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ABSTRACT

Objectives: There is much interest in utilizing clinical data for developing prediction models for Alzheimer’s dis-

ease (AD) risk, progression, and outcomes. Existing studies have mostly utilized curated research registries,

image analysis, and structured electronic health record (EHR) data. However, much critical information resides

in relatively inaccessible unstructured clinical notes within the EHR.

Materials and Methods: We developed a natural language processing (NLP)-based pipeline to extract AD-

related clinical phenotypes, documenting strategies for success and assessing the utility of mining unstructured

clinical notes. We evaluated the pipeline against gold-standard manual annotations performed by 2 clinical

dementia experts for AD-related clinical phenotypes including medical comorbidities, biomarkers, neurobeha-

vioral test scores, behavioral indicators of cognitive decline, family history, and neuroimaging findings.

Results: Documentation rates for each phenotype varied in the structured versus unstructured EHR. Interanno-

tator agreement was high (Cohen’s kappa¼0.72–1) and positively correlated with the NLP-based phenotype

extraction pipeline’s performance (average F1-score¼0.65–0.99) for each phenotype.

Discussion: We developed an automated NLP-based pipeline to extract informative phenotypes that may improve

the performance of eventual machine learning predictive models for AD. In the process, we examined documenta-

tion practices for each phenotype relevant to the care of AD patients and identified factors for success.

Conclusion: Success of our NLP-based phenotype extraction pipeline depended on domain-specific knowledge

and focus on a specific clinical domain instead of maximizing generalizability.

Key words: natural language processing, Alzheimer’s disease, electronic health records, routinely collected health data, informa-

tion retrieval
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LAY SUMMARY

There is much interest in understanding risk factors and predicting the clinical trajectory of Alzheimer disease (AD) demen-

tia, for which there is substantial variability in the rate of clinical decline. Electronic health record data collected over the

course of routine medical care contains vast amounts of patient data that could be useful for this purpose. In our dataset,

we found that the richest source of AD-relevant information is the clinical notes. However, the unstructured nature of the

clinical note poses a significant challenge to extracting information in a format useful for predictive analyses. Natural lan-

guage processing was used to extract information from clinical notes relevant to the clinical care of an AD patient, and the

success of this method was determined by comparing the accuracy of the information extracted to the information manually

annotated by 2 AD clinical experts. The 2 clinical experts generally agreed, and our method performed well compared to

their annotations. Accurate information retrieval from unstructured clinical notes will improve understanding of a patient’s

medical history and overall health, and thus the ability to predict AD risk and progression.

BACKGROUND AND SIGNIFICANCE

Dementia caused by Alzheimer disease (AD) typically progresses

slowly, but the clinical trajectory of disease progression, specifically

rate of cognitive decline and the particular functional domains

impaired, varies substantially. There is much interest in understand-

ing factors that drive this variation. Electronic health records (EHR)

data, collected over the course of routine care, captures a targeted set

of indicators of patient health and disease status over time, including

demographics, medical problems, treatments received, and treatment

outcomes,1 and is therefore valuable for studying the clinical trajec-

tory of AD dementia. Some studies have used phenotypes present

within structured EHR data to predict the risk of developing AD and

other dementias,2–4 but most predictive modeling for AD has used

data collected from research participants outside the clinic. Notably,

as observed in our study dataset, important prognostic phenotypes

relevant to AD such as neuropsychological test scores, brain imaging

data, genetic data, and fluid biomarkers are often absent from the

structured EHR. Neuropsychological evaluations such as the Clinical

Dementia RatingVR (CDRVR ) and Mini-Mental State Exam (MMSE)

