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ABSTRACT
Telomerase acts as an important biomarker for tumor identification, and synthesizes telomeric repeats at
the end of chromosome telomeres during the replicative phase of the cell cycle; thus, the expression level of
telomerase changes as the cell cycle progresses. TERTmRNA expression and telomerase activity were
significantly increased in over 80% of human cancers from tissue specimens. Although many efforts have
been made in detecting the activity of TERTmRNA and active telomerase, the heterogeneous behavior of
the cell cycle was overlooked, which might affect the accuracy of the detection results. Herein, the
AIEgen-based biosensing systems of PyTPA-DNA and Silole-R were developed to detect the cellular level
of TERTmRNA and telomerase in different cell cycles. As a result, the fluorescence signal of cancer cells
gradually increased fromG0/G1, G1/S to S phase. In contrast, both cancer cells arrested at G2/M phase
and normal cells exhibited negligible fluorescence intensities. Compared to normal tissues, malignant
tumor samples demonstrated a significant turn-on fluorescence signal. Furthermore, the transcriptomics
profiling revealed that tumor biomarkers changed as the cell cycle progressed and biomarkers of CA9, TK1
and EGFR were more abundantly expressed at early S stage. In this vein, our study presented advanced
biosensing tools for more accurate analysis of the cell-cycle-dependent activity of TERTmRNA and active
telomerase in clinical tissue samples.
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INTRODUCTION
Cancer is a significant cause of death worldwide and
numerous efforts have been devoted to the develop-
ment ofmethods for early detection andquantitative
measurement of cancer biomarkers to obtain infor-
mation correlated to tumorigenesis [1]. Activation
of telomerase is a typical feature ofmore than 80%of
immortalized cells but not detectable in normal so-
matic tissues [2,3]. Once telomerase is activated, a
majority of tumor cells could maintain the telomere
during the S phase of the cell cycle [4–6]. Telom-
erase is a ribonucleoprotein complex consisting of
anRNA templatemoiety, a reverse transcriptase cat-
alytic component (TERT protein) together with as-
sociated proteins [7]. Activation of telomerase is the
principal manifestation of regulating the expression

of TERT messenger RNA (TERT mRNA) [8,9].
In particular, telomerase activity can be inhibited
by down-regulating TERTmRNA expression in dif-
ferent types of human malignancies [10,11]. Thus,
TERT mRNA as well as telomerase activity were
used as useful diagnostic biomarkers during tumori-
genesis [12].

Many works have been reported in develop-
ing new bioanalytical methods for detection of
TERTmRNA and telomerase activity [13,14]. Cur-
rent detecting techniques (the golden standard) for
TERTmRNA aremainly based on Real-timeQuan-
titative Polymerase Chain Reaction (RT-qPCR)
[15,16]. The standard TRAP assay (telomeric re-
peat amplification protocol) [3,17,18], optical de-
tection [19,20], colorimetric assays [21], biosensor
chip [22] and electrochemical strategies [23] have
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been developed for telomerase activity detection.
Fluorescence methods have the advantage of sim-
plicity, sensitivity and rapidity [24–26], thus they
were widely used in cell-lysate-dependent detecting
assays [27,28] and intracellular imaging [29–31].
Moreover, our group’s prior work designed a series
of fluorescent probes to light up telomerase on the
basis of aggregation-induced emission luminogens
(AIEgens) [32–34]. AIEgens possess many advan-
tages such as long-term tracking ability, low back-
ground and strong resistance to photo-bleaching.
They exhibit a higher fluorescence in aggregated
states and have been widely applied in the field of
biochemical analysis and imaging [35–38].

Although lots of methods have been developed
to detect telomerase, those methods mainly relied
upon the analysis of asynchronous cells with differ-
ent phases of the cell cycle. The cell cycle is an in-
tegrated network that contributes towards balancing
the process of various bio-macromolecule syntheses,
assemblies and interactions [39–41]. Some research
indicates that the telomerase activity of human tu-
mor cells changes as the cell progresses through dif-
ferent stages of the cell cycle [42–44]. This means
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Scheme 1. AIEgen-based fluorescence detecting system for analysis of TERT mRNA
and telomerase activity in different phases of the cell cycle (G0/G1, G1/S, S and G2/M
phase).

that the accurate analysis of telomerase may be
affected by the different phases of the cell cycle.

