various studies have demon-
strated that salient but aversive stimuli, restraint stress, or even
social defeat stress will increase VTA dopaminergic transmission
(Anstrom and Woodward, 2005; Anstrom et al., 2009). Studies
using fast scan cyclic voltammetry and microdialysis have shown
elevated dopamine output in the NAc and mPFC in response
to aversive stimuli (Bassareo et al., 2002; Budygin et al., 2012).
Although, a recent study in non-human primates argues that aver-
sion does not cause dopamine release (Fiorillo, 2013). Ventral
tegmental area dopaminergic projections to other areas such as the
mPFC and amygdala are also involved in stress-related behaviors.
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FIGURE 2 | Schematic illustration of inputs to and outputs from VTA

dopaminergic neurons. VTA dopaminergic neurons project to the NAc
(required for responding to reward prediction cues), medial prefrontal cortex
(implicated in working memory and attentional processes), basolateral
amygdala (implicated in emotion, reward, fear conditioning, and avoidance)
and hippocampus (memory; green, dopaminergic components). Notably, VTA
dopaminergic outputs are extensively differentiated with distinct projections
from specific populations of dopaminergic neurons to specific downstream
structures. In this way, mesolimbic dopaminergic activity functions in
seemingly contradictory processes such as reward and aversion (McCullough
et al., 1993; Stevenson et al., 2003; Baliki et al., 2010; McCutcheon et al.,
2012). That is, the functions of ventral tegmental area dopaminergic
projections is determined by network topology rather than simply by the
choice of neurotransmitter. VTA dopaminergic neurons receive dense
GABAergic modulatory input from numerous extrinsic structures and from

GABAergic interneurons within the ventral tegmental area itself (blue).
GABAergic projections to the VTA has been identified from the NAc (Nauta
et al., 1978); ventral pallidum (Haber et al., 1985); RMTg (Jhou et al., 2009) and
the pedunculopontine tegmental nucleus/lateral dorsal tegmentun
(Omelchenko and Sesack, 2005; Good and Lupica, 2009). These neurons are
also modulated by excitatory inputs (red) from the bed nucleus of the stria
terminalis (Georges and Aston-Jones, 2001, 2002; Watabe-Uchida et al.,
2012). (Inset) KOR abundance in these structures. Heat map color-coded
(Red = most abundant) by reported radioligand binding (Mansour et al., 1987;
Le Merrer et al., 2009). Amy, amygdala; BST, bed nucleus of the stria
terminalis, D1, dopamine receptor D1; D2, dopamine receptor D2; Enk,
enkephalin; Hipp, hippocampus; LHb, lateral habenula; mPFC, medial
prefrontal cortex; NAc, nucleus accumbens; PPN, pedunculopontine
nucleus/pedunculopontine tegmental nucleus; RMTg, rostromedial tegmental
nucleus; VP, ventral pallidum; SP, substance P; VTA, ventral tegmental area.

The mPFC both receives dopaminergic projections from the VTA
and sends projections back to the VTA and the NAc, thus form-
ing a regulatory feedback system (Nestler and Carlezon, 2006).
An elegant study recently reported that activation of laterodorsal
tegmentum terminals synapsing on VTA dopaminergic neurons
that project to the NAc produces reward-related behavior, whereas
activation of the LHb or RMTg terminals within the VTA that
modulate dopamine neurons projecting to the mPFC produces
aversion (Lammel et al., 2012). This study highlights the topo-
graphical input to the VTA and may explain the conflicting reports
of whether aversive stimuli excite or inhibit VTA dopaminergic
activity.