assessed over time track decline in cognitive function and thus dis-

ease progression,5–8 as can the appearance of behaviors such as mis-

placing items or repetitive speech where they did not previously

exist, indicating a progressive decline in the ability to perform daily

activities.9–11 Structural imaging showing atrophy of specific brain

regions indicating neurodegeneration can be used to diagnose AD,

and when tracked over time, assess disease progression.6,12,13 Mean-

while infarcts noted in structural brain imaging,14 as well as comor-

bidities such as hypertension and depression could indicate

alternative causes or additional factors resulting in cognitive decline

that may have implications for the treatment approach (reviewed in

reference 15) Family history of dementia, as well as genetic variants

that are risk factors for AD, cannot be untethered from each other,

and have been associated with increased risk of AD as well as more

rapid disease progression (reviewed in reference 16) Finally, elevated

CSF total tau and phosphorylated tau concentration are useful bio-

markers that together indicate the severity of neuronal damage and

serve as a reliable diagnostic indicator of AD.17 Often, these indica-

tors, amongst others, are considered together in order to diagnose

AD dementia, and subsequently track disease progression, and iden-

tify possible interventions to slow the rate of cognitive decline.

Therefore, these data must be extracted to fully realize the potential

of the EHR in studying the trajectory of AD dementia.

Unstructured clinical notes, an underutilized and relatively inac-

cessible part of the EHR, contain a wealth of information including

cognitive concerns, behavioral changes, and personal or family medi-

cal history.18–20 Clinicians synthesize this information to rate

dementia severity, formulate differential diagnoses, and recommend

appropriate testing, treatment, and management. However, in order

to use the valuable clinical phenotypes embedded within clinical

notes in computational models to predict disease outcomes, auto-

mated phenotype extraction techniques, particularly natural language

processing (NLP), are needed. As summarized in Shivade et al21 in

2014, no single solution has been established, despite the plethora of

NLP-based tools for clinical phenotype extraction that currently

exist.22–27

In the dementia domain, NLP has been used to retrospectively

analyze information stored in an EHR to predict risk of subsequent

dementia diagnosis, and one such study found a cognitive symptom

measure that stratified risk of developing dementia up to 8 years

before diagnosis.28 Another study found that combining phenotypes

extracted from unstructured text with phenotypes from structured

EHR data fields (eg, demographics, other diagnoses, vital signs, and

laboratory values) improved the performance of machine learning

(ML) models that predicted dementia risk in patients.29 However,

the existing literature shows a distinct bias towards predicting future

onset of dementia; an open research question is the use of NLP to

extract clinical phenotypes from unstructured sources for models

that guide clinical decision making after diagnosis of dementia, spe-

cifically dementia resulting from Alzheimer disease, such as under-

standing the factors that differentiate fast progressors from slow

progressors after diagnosis.

OBJECTIVES

Recognizing the vast quantity of valuable yet relatively inaccessible

information within unstructured clinical notes, we developed an

NLP-based pipeline to automate the extraction of AD-relevant clini-

cal phenotypes. These phenotypes could inform ML algorithms for

the purpose of predicting disease outcomes, such as the trajectory of

AD progression, and identifying the risk factors influencing these

outcomes. We evaluated the performance of our NLP-based pheno-

type extraction pipeline by comparing the output to gold-standard

data annotations by AD subject matter experts (SMEs). Here, we

describe the results of the automated phenotype extraction and dis-

cuss the challenges of extracting information from clinical

narratives.

MATERIALS AND METHODS

Dataset
This was a retrospective study of electronic health records (EHR)

data extracted from the Washington University in St. Louis Research
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Data Core (RDC), a repository of patient clinical data from BJC

HealthCare and Washington University Physicians. This study was

approved by the Washington University Institutional Review Board

(#201905161) and granted a waiver of HIPAA Authorization for

the use of Protected Health Information (PHI). The study cohort

included adult patients (�18 years) defined using ICD-9 (331.0) and

ICD-10 (G30.1, G30.8, and G30.9) diagnosis codes for AD, not

including other nonspecific dementias or mild cognitive impairments

in order to be sure we were gathering information from a cohort

that would ultimately be diagnosed with AD. The dataset, originat-

ing from Allscripts TouchWorks, included office visits from June 1,

2013 to May 31, 2018. This timeframe was selected to avoid data

harmonization issues due to a transition in the EHR system starting

on June 1, 2018. The dataset consisted of clinical notes associated

with office visits, and corresponding metadata such as patient identi-

fier, author, encounter identifier, and encounter date. The dataset

also included structured data for the same patients, namely demo-

graphics, diagnoses, laboratory results, medications, procedures,

and vital signs. Comorbidities and neuroimaging findings were iden-

tified using ICD-9 and ICD-10CM codes (detailed in Supplementary

Table S1).