Herein, we investigated the role of cell cycle pro-
gression (G0/G1, G1/S, S and G2/M phase) in an-
alyzing telomerase (TERT mRNA and telomerase
activity) in cancer cells based on an AIEgen-
based fluorescence detecting system. As shown in
Scheme 1, in the absence of TERT mRNA and
exonuclease III (Exo III), the redundant PyTPA-
DNA probe could complement hybridization and
then be cleaved by Exo III to release the tar-
get and fluorogen (PyTPA-N3). Moreover, in the
presence of active telomerase, the template strand
primer (TP) could be extended to form long nega-
tively charged DNA chains. The positively charged
AIE dye (Silole-R) was spontaneously combined
to the chains via electrostatic interaction. On the
basis of this system, we tested TERT mRNA and
telomerase activity between different phases of
cancer cells vs. normal cells. Results show that
the fluorescence signal of cancer cells arrested at
G0/G1, G1/S, S phase increased as the cell cy-
cle progressed, while the cancer cells arrested at
G2/M phase and normal cells showed a negligi-
ble intensity. Moreover, this fluorescence analyz-
ing system was successfully used in the tissue sam-
ples of malignant tumors. Finally, we compared
the expression levels of some biomarkers during
differencephases of the cell cycle on thebasis of tran-
scriptomics profiling. These results, therefore, sug-
gest that future studies on tumor biomarkers anal-
ysis, such as TERT mRNA and telomerase activity,
should consider the phase of the cell cycle.

RESULTS AND DISCUSSION
Bioprobes for TERT mRNA and
telomerase activity
PyTPA-N3 was prepared according to the reported
procedures [45] (Supplementary Fig. 1) and then
coupled with Alk-DNA to yield PyTPA-DNA
(Fig. 1A). The rude product was purified by High
Performance Liquid Chromatography (HPLC)
(Supplementary Fig. 1) and confirmed by High
Resolution Mass Spectrometer (HRMS) with a
peak atm/z 10 243.0 (Fig. 1B).TheUV–Vis spectra
of PyTPA-DNA exhibited a characteristic peak at
260 nm and 452 nm (Fig. 1C), respectively. The
stability of PyTPA-DNA (Supplementary Fig. 2) in
biological environments was confirmed. Nondena-
turing polyacrylamide gel electrophoresis (PAGE)
was used to demonstrate the stability of the PyTPA-
DNA probes and analyze the target recycling pro-
cess (Supplementary Figs 3 and 4) with assistance
from Exo III. Furthermore, the mass spectrum of
PyTPA-G (the hydrolysis product) was manifested
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Figure 1. Feasibility analysis of PyTPA-DNA and Silole-R bioprobes in analyzing TERT mRNA and telomerase activity. (A) The
synthetic route of PyTPA-DNA. (B) HRMS of PyTPA-DNA. (C) The UV–Vis spectra of PyTPA-N3 and PyTPA-DNA. (D) HRMS of
the hydrolysis product PyTPA-G. (E) Fluorescence responses enhanced progressively with different concentrations of targets
(0 pM, 10 pM, 100 pM, 1000 pM and 10 000 pM). (F) Electrostatic interaction between Silole-R and phosphate residues.
(G) Fluorescence responses of Silole-R incubation with different concentrations of telomerase extracts. (H) Fluorescence
responses (I/I0)−1 of telomerase versus different proteins under the same experimental conditions.

at 1157.5 (Fig. 1D); the average hydrodynamic
diameter of PyTPA-Gwas observed around 260 nm
(Supplementary Fig. 5); the fluorescence inten-
sity of PyTPA-DNA was significantly increased
owing to S1 nuclease cleavage to form aggregated
PyTPA-G in solution (Supplementary Fig. 6).
Those results verified the successful synthesis of
PyTPA-DNA and suggested that a target recycling
strategy was an effective tool for detection.

On the other hand, the fluorescence intensity
of PyTPA-DNA was gradually enhanced (2.9-fold)
with the increased concentration of target from 0 to
10 000 pM and found to be linearly correlated with

target concentrations from 10 to 10 000 pM, with
detection limit of 3.36 pM (R2 = 0.992) (Fig. 1E).
Next, four different enzymes were used instead of
Exo III in the reaction (Supplementary Fig. 7). As
a result, almost no fluorescence was observed un-
der the same treatment, suggestive of the important
role of Exo III in the system.The fluorescence in re-
sponse to perfectly matched strands was verified to
be superior to the single/three base mismatch se-
quence (Supplementary Fig. 8). Finally, the fluo-
rescence intensity of PyTPA-DNA incubated with
different concentrations of RNA extracts was in-
creased and represented reasonable correlation with
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different numbers of cells (Supplementary Fig. 9).
Therefore, those results confirmed the effectiveness
of the PyTPA-DNA in detecting TERT-mRNA.