Other brain structures that either directly or indirectly mod-
ulate VTA dopaminergic circuitry are the NAc, amygdala, and
the bed nucleus of the stria terminalis (BST). Medium spiny
neurons within the NAc are GABAergic neurons that comprise
the striatonigral (direct) and striatopallidal (indirect) cortico-
basal ganglia pathways. There are two subtypes of medium
spiny neurons within the NAc that respond to different pat-
terns of dopaminergic firing patterns (Grace et al., 2007; Schultz,
2007). A burst of phasic firing is responsible for activation of

medium spiny neurons containing low-affinity D1 dopamine
receptors, substance P, and dynorphin. Activation of these neu-
rons encodes reward-like behavior (Mirenowicz and Schultz, 1994;
Grace et al., 2007; Carlezon and Thomas, 2009; Hikida et al., 2010,
2013). They project back to the VTA, synapsing primarily on
GABAergic interneurons (Xia et al., 2011) producing a disinhi-
bition that results in excitation of dopaminergic transmission.
However, a recent study challenges the exclusive feedback onto
only VTA GABAergic interneurons. Using a transgenic mouse
that expresses MORs only in D1 medium spiny neurons, Cui
et al. (2014) demonstrated that morphine evokes dopamine release
in the NAc suggesting that these neurons may also synapse
directly on VTA dopaminergic neurons. Medium spiny neu-
rons of the indirect pathway contain D2 dopamine receptors.
Slow single spike or tonic firing activates D2 dopamine recep-
tors on medium spiny neurons that co-express enkephalin and
produce aversion by modulating VTA circuitry via the ventral
pallidum (Mirenowicz and Schultz, 1996; Ungless et al., 2004;
Grace et al., 2007; Hikida et al., 2010). As in the VTA, there
is some evidence that medium spiny neurons within the NAc
may be topographically organized, in that hedonic ‘hot spots’
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have been described (Peciña et al., 2006; Richard et al., 2013;
reviewed by McCutcheon et al., 2012; Berridge and Kringelbach,
2013). Interestingly, interruption of NAc activity (via lidocaine
infusion) reversibly alleviates neuropathic pain (Chang et al.,
2014).

The amygdala is involved in a wide array of functions includ-
ing decision-making, memory, attention and fear. The amygdala is
another limbic structure that is thought to attribute affective sig-
nificance to environmental stimuli by forming a link between brain
regions that process sensory information and areas involved in
the production of emotional responses. A number of clinical and
animal studies have indicated that the amygdala, along with the
anterior cingulate cortex, plays a critical role in the processing of
affective components of pain (Bie et al., 2011). Hence, excitotoxic
lesions of the central amygdaloid nucleus or basolateral amyg-
daloid nucleus suppress intraplantar formalin-induced aversive
responses (Tanimoto et al., 2003; Gao et al., 2004). Glutamatergic
transmission within the basolateral amygdala via N-methyl-D-
aspartate (NMDA) receptors has been shown to play a critical
role in these aversive responses. The amygdala sends projections
to, among other areas, the hypothalamus, VTA, and the cortex,
making it a neuroanatomical structure well positioned to medi-
ate the negative affect (aversiveness) associated with chronic pain
(Murray, 2007; Jennings et al., 2013). The extended amygdala
includes the BST and the central nucleus of the amygdala. The
amygdala modulates the mesolimbic circuitry by sending pro-
jections to the NAc and to the BST. There is also evidence for
a prominent direct projection from the ventral BST to the VTA
(Georges and Aston-Jones, 2001) and local glutamate microin-
fusion into the ventral BST increased the firing and bursting
activity of VTA dopamine neurons (Georges and Aston-Jones,
2002).

OPIOID RECEPTORS MODULATE PAIN AND REWARD
The opioid system is involved in modulating pain and reward. Opi-
oid receptors are a group of G-protein coupled receptors divided
into three families: the MOR, DOR, and KORs. These receptors
are activated by three classes of endogenous opioid peptides, beta-
endorphin, dynorphin, and enkephalin, that are derived from
three precursor peptides (proopiomelanocortin, proenkephalin,
and prodynorphin, respectively). The selectivity and distribution
of the opioid peptide and receptor systems suggests enkephalin and
beta-endorphin act through the MOR and DOR, and dynorphin
via the KOR. A fourth opioid receptor family, nociceptin, is distinct
from the classical opioid receptor family, in that the endogenous
opioid peptides do not bind to it with high affinity (Mollereau
et al., 1994). Rather, peptides derived from the pro-orphanin
FQ/nociceptin peptide are considered the primary endogenous
ligand (Meunier et al., 1995; Reinscheid et al., 1995). Activation of
nociceptin receptors opposes the analgesic and rewarding actions
of the classical opioid receptors (Mogil et al., 1996; Murphy et al.,
1999; Vazquez-DeRose et al., 2013).