Development of an NLP-based pipeline
An NLP-based phenotype extraction pipeline was built to automati-

cally extract AD-relevant clinical phenotypes from clinical notes.

Next, the output was compared to manual annotation by clinical

dementia specialists, our SMEs. Finally, the pipeline was modified

to improve its performance with respect to that of the SMEs. A cus-

tomized approach was applied to extract each target phenotype;

some phenotypes only required pattern-based matching while others

required a knowledge-based approach (Figure 1).

Preprocessing

The clinical notes extracted from EHR were in rich text format

(RTF) contained within tab-delimited files (TXT) alongside meta-

data such as the patient medical record number, author, and date

authored. These were preprocessed before being analyzed by the

NLP-based phenotype extraction pipeline. This entailed converting

the TXT files to comma-separated files (CSV), accounting for addi-

tional tab, quote, and newline characters present, and stripping the

RTF formatting. These steps were performed using the Python Pan-

das30 and striprtf31 (version 0.0.10) packages.

Identify clinical phenotypes relevant to AD

We piloted our NLP-based phenotype extraction pipeline using 10

phenotypes of interest. We first surveyed the literature in order to

identify known clinical predictors of AD progression, then searched

for them in the structured and unstructured EHR data, consulting

with the SMEs to confirm that the selected phenotypes were impor-

tant for AD risk prediction. The selection criteria were as follows:

(1) whether it was documented in the unstructured data, (2) how

extensively it was documented in the structured EHR, (3) its impor-

tance for clinical assessment of an AD patient, (4) the SMEs’ interest

in determining the accuracy of an automated extraction of that phe-

notype, and (5) the final list of phenotypes should represent a variety

in the types of information. The final 10 phenotypes included medi-

cal comorbidities, biomarkers, neurobehavioral test scores, behavio-

ral indicators of cognitive decline, family history, and neuroimaging

findings.

Develop the pipeline to extract each clinical phenotype

Separate NLP-based modules were developed to extract each

selected phenotype. There were 2, nonmutually exclusive,

approaches to identifying each target phenotype. The first was

pattern-based logic which relies on regular expressions to match

occurrences of a phenotype term. The second was a knowledge-

based approach relying on precurated ontologies to extend the

search for specific phenotype terms to closely related groups of con-

cepts. An example of pattern-based logic underlying the module for

extraction of misplacing behavior in patients is described as follows

(Figure 2A):

1. Search for the word “misplace”, allowing for spelling errors and

morphology (eg, misplacing, misplaced).

2. Exclude results where a negation (eg, “does not”, “denies”)

appears right before “misplace”.

Figure 1. Study workflow. Unstructured notes from the EHR were preprocessed for use with the NLP platform. Clinical phenotypes relevant to AD were identified

and NLP modules leveraging the I2E platform were built to extract these target phenotypes. In parallel, SMEs independently annotated a subset of notes, against

which the results of the automated pipeline were compared. Modules performing poorly (F1< 0.8) were refined with input from SMEs.
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Knowledge-based search was utilized for some phenotypes. To

illustrate this, the logic underlying the module for extracting family

history of dementia is as follows (Figure 2B):

1. Define the phrase containing the target information—a phrase

containing a Dementia ontology term (eg, AD, vascular demen-

tia) and a Genetic Relations ontology term (eg, mother, brother,

grandfather) occurring in any order within 5 words of each other

and no other Disease or Symptom ontology term (eg, hyperten-

sion, stroke) within a 5-word space.

2. Identify the family history section of the note—Search for

“Family hx” which marks the start of the section.

3. Determine if the phrase defined in (1) occurs after “Family hx”.

a. If yes, the patient has a family history of dementia.

b. The word matching the Genetic Relations ontology term is

extracted as the family member who had AD.