The synthetic route of Silole-R was reported by
our literature [32,33]. Based on electrostatic force,
the Silole-R was able to interact with the negatively
charged DNA backbone (Fig. 1F).The fluorescence
of Silole-R was weak in the solution or incubating
with short single-stranded DNA (Supplementary
Table 2).While, in the presence of longer sequences
(Ex-6, 54-nt), a rapid fluorescence was lighted by
the aggregation state of Silole-R (Supplementary
Fig. 10).

The fluorescent intensities of TP and Silole-R
were enhanced gradually with HeLa cells rising
from 0 to 10 000, which demonstrated the positive
correlation between the fluorescence emission and
the cell extracts (Fig. 1G, inset). However, HeLa
cells pretreated with 100 μM telomerase inhibi-
tion AZT (3′-azido-3′-deoxythymidine) exhibited
no fluorescence (Supplementary Fig. 11). Only ac-
tive telomerase, not other substrates, was able to
initiate a potent fluorescence, suggestive of a high
specificity of this bioprobe (Fig. 1H and Supple-
mentary Fig. 12). Moreover, PAGE analysis and the
TRAPmethodwere employed tomonitor the active
telomerase assisted primer DNA extension, which
indicated the successful elongation of DNA prod-
ucts with the help of telomerase (Supplementary
Figs 13 and 14).

Cell-cycle-regulated TERT mRNA
and telomerase activity
Four stages of HeLa cells were obtained by treat-
ment of serum starvation, L-mimosine, thymidine
and nocodazole respectively (Fig. 2A). Correspond-
ing synchronized cell fractions were identified by
flow cytometry analysis according to the DNA
content (Fig. 2B and Supplementary Fig. 15).

First, PyTPA-DNA and Silole-R bioprobe were
used to investigate the expression of TERT mRNA
and telomerase activity under different cell cycles of
HeLa cells. Figure 2C compares the fluorescence in-
tensities (Supplementary Fig. 16) in different cell
cycles. Upon progression through the cell cycle,
the PyTPA-DNA faintly fluoresced in the G0/G1
stage but demonstrated an enhancement of fluo-
rescence in response to the G1/S phase, and fi-
nally reached the strongest output in S stage. How-
ever, cells arrested at the G2/M phase showed the
weakest fluorescence in contrast to the other three
cell cycles. Furthermore, cell-cycle-dependent alter-
ations of TERT mRNA expression in HeLa cells
were reconfirmed by qPCR (Fig. 2D). The similar
fluorescence responses of Silole-R lighted by active

telomerase during different cell cycles were also re-
ceived (Fig. 2E and Supplementary Fig. 17). More-
over,TRAPassaywas selectively analyzed and found
to have the strongest expression levels in S stage
(Fig. 2F and Supplementary Fig. 18). Those detect-
ing results revealed that the TERT mRNA amount
and telomerase activity from different cancer cell cy-
cle extracts were cell cycle dependent.

Second, the intracellular imaging of TERT
mRNA and telomerase activity during different
stages of cancer cell cycle were carried out. With
minimal cytotoxicity of PyTPA-DNA and Exo III
toward cells (Supplementary Fig. 19), PyTPA-DNA
lit upHeLa cells by distributing in the cytoplasm and
gradually boosted with high intensity for 2 h (Sup-
plementary Fig. 20). Additionally, epigallocatechin
gallate (EGCG) was utilized for dose-dependent
inhibition of TERT mRNA expression. When
incubated with HeLa cells at a concentration of
EGCG of 250 μg/mL, no fluorescence was ob-
served, implying an inhibition on TERT mRNA
expression in HeLa cells and the excellent biocom-
patibility of PyTPA-DNA probe (Supplementary
Fig. 21). Silole-R and TP were used to monitor
the cellular fluorescence responses with AZT or
EGCG-treatment (Supplementary Figs 22 and 23).
The fluorescence of Silole-R was lighted up when
coexisting with HeLa cells without any treatment.
Furthermore, the intracellular fluorescence results
demonstrated that the bioprobes could successfully
monitor the intracellular TERT mRNA level and
telomerase activity when coexisting with HeLa
cells (Supplementary Fig. 24). As such, because of
the fluorescence switch-on visualization of TERT
mRNA and telomerase activity in cells, imaging
capabilities of high accuracy, sensitivity, and positive
relationship between fluorescence intensity and
TERT mRNA or telomerase activity were achieved
by our system.