The opioid receptors and their peptides are distributed
throughout the central and peripheral nervous system in a dis-
tinct but overlapping manner (Mansour et al., 1988). The MOR
is widely distributed throughout the brainstem, midbrain, and
forebrain structures, and mediates most of the analgesia and

reinforcing effects of opioid agonists, such as morphine (Kieffer
and Gavériaux-Ruff, 2002). DORs, on the other hand, are highly
expressed in forebrain regions, including the olfactory bulb, stria-
tum, and cortex (Mansour et al., 1993). Activation of the DOR
produces minimal analgesia in acute pain models but develops
an analgesic effect in rodent models of chronic pain, where the
DOR responses are up-regulated (Cahill et al., 2007; Pradhan et al.,
2011). Like the MOR, the DOR positively modulates hedonic state,
but to a lesser extent. DOR agonists are anxiolytic (Saitoh and
Yamada, 2012), but they are not self-administered and have lower
abuse liability than MOR agonists (Negus et al., 1998; Brandt et al.,
2001; Stevenson et al., 2005). KOR and MOR expression widely
overlaps throughout the brain. However, in contrast to the MOR,
activation of the KOR negatively modulates mood and is aversive
(Wadenberg, 2003). Systemic KOR agonists also produce robust
analgesia (Kolesnikov et al., 1996). KORs are located in the spinal
cord and brain stem, and part of their analgesic effect is due
to the direct inhibition of pain pathways (Simonin et al., 1995).
Recently, we have shown another element of KOR analgesia is a
result of their engagement of stress pathways (Taylor et al., 2014).
The dynorphin-KOR system plays a central role in the dysphoric
elements of stress. Stress induces the release of the opioid pep-
tide dynorphin, an agonist at the KOR, and the aversive effects
of stress are mimicked by activation of KORs in various limbic
structures in the brain (Knoll and Carlezon, 2010). Dynorphin is
released in response to stress via corticotrophin releasing factor
(CRF), where it activates KORs in several brain regions involved in
affect, including the dorsal raphe nucleus, basal lateral amygdala,
hippocampus, and VTA (Nabeshima et al., 1992; Land et al., 2008).
Blocking KOR signaling or dynorphin through antibodies or gene
disruption blocks stress-induced immobility and produces anti-
depressant-like effects (Newton et al., 2002; Mague et al., 2003;
Mclaughlin et al., 2003; Shirayama et al., 2004). Further, inter-
fering with KOR signaling blocks the development of avoidance
behavior associated with a stressful cue (Land et al., 2008). This
suggests the dynorphin/KOR system plays a central role in the
aversive stress experience.

While some studies implicate a positive role for the dynor-
phin/KOR system in anxiety-like behavior (Knoll et al., 2007;
Wittmann et al., 2009), other studies have reported that the dynor-
phin/KOR system decreases anxiety-like behavior (Kudryavtseva
et al., 2004; Bilkei-Gorzo et al., 2008). Additionally, transgenic
mice with deletion of the KOR show no difference in behav-
ior using a common test of anxiety (elevated plus maze) that is
accepted to have predictive validity for pharmacological screening
of anxiolytic drugs that reduce anxiety in humans, suggest-
ing a minimal role for KOR in such behaviors (Simonin et al.,
1998). Although is not inconceivable that some of these stud-
ies are confounded by the side effect profile of KOR agonists,
which includes being hallucinogenic (Roth et al., 2002), producing
dysphoria (Pfeiffer et al., 1986; Land et al., 2008), and induc-
ing hypo-locomotor activity (Simonin et al., 1998). Nevertheless,
salvinorin A, an illicitly used agonist at KORs, is a psychotropic
that produces hallucinations, suggesting that activation of KORs
may not cause dysphoria in all individuals.