4. Account for negations—Exclude clinical notes which contain the

following:

a. “Denied Alzheimer Disease”

b. Phrase containing a Negation ontology term, Family History

ontology term, and Dementia ontology term within 2 words

of each other

We used Linguamatics I2E, an NLP-based text-mining platform that

combines text and pattern-recognition with semantic search capabil-

ities based on curated domain knowledge, to implement our pheno-

type extraction pipeline.32,33 After preprocessing, the clinical notes

and their accompanying metadata were uploaded onto the I2E

server and indexed using ontologies within I2E that were built on

domain-specific knowledge including publicly available biomedical

and healthcare terminologies.34–37 While our modules were devel-

oped using the I2E platform, the same logic can be implemented

using other NLP platforms or packages such as the open-source Nat-

ural Language Toolkit (NLTK), and publicly available ontologies

such as those represented in the Unified Medical Language Systems

(UMLS).38

Data annotation
The results of the NLP-based phenotype extraction pipeline were

evaluated against a gold-standard manual annotation of 100 clinical

notes conducted by our SMEs, 2 clinical dementia specialists, both

board-certified neurologists specializing in memory disorders who

regularly evaluate AD patients in the clinic. The 100 notes were

selected via a semiautomated process to maximize the amount of

information present for the target phenotypes, while ensuring that

some notes contained no information regarding each phenotype in

order to assess recall. A Research Electronic Data Capture (RED-

Cap) form was created to collect responses from the SMEs who

were not involved in developing the pipeline beyond identifying the

phenotypes of interest. Each SME independently annotated the set

of 100 notes, including copying evidence from the clinical note

which guided their interpretation or choice into a free-text field.

Evaluate the performance of pipeline
For the 10 target phenotypes, results of the pipeline’s output were

compared independently against each SME’s manual annotations

and the performance metrics (precision, recall, and F1-score) aver-

aged. Interannotator agreement (Cohen’s kappa), precision, recall,

and F1-score for weighted averages were calculated using the scikit-

learn package (version 0.21.2).39

Pipeline refinement
NLP-based phenotype extraction modules which performed poorly

(F1-score < 0.8) were identified and refined, using the evidence

recorded in the manual annotations to analyze false positive and

false negative scenarios to identify changes needed to improve the

NLP module. For example, we altered the family history of demen-

tia module as follows:

1. Problem: Low recall—Discussion of family history pertinent to

AD was not limited to the “Family hx” section of notes.

Solution: Remove limitations on search space.

2. Problem: False positives introduced when search space

expanded.

Solution: Exclude results coming from the phrase “families and

patients dealing with Dementia” which referenced educational

material not specific to the patient.

3. Problem: When several family members were listed as having a

history of dementia, those listed later were missed.

Solution: Expand the allowable word gap to 6 words.

4. Problem: Phrases such as “maternal grandmother” were inter-

preted as “mother” and “grandmother”, resulting in false

Figure 2. Example schema of NLP modules for (A) misplacing, which did not require refinement, and (B) family history of dementia, which was improved by

increasing the word gap.
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positives.

Solution: Exclude the terms “maternal” and “paternal” when

paired with another Genetic Relations ontology term. This sacri-

fices the additional detail of knowing which side of the patient’s

family is affected, but retains information about degree of

relatedness.

RESULTS

Cohort demographics
The cohort included 2680 patients with a median age at first

encounter of 79 years. 61% of the patients were female; 83% were

White and 14% were Black or African American; 97% were Non-

Hispanic or Latino, while 1.3% were Hispanic or Latino (Table 1).

Phenotypes extracted from clinical notes augment data

available in structured EHR
The NLP-based pipeline was used to extract clinical phenotypes rele-

vant to the prediction of AD progression from unstructured clinical

notes in our dataset. The phenotypes included neurobehavioral test

scores (CDR and MMSE) and their corresponding test dates, comor-

bidities (hypertension and depression), neuroimaging findings (pres-

ence of atrophy or infarct), behavioral indicators of dementia

(repeating and misplacing), biomarker levels (total and phosphory-

lated tau protein levels), and family history (whether there was a

family history of dementia, and if yes, which family member(s)).