Chronic pain produces anxiety and dysphoria that suggests
the engagement of the dynorphin/kappa opioid system (Narita
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et al., 2006a). In the spinal cord, chronic pain leads to the sus-
tained release of dynorphin, which is hypothesized to be an
analgesic response to a sustained pain state (Iadarola et al., 1988;
Wagner et al., 1993; Spetea et al., 2002). Inhibiting KOR activa-
tion, either through KOR antagonists or in KOR knockout mice,
enhanced tactile allodynia after a peripheral nerve lesion (Obara
et al., 2003; Xu et al., 2004; Aita et al., 2010). This is in contrast
to the results observed in dynorphin knockout mice, in which
loss of dynorphin facilitated the return to normal nociceptive
baselines after a peripheral nerve lesion (Wang et al., 2001). This
is suggestive of a pronociceptive role for dynorphin in chronic
pain, and is in contrast to the antinociceptive effects of KOR
agonists described above. While the mechanism behind the prono-
ciceptive effects of dynorphin is unknown, intrathecal injection
of dynorphin has been reported to have neurotoxic effects and
may exacerbate neuronal damage (Walker et al., 1982; Caudle and
Isaac, 1988; Long et al., 1988; Sherwood and Askwith, 2009).
Xu et al. (2004) hypothesized that sustained release of dynor-
phin in chronic pain desensitizes KORs. This would reveal the
non-opioid mediated pronociceptive effects of dynorphin, and
provide a possible explanation for the discrepancy between the
results from dynorphin knockout and KOR knockout mice in
chronic pain models. Additionally, pain-induced KOR desensi-
tization is supported by the evidence that KOR agonists have
a lowered analgesic potency in chronic pain animals (Xu et al.,
2004).

In addition to direct effects on neurons, KORs have also been
localized to astrocytes, and KOR agonists induce glial activation
in vivo (Stiene-Martin and Hauser, 1991; Ruzicka et al., 1995;
Stiene-Martin et al., 1998; Aita et al., 2010). Chronic pain leads to
astrocyte activation in the spinal cord, and glial activation has been
identified as a critical mechanism contributing to the sensitization
of peripheral afferents leading to chronic pain (Raghavendra et al.,
2003). Dynorphin KO animals do not show astrocyte activation
after peripheral nerve injury, suggesting the kappa opioid system
may act as a critical neuron-glia signal in chronic pain states (Xu
et al., 2007). In primary astrocytes, U-69,593, a KOR agonist, pro-
duced the same effects as seen in immortalized astrocytes. Another
KOR agonist, 2-methoxymethyl-salvinorin B, elicited sustained
ERK1/2 activation, which was correlated with increased primary
astrocyte proliferation. Proliferative actions of KOR agonists were
abolished by either inhibition of ERK1/2, G-protein subunits or
β-arrestin 2, suggesting that both G-protein dependent and inde-
pendent ERK pathways are required for this outcome (McLennan
et al., 2008).

While the bulk of studies investigating the contribution of the
dynorphin/KOR system in chronic pain have focused on the spinal
cord, there is evidence that this system is affected in supraspinal
sites as well. Dynorphin is increased in the parietal cortex after
spinal cord injury (Abraham et al., 2000). Increased GTPgS bind-
ing of KOR-specific ligands in the amygdala of chronic pain
animals has also been described (Narita et al., 2006b).

KOR REGULATION OF MESOLIMBIC CIRCUITRY
The effect of chronic pain on the supraspinal actions of the dynor-
phin/KOR system, including anxiety and dysphoria, is an area
that remains to be studied. Opioid receptors are widely expressed