The availability of each phenotype within the notes versus struc-

tured EHR was noted, as measured by the number of unique

patients for whom the phenotype was documented at least once

(Table 2).

Documentation patterns in the structured versus unstructured

EHR differed for each type of information. Neurobehavioral test

scores were better documented in the structured data than unstruc-

tured notes. Valid Mini Mental State Exam (MMSE) scores with

values were available for 1329 unique patients in the unstructured

clinical notes and 1853 unique patients in the structured laboratory

results table. 1281 patients had MMSE scores documented in both

sources. However, addition of MMSE scores from unstructured and

structured sources resulted in only a 3% increase in the number of

patients (1901 unique patients) for whom MMSE score was avail-

able, relative to the structured source.

On the contrary, including unstructured notes resulted in a 35%

increase in patients for whom CDRs with values were available. The

CDR is an important functional measure of AD severity and pro-

gression,5,6 widely used for staging dementia severity in clinical and

research settings, including clinical trials.7 CDR scores were present

within unstructured notes throughout the study timeframe, sporadi-

cally documented in the structured labs table in February 2015, then

frequently after July 2016. The later inclusion of CDR scores in the

structured labs table suggests recognition of its utility as a standar-

dized value that should be stored in a structured, easily retrievable

format.

Extracting comorbidities and neuroimaging findings from

unstructured clinical notes also added significantly to the structured

data. Compared to structured data alone, these were documented

for 3 times as many patients upon including unstructured data

(Table 2). Behavioral indicators of cognitive decline and family his-

tory of dementia were not found in the structured data but were

documented in the unstructured clinical notes for approximately

half of the cohort (50%–63%). Biomarker test results were not

found in the structured labs table, but were identified in clinical

notes for 89 unique patients.

Evaluation of NLP pipeline
The accuracy of the NLP-based phenotype extraction pipeline was

evaluated by comparing extracted phenotypes to the SMEs’ annota-

tion of 100 notes (Supplementary Table S2).

The Cohen’s kappa metric, measuring interannotator agreement

for each target phenotype, ranged from 0.72 to 1 (Table 3). The

annotations for neurobehavioral test scores, behavioral indicators,

and biomarker measurements were in strong agreement, as indicated

by high kappa values. We noted that these phenotypes were docu-

mented in a consistent manner (Figure 2A). The phenotypes for

which the kappa was <0.8 were presence of hypertension, depres-

sion, infarct on neuroimaging, and family history of dementia

(Figure 2B).

The average performance metrics for the pipeline’s extraction of

the 10 phenotypes compared to the gold-standard annotations are

shown in Table 4. The pipeline performed similarly against the 2

independent sets of manual annotations and generally delivered bet-

ter precision (0.30–1.00) than recall (0.16–1.00). The pipeline per-

formed well when extracting behavioral indicators, comorbidities,

neurobehavioral test scores, and biomarkers, producing F1 scores

ranging from 0.87–1.00. The module targeting neuroimaging find-

ing of brain atrophy also performed well (F1¼0.94) after refine-

ment; the initial version had a low F1 (0.44), affected by the low

precision (0.30) relative to the high recall (0.84), contrary to the

general trend. The initial module targeting family history also per-

formed poorly, producing low F1 scores of 0.35 and 0.26 for pres-

ence of family history and specific relation with dementia

respectively, due to the low recall (0.21 and 0.16, respectively) rela-

tive to the precision (1 and 0.77, respectively).