throughout the brain. This expression is highly regulated and
varies by cell type, structure, and activity. Each of the three opioid
receptor types is differentially expressed uniquely from each other
type. As such, the mix of opioid receptor complements of any given
structure varies substantially. KORs are widely expressed through-
out the brain, spinal cord, and peripheral tissues. KORs are present
in many of the major structures involved in pain and addiction
processing. High expression levels of KOR have been detected in
the VTA, NAc, prefrontal cortex, hippocampus, striatum, amyg-
dala, BST, locus coeruleus, substantia nigra, dorsal raphe nucleus,
pedunculopontine nucleus, and hypothalamus of both the rat
and human brains (Peckys and Landwehrmeyer, 1999). These
brain areas are implicated in the modulation of reward, mood
state, and cognitive function. KORs are also expressed at sev-
eral levels of pain circuitry, including areas such as the dorsal
root ganglia, dorsal spinal cord, rostral ventromedial medulla,
PAG, sensory thalamus, and the limbic regions. Activation of
KORs in vivo produces many effects including analgesia, dyspho-
ria, anxiety, depression, water diuresis, corticosteroid elevations,
immunomodulation, relapse to cocaine seeking, and decreases
in pilocarpine-induced seizure (Bruijnzeel, 2009; Van’t Veer and
Carlezon, 2013). KOR agonists have attracted considerable atten-
tion for their ability to exert potent analgesic effects without high
abuse potential and to antagonize various MOR-mediated actions
in the brain, including analgesia, tolerance, reward, and memory
processes (Pan, 1998).

Mounting evidence indicates that KORs play a defining role in
modulating dopamine transmission. An early PET study identi-
fied that glucose metabolism was increased in the NAc and lateral
habenular nucleus following peripheral injection of the KOR ago-
nist U-50488 (Ableitner and Herz, 1989). KOR signaling is also
able to modulate synaptic transmission of monoamines in a vari-
ety of brain structures involved in reward including the VTA and
NAc (Margolis et al., 2003, 2005, 2006; Ford et al., 2007). Two
microdialysis studies in rats demonstrated that systemic admin-
istration of U-50488 and the KOR antagonist nor-BNI decreased
and increased dopamine concentrations in the NAc, respectively
(Di Chiara and Imperato, 1988; Maisonneuve et al., 1994). Addi-
tionally, KOR receptors are present both on dopaminergic neuron
cell bodies in the VTA and the presynaptic terminals in the NAc.
It has been reported that dopaminergic cell bodies in the VTA
expressing KORs selectively project to the prefrontal cortex (Mar-
golis et al., 2006). Here, the authors demonstrated that local
injection of a KOR agonist in the VTA of rats selectively inhib-
ited neurons projecting to the prefrontal cortex, and not the NAc.
A contradictory study demonstrated, however, that administra-
tion of the KOR antagonist U-69539 was able to inhibit NAc
projecting neurons from the VTA, whereas met-enkephalin (via
MOR or DOR action) inhibited projections to the basolateral
amygdala (Ford et al., 2006). It is unclear why there are dis-
crepancies between these two studies, however the topographic
organization of VTA neurons involved in reward and aversion may
contribute to such differences. Although, biased agonism observed
between different KOR agonists may also be an important fac-
tor that would explain such discrepancies (Bruchas et al., 2006;
Chavkin, 2011; Rives et al., 2012; Negri et al., 2013; Zhou et al.,
2013).
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Kappa opioid receptors also modulate dopaminergic tone
within the NAc. Significant evidence demonstrates that KORs are
highly expressed in the both the ventral and dorsal striatum, with
the highest concentration in the medial shell of the NAc (Man-
sour et al., 1996). Further, electron microscopy data has localized
the receptors predominantly in synaptic vesicles in axons termi-
nals within the NAc (Meshul and McGinty, 2000). Thus, they
are poised to negatively modulate dopamine transmission in this
brain region and may serve to affect mood and reward function.
Donzanti et al. (1992) demonstrated that application of multiple
KOR agonists directly into the NAc inhibited dopamine as mea-
sured by microdialysis. In another study, U-50488 was able to
inhibit release of dopamine from rat accumbal slices (Heijna et al.,
1990).

Both the KOR and its endogenous opioid peptide dynorphin
are expressed in the BST and central nucleus of the amygdala
(Poulin et al., 2009). The extended amygdala projects to the BST,
which plays a critical role in the regulation of anxiety behavior
(Walker and Davis, 2008) via release of corticotropin releasing fac-
tor (CRF) to enhance glutamate release. GABA is also a transmitter
in this projection and it is hypothesized that GABA counteracts the
effects of CRF. A recent study demonstrated that the GABAergic
transmission is depressed by activation of KORs via a pre-synaptic
mechanism within the BST (Li et al., 2012). Thus, CRF and dynor-
phin release in the extended amygdala act to increase anxiety-like
behavior. Indeed, an interaction between CRF and dynorphin
is evidenced by the report that anxiogenic effects of stress are
encoded by dynorphin in the basolateral amygdala where CRF
triggered activation of the dynorphin/KOR system (Bruchas et al.,
2009).

Kappa opioid receptors are coupled to heterotrimer Gi/o pro-
teins. Activation of KORs leads to an inhibition of adenylyl cyclase
through the Gα subunit and induces increased potassium channel
conductance and decreased calcium conductance via the Gβγ sub-
unit. KORs can signal not only through activation of G proteins but
also through recruitment of β-arrestins. While β-arrestins are reg-
ulatory scaffolding proteins involved in receptor desensitization,
they are also signal transducers able to recruit and activate mito-
gen activated protein kinases (MAPKs). In fact, development of
biased agonists for these pharmacological effects has the potential
to mitigate some of the side effects associated with KOR activa-
tion (Chavkin, 2011). It has been proposed that activation of the
MAPK p38 pathway mediates the dysphoric effects produced by
selective KOR agonists (Bruchas et al., 2006, 2007). The develop-
ment of novel KOR agonists that have the potential to be effective
analgesics lacking the aversive and dysphoric side effects led to
the synthesis of novel small molecule KOR agonists (6′-GNTI,
MCKK1-22, triazole and isoquinolinone analogs). These agonists
activate the G protein with minimal activity at β-arrestin-MAPK
signaling pathway (Rives et al., 2012; Negri et al., 2013; Zhou et al.,
2013).

DO KORs CONTRIBUTE TO PAIN AVERSIVENESS?
What remains unclear, and difficult to ascertain, is whether KORs
modulate mesolimbic circuitry and drive the emotional, aversive
nature of pain. KOR agonists have dysphoric and psychotomimetic
properties in humans and will mediate place aversion in rodents