Pipeline refinement
After reviewing low-performing phenotype extractions (F1-score <

0.8), we refined our NLP pipeline. The module to identify brain

infarct performed poorly (original F1¼0.44). While a preliminary

review of the notes did not reveal negated mentions of “infarcts,”

the notes selected for manual annotation did contain a significant

number of negations. Thus, a second iteration of the NLP module

targeting infarct was built, improving the pipeline’s F1 score to

Table 1. AD cohort demographics extracted from the EHR

Variable Total

Number of patients 2680

Age at first encounter, median (IQR), years 79.1 (73.6–84.5)

Sex, N (%)

Female 1644 (61.3)

Race, N (%)

White 2212 (82.5)

Black or African American 384 (14.3)

Asian 27 (1.0)

Othera 56 (2.1)

Ethnicity, N (%)

Non-Hispanic or Latino 2598 (96.9)

Hispanic or Latino 36 (1.3)

Unknown 46 (1.7)

aOther includes Native Hawaiian or Other Pacific Islander, Other,

Unknown, Declined, or unreported.
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0.65. Excluding negated occurrences of “infarct” decreased the

recall (0.84–0.60), suggesting that this iteration overcompensated

with stringent exclusion rules, but increased the precision (0.30–

0.71) and accuracy (0.39–0.81) of the results.

Family history of dementia also performed poorly (original F1

score¼0.35). Initial review of the notes found that many had a

“Family Hx” section where family history of various diseases could

be documented. Therefore, the initial strategy assumed that family

history of dementia would be captured within this section. However,

the notes used in the manual annotation revealed that family history

was frequently documented in other parts of the notes besides the

“Family Hx” section, thus explaining the poor performance. A sec-

ond iteration of the NLP-based module removed this restriction,

resulting in a slight decrease in accuracy and precision, but a large

increase in recall, leading to an overall improved F1 score (0.35–

0.66). Relatedly, the performance for the extraction of the specific

relation with dementia, which relies on identification of family his-

tory of dementia, also improved (refined F1¼0.66, compared to

original F1¼0.26).

DISCUSSION

Informative features are necessary for the success of ML predictive

models. Here, we developed an automated NLP-based pipeline to

extract clinical phenotypes from the EHR for an AD cohort, with

the intention that these phenotypes could be used for ML predic-

tions of AD risk, progression, and outcomes. During this process,

we first examined documentation practices for various clinical phe-

notypes relevant to the care of AD patients; then, we extracted infor-

mation from the unstructured clinical notes for target phenotypes

that were particularly informative and sparsely documented in the

structured EHR.

In our dataset, we found the unstructured EHR, that is, clinical

notes, to be the most comprehensive source of data pertaining to

clinical care of AD patients. Behavioral indicators of cognitive

decline, family history of dementia, and AD biomarker test results

were documented solely in unstructured notes. Comorbidities and

neuroimaging findings were identified in both structured and

unstructured sources but were better documented in unstructured

notes. Neurobehavioral test scores were identified at similar rates in

structured and unstructured EHR sources. Overall, our NLP-based

phenotype extraction pipeline performed well, and performance cor-

related with interannotator agreement for each target phenotype.

Comparing each phenotype’s presence in the unstructured versus

structured EHR, we noted that MMSE had higher rates of documen-

tation within the structured EHR compared to CDR and decided to

investigate this discrepancy. MMSE scores were often documented

in a semistructured format as part of a neurobehavioral test battery,

Table 2. Availability of phenotypes in structured data vs. unstructured clinical notes

Category Phenotype

Unique patients

represented in structured

data only (EHR source)

Unique patients

represented in

unstructured notes only

Unique patients represented

in structured OR

unstructured datab

(% of structured onlyc)

Behavioral indicators Misplacing 0/2680 1434/2680 NA

Repeating 0/2680 1687/2680 NA

Comorbidities/personal

medical history

Hypertension 500/2680 (diagnoses) 1425/2680 1477/2680 (295%)

Depression 515/2680 (diagnoses) 1652/2680 1694/2680 (329%)

Family history Family history of dementia 0/2680 1350/2680a NA

Neurobehavioral tests/

ratings

Mini Mental Status Exam

(MMSE)

1853/2680 (labs) 1329/2680 1901/2680 (103%)

Clinical dementia ratingVR

(CDRVR )

1078/2680 (labs) 905/2680 1460/2680 (135%)

Neuroimaging findings Atrophy 248/2680 (diagnoses) 666/2680 848/2680 (342%)

Infarct 122/2680 (diagnoses) 198/2680a 279/2680 (229%)

Biomarker test results Total tau and phosphory-

lated tau

0/2680 (labs) 89/2680 NA

aNumbers reflect second iteration of query.
bUnion of patients represented in structured and unstructured data.
cUnion of patients represented in structured and unstructured data/Number of patients in structured data *100.

Table 3. Inter-annotator agreement of manual annotations

Phenotype category Target phenotype Cohen’s kappa

Behavioral indicators Misplacing 0.93

Repeating 0.90

Comorbidities Hypertension 0.76

Depression 0.77

Family history Family history of dementia 0.72

Specific relation: mother 0.95

Specific relation: father 0.91

Specific relation: sister 0.93

Specific relation: brother 0.82

Specific relation: grandmother 1.00

Specific relation: grandfather 1.00

Specific relation: aunt 0.86

Specific relation: uncle 1.00

Specific relation: cousin 1.00

Neurobehavioral

test scores

Date of CDR assessment 0.86

CDR 0.94

Date of MMSE assessment 0.85

MMSE 0.93

Neuroimaging

findings

Atrophy 0.81

Infarct 0.75

Biomarkers Total tau measurement 1.00

Total tau concentration 1.00

Phosphorylated tau measurement 1.00

Phosphorylated tau concentration 1.00
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easily obtained from structured data, and additional scores extracted

from clinical notes did not markedly increase the number of patients

for whom these scores were available. This suggests that these test

scores can be accurately retrieved from unstructured clinical notes,

based on local documentation practices, the relative utility of this

approach is limited.

The greatest disparities between structured and unstructured sec-

tions of the EHR were observed for comorbidities and neuroimaging

findings. The structured diagnosis table lists diagnoses with their

corresponding International Classification of Disease (ICD) codes,

which allow mortality and morbidity data collected globally to be

systematically and easily stored, accessed, analyzed, and com-

pared.40 However, in the United States, ICD codes are primarily

used for hospital reimbursement, and thus documented minimally to

satisfy administrative requirements.41,42 Furthermore, conditions

diagnosed by external care providers may not enter the structured

EHR of the hospital system from which the data were obtained, but

likely communicated in notes or letters. Therefore, we cannot

assume that structured diagnosis tables are a complete record of

patient comorbidities; as we found, comorbidity information is

more comprehensively documented within clinical notes. Comorbid-

ities extracted from clinical notes, in addition to referencing current

medical issues, also revealed historical and acute symptoms or dis-

eases not found in the structured diagnosis table. This highlights the

importance of integrating data from unstructured and structured

sources to obtain a comprehensive understanding of a patient’s over-

all health necessary to guide clinical decision-making.

Much of AD research has revolved around identification of bio-

markers useful for early diagnosis and prognosis of AD, in particular

Ab protein, Tau protein, and the apolipoprotein E (APOE) gene

(reviewed in references 43 and 44) However, our dataset contained

little information regarding these biomarkers. Explanations for the

paucity of these data include the invasiveness and expense of these

tests resulting in low uptake and their being ordered only to resolve

diagnostic uncertainty.45,46 Further, while strongly associated with

AD risk and outcomes in research studies, these biomarkers did not

yet represent clinically actionable targets in the timeframe covered

by the dataset, and thus possibly documented only in research data-

bases. As more therapies to treat early-stage AD enter clinical trials

and eventually practice,47 and relatively inexpensive, minimally

invasive, routine testing to identify early-warning biomarkers of AD

is introduced,48 the standard of care will evolve to identify AD

patients early enough that treatment is indicated. This highlights the

utility of EHR data as an important longitudinal data source.