(Shippenberg et al., 1993; Knoll and Carlezon, 2010). These effects
can be elicited by direct injection of receptor selective ligands
into the VTA (Bals-Kubik et al., 1993). A positive correlation has
been demonstrated between dynorphin expression and dyspho-
ria/anhedonia in depressive disorders and withdrawal associated
with chronic drug use (Carlezon and Thomas, 2009; Wise and
Koob, 2014). Administration of dynorphin and synthetic KOR
agonists produces identical anhedonic and dysphoric symptoms
characteristic of these disorders (Pfeiffer et al., 1986; Shippen-
berg and Herz, 1987; Lindholm et al., 2000; Frankel et al., 2008;
Isola et al., 2009; Solecki et al., 2009; Knoll and Carlezon, 2010).
Non-noxious stressors also activate dynorphin/KORs to produce
depressive-like effects that can be blocked by KOR antagonists
(Mclaughlin et al., 2003; Chartoff et al., 2009; Bruchas et al.,
2010). There is convincing evidence that the aversive properties
of KOR agonists are mediated by a negative modulation of the
mesolimbic dopamine system (Shippenberg et al., 1993; Chefer
et al., 2013), although serotonergic neurons within the dorsal
raphe nucleus projecting to the rostral NAc are also proposed
to underlie KOR mediated aversion (Land et al., 2009). Further
evidence that modulation of serotonergic circuitry contributes
to KOR mediated aversion is demonstrated by the observation
that serotonin transporter knockout mice do not exhibit KOR-
mediated aversion, but restoring this transporter via lentiviral
injection in the ventral striatum recovered the pro-depressive
effects (Schindler et al., 2012). In contrast, others have reported
that KOR agonists continue to produce a place aversion in sero-
tonin transporter knockout mice (Thompson et al., 2013) and that
U50,488 produced a hypodopaminergic and hyposerotonergic
state in the absence of the serotonin transporter. The obser-
vation that selective serotonin re-uptake inhibitor (SSRI) drugs
show little efficacy in alleviating chronic pain of various etiolo-
gies suggests that serotonin may not be an important monoamine
in the aversive component of pain (Moja et al., 2005; Gilron
et al., 2006; Sumpton and Moulin, 2014). Nevertheless, activ-
ity of medium spiny neurons expressing dopamine receptors
within the NAc appears necessary for KOR mediated aversion.
Concomitant with altered dopamine transmission, interaction
with KORs has been demonstrated to modulate brain reward
function, both to natural reward and to drugs of abuse. KOR
agonists have been shown to increase food intake in mice and
rats, including a direct administration of dynorphin A into
the VTA (Hamilton and Bozarth, 1988; Badiani et al., 2001).
Though the exact mechanism behind KOR mediated food intake
is unclear, it may be a process by which the animal attempts
to offset decreased dopamine levels resulting from administra-
tion of KOR agonists. Intracranial self-stimulation (ICSS) can be
used experimentally to measure alterations in reward thresholds.
In one study, the KOR agonist U-69,593 was shown to increase
brain reward thresholds for ICSS, indicating a depressive-like
state, which was reversed with administration of a KOR antag-
onist (Todtenkopf et al., 2004). Altered reward states resulting
from KOR activation are likely intimately linked with changes
in dopamine transmission. For instance, both intra-VTA and
intra-NAc administration of U-50488 results in conditioned place
aversion in rats (Bals-Kubik et al., 1993). As evidence for a role in
altered KOR-driven dopamine transmission in mediating these
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aversive behaviors, genetic deletion of KORs from dopamine
neurons was requisite for systemic KOR agonist place aversion
(Chefer et al., 2013). Interestingly, the authors were able to res-
cue U-69593 mediated place aversion by intra-VTA injection
of AAV to re-express KORs on dopamine neurons. Anhedo-
nia and negative affect are also observed in the generation
of comorbid mood disorders in neuropathic pain (Yalcin and
Barrot, 2014). Thus, KOR modulation of dopamine circuitry
and reward may serve as a putative mechanism for mediat-
ing the onset of negative emotional states and affect in chronic
pain.

Evidence for a role of dynorphin in linking the depression
of both behavior and dopaminergic transmission in chronic
pain states remains sparse. It is recognized that acute pain (like
euphorogenic drugs) activates dopaminergic transmission in brain
reward circuitry including the NAc (Boutelle et al., 1990; Scott
et al., 2006), whereas chronic or prolonged on-going pain pro-
duces the opposite effect (Wood et al., 2007; Geha et al., 2008;
Pais-Vieira et al., 2009). Thus, it would be predicted that KOR
involvement in modulating pain aversion would occur in chronic
pain states where dopamine dysfunction has been described. A
recent study demonstrated that CRF is a salient stressor in ani-
mal models of chronic pain where either CRF antagonists or
CRF-saporin alleviated pain hypersensitivities (Hummel et al.,
2010). Stress has been shown to activate the transcription fac-
tor CREB (cAMP response element-binding protein) in the NAc,
and CREB-mediated increases in dynorphin function in this
region contribute to depressive-like behavioral signs including
anhedonia in the ICSS test (Pliakas et al., 2001; Chartoff et al.,
2009; Muschamp et al., 2011). Additionally, KOR activation in
the mPFC causes local reductions in dopamine levels and estab-
lishes conditioned place aversions (Tejeda et al., 2013), suggesting
that elevated dynorphin function in this region can produce dys-
phoria. CRF is increased in the limbic system of chronic pain
conditions (Rouwette et al., 2012), and injection of CRF into
the VTA suppresses dopamine output to the NAc (Wanat et al.,
2013). Since KOR antagonists block CRF induced stress responses
(Bruchas et al., 2009), it has been hypothesized that KOR may
modulate the dysphoric/aversive component of pain via regula-
tion of CRF. However, a recent studies by Leitl et al. (2014a,b)
recently reported that KORs are not involved in pain-induced
changes in dopamine transmission. Both acute visceral pain (via
intraperitoneal injection of lactic acid) and tonic pain (intraplan-
tar injection of formalin) caused reduction in NAc dopamine
release and a depression of ICSS, which was not recovered by
pretreatment with a KOR antagonist. These studies highlight
the influence of pain on dopamine transmission but argue that
KOR is not involved in regulation of dopaminergic transmis-
sion by an acute or tonic pain stimulus within relatively short
time periods. Previous studies demonstrated that KOR activa-
tion depressed both ICSS and NAc dopamine release (Todtenkopf
et al., 2004; Zhang et al., 2005; Carlezon et al., 2006; Negus et al.,
2010). It remains unclear if KORs are not involved in pain mod-
ulation of dopaminergic circuitry or if the negative outcome of
the Leitl studies (Leitl et al., 2014a,b) was due to study design.
The occurrence of anxiety and depressive behaviors that accom-
pany chronic pain states in rodents do not typically begin to

manifest until weeks 4 and 6–8 respectively (Yalcin et al., 2011).
Thus, the KOR system may only be engaged at later time points
following tissue or nerve damage which induces a chronic pain
state. Alternatively, KORs may not be critical for the expres-
sion of chronic pain but contributes to the modest effects of
analgesics in treating some forms of chronic pain including neu-
ropathic pain. Opioid-induced dopamine release in the NAc is
attenuated in rodents with neuropathic pain (Ozaki et al., 2002).
This result was proposed to explain the lack of opioid addic-
tion in chronic pain. However, an alternative interpretation is
that the lack of opioid-induced dopamine release may account
for the blunted analgesic properties of opioids in treating this
type of pain or in the precipitation of comorbidities such as
depression. There is evidence that KORs are responsible for the
blunted rewarding effects of opioids induced by a tonic inflam-
matory pain stimulus. Hence, the effects of morphine induced
place preference and morphine induced dopamine release in rats
were attenuated by formalin treatment, which was prevented by
KOR antagonist pre-treatment (Narita et al., 2005). In line with
these results, morphine evoked dopamine release was blunted in
the NAc of formalin injected animals, an effect that was reversed
with microinjection of an anti-dynorphin antibody in this brain
region.

CONCLUSION
The perception of pain and processes of reward and aversion are
complex, multifaceted phenomena manifested through extensive
processing in and between multiple brain structures. Of note, these
networks exhibit extensive anatomical overlap with several major
brain structures are important nodes in pain, pleasure and aversion
processing. The mesolimbic system is one point of convergence
that lends credence and consilience to the extensive evidence for
interactions between pain, reward, and aversion.

The aforementioned studies provide evidence for the role of
KOR in modulating dopaminergic neurotransmission in reward
circuitry and the influence of dopamine in the transduction and
generation of pain processing. Pharmacological manipulation of
KOR can be used to modify dopamine transmission and negative
affect. An engaging hypothesis holds the upregulation of dynor-
phin/KOR in chronic pain states to be causal in the generation of
concomitant depression and mood disorders. This remains to be
fully tested, however supporting evidence includes upregulation
of dynorphin following chronic drug use and in post-mortem sui-
cide patients where stress, depression, and anxiety disorders have
developed.

There is a clear a role for the dynorphin/KOR system in mod-
ulating the interplay of pain and reward processing. Through
modulation of limbic neurotransmission, this system produces
aversion, stress affect, and depression. The manifestation of these
processes as corresponding psychiatric disorders is highly comor-
bid with chronic pain and suicide is exceedingly prevalent in
chronic pain patients. These linked conditions have profound
and severely deleterious effects on patients’ quality of life. Despite
the implication of the KOR system in this progression, accepted
treatments targeting it are lacking, thus manipulation of the KOR
system may prove valuable in ameliorating chronic pain-induced
negative affect.
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