While developing the NLP-based phenotype extraction pipeline,

several factors were observed to influence success. Firstly, we found

that limiting the source material to the most pertinent notes based

on metadata (ie, care provider and healthcare facility) would reduce

the need to account for variation in linguistic patterns, note struc-

ture, concepts, and conventions in documentation practices, thus

simplifying the development of the NLP modules. Secondly, we con-

sulted with SMEs to understand the clinical relevance of each target

phenotype. For example, understanding the chronicity and expected

range of neurobehavioral test scores allowed us to avoid spurious

associations between scores and visit date that inaccurately reflect

rate of disease progression. Lastly, we learned that it was necessary

to specify clinical data domains to be considered during the target

phenotype extraction; to illustrate, annotation conflicts for comor-

bidities arose because there was confusion about whether to include

current, past, or well-controlled medical problems and whether

medications would be used to infer the presence of a condition. For

each target phenotype, performance of the extraction pipeline posi-

tively correlated with interannotator agreement suggesting that an

NLP module that is difficult to optimize also reflects a more com-

plex experience for a manual annotator trying to extract the target

phenotype from the note (Supplementary Table S3, Supplementary

Figure S1).

Like many studies using EHR data, one limitation of this study

relates to quality and completeness of the EHR data, as well as the

racial and socioeconomic composition of our clinic population,

which could limit the variability in clinical phenotypes on which our

analytic pipeline has been trained. Also, the effort needed to produce

a high-quality gold-standard annotation precluded our ability to

evaluate our pipeline refinements against an independent dataset

within the scope of this work. However, we are optimistic that the

dominant documentation patterns of the target phenotypes for this

patient population were captured, and given the dynamic nature of

language and medical knowledge, expect pipeline improvement to

be iterative. Finally, another limitation is the use of a commercial

software which precludes direct portability of our pipeline, although

our observations and identified factors for success remain platform-

agnostic. There exist several other open-source and commercial

Table 4. Average performance metrics

Category Phenotype Accuracy Precision Recall F1

Behavioral indicators 1. Repeat 0.82 1.00 0.80 0.89

2. Misplace 0.98 0.98 0.99 0.99

Comorbidities 3. Hypertension 0.86 0.96 0.86 0.91

4. Depression 0.87 0.87 0.87 0.87

Family history 5a. Family hx of dementia? Original 0.55 1.00 0.21 0.35

Refined 0.68 0.76 0.58 0.66

5b. Specific relation Original 0.54 0.77 0.16 0.26

Refined 0.61 0.74 0.59 0.66

Neurobehavioral tests score (with

matched test date)

6. MMSE score 0.96 0.97 0.96 0.96

7. CDR score 1.00 1.00 1.00 1.00

Neuroimaging findings 8. Atrophy 0.89 0.99 0.89 0.94

9. Infarct Original 0.39 0.30 0.84 0.44

Refined 0.81 0.71 0.60 0.65

Biomarkers 10. Presence of Tau measurement (total or phosphorylated) 0.99 1.00 0.98 0.99

10a. Total tau concentration 0.97 0.98 0.97 0.97

10b. Phosphorylated tau concentration 0.99 0.99 0.99 0.99
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NLP-based systems that aim to automate clinical phenotype extrac-

tion from unstructured clinical text (reviewed in reference 21) The

algorithms used in these systems may map textual elements to stand-

ardized vocabularies or concepts (eg, MetaMap22) identify domain-

specific named entities or keywords based on expert input such as

the NLP-powered annotation tool (NAT) to facilitate phenotyping

of cognitive status;23 or incorporate higher-level semantic process-

ing, (eg, cTAKES24) The I2E-based pipeline we have presented here

functions along these lines. Recently, BERT (Bidirectional Encoder

Representations from Transformers) has emerged as a popular deep

learning-based NLP model,25 spawning derivatives such as Clinical

BERT and BioBert that are optimized for clinical and biomedical

texts,26,27 and illustrating that domain-specificity remains essential

for optimal performance of such NLP-based systems.

In future work, we plan to incorporate computable phenotypes

extracted by our pipeline into ML models for AD-dementia progres-

sion and determine if their addition improves model performance,

thereby justifying efforts to develop NLP-based pipelines such as the

one presented here.

CONCLUSION

Success of our NLP-based phenotype extraction pipeline depended

on access to domain-specific knowledge from SMEs and focus on a

specific clinical domain rather than maximizing generalizability.

Integrating structured EHR data with clinical phenotypes from

unstructured clinical notes provide a more complete picture of a

patient’s medical history and overall health that should improve the

accuracy of ML models seeking to predict AD risk, progression, or

outcomes.
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