Fluorescence imaging of the expression of TERT
mRNA (Supplementary Fig. 25) and telomerase ac-
tivity (Supplementary Fig. 26) were carried out in
different synchronized HeLa cells. After incubat-
ing a cell with two probes, an enhancement of the
cellular fluorescence intensity was observed upon
most cells; both red fluorescence and blue fluo-
rescence were gradually increased in G1/S and S
phase (Fig. 2G), potentially owing to increasing ac-
tivity of telomerase over cell division fromG0/G1 to
Sphase. Furthermore, the averagefluorescencedras-
tically reduced in G2/M phase cells, which was al-
most half of the initial fluorescence.The intracellular
fluorescence intensities of PyTPA-DNA corrected
against background signal in the cell cycle of G0/G1
phase (6.8 a.u.), S phase (10.1 a.u.) andG2/Mphase
(3.7 a.u.) are shown in Fig. 2H. The fluorescence
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Figure 2. (A) Illustration of brief experimental procedure. (B) Cells were synchronized at the phases of G0/G1, G1/S, S and
G2/M. (C and D) Quantification of TERT mRNA in HeLa cells by PyTPA-DNA bioprobes (I, average fluorescence intensity at
650 nm of cancer cell samples; I0, blank samples) and qPCR. (E and F) Quantification of telomerase activity in HeLa cells with
Silole-R bioprobes (I, average fluorescence intensity at 478 nm of cancer cell samples; I0, blank samples) and TRAP method.
(G–I) Images of TERT mRNA and telomerase activity in different HeLa cells synchronized at the G0/G1, G1/S, S and G2/M
phases and their corresponding fluorescence intensity. (J–L) Images of TERT mRNA and telomerase activity in different HeLa
cells synchronized at the G1/S, S, G2/M and G0/G1 phases and their corresponding fluorescence intensities. All scale bars
are 20 μm.

intensity of Silole-R corrected against background
signal for HeLa cells resident in G0/G1, S and
G2/Mphase of the cell cycle accounted for 16.7 a.u.,
48.5 a.u. and 32.7 a.u., respectively (Fig. 2I). To fur-
ther confirm the contribution of the cell cycle to var-
ied responses of fluorescence, cellular fluorescence
was selectively analyzed when treated with thymi-
dine, which was reported to affect cell behaviors
to obtain different cell cycle [46,47]. Thus, fluores-
cenceofHeLa cells treatedwith thymidinewasmon-
itored and found to demonstrate the highest value in
S phase and related lower value in G2/M phase and
almost the same signal in G1/S and G0/G1 stages
(Fig. 2J–L). The intracellular fluorescence imaging
results demonstrated that the cell cycle has dra-
matic effects on the localization of TERT mRNA
and telomerase activity—the telomerase was spe-
cificboosted in theSphase and reduced in theG2/M
phase in human cancer cells.

Cell-cycle-regulated TERT mRNA
and telomerase activity in clinical tissue
samples
We tested the expression level of TERT mRNA
and telomerase activity in different periods of HeLa
cells, human lung fibroblasts (HFL-1) cells and tis-
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I0, blank samples). (B) Fluorescence response I/I0 of telomerase activity in different
phases of HeLa cells and normal cells (I, average fluorescence intensity at 478 nm of
cancer cell samples; I0, blank samples).

sue specimens. Serum starvation at different times
induced HFL-1 cells to arrest at different phases of
the cell cycle (G0/G1, G1/S, S and G2/M) [48].
The expression level of TERT mRNA and active
telomerase in normal cells revealed that somatic
cells have almost no activation of telomerase dur-
ing three phases of the cell cycle (Fig. 3A and
B). The levels of TERT mRNA and active telom-
erase in most phases of the cell cycle (G0/G1,
G1/S, S) are above normal cells according to the
definition of (I/I0) − 1, while cells arrested in
G2/M phase exhibited almost the same level of
HFL-1 as normal cells. Those results remind us
to take cell cycle into consideration when we use
TERT mRNA and telomerase activity as the early
diagnosis of tumor lesion.

To verify the application value of our proposed
imaging strategy in clinical samples, both PyTPA-
DNA and Silole-R bioprobes were employed to de-
tect the level of TERT mRNA and active telom-
erase in tissue specimens from clinical patients,
such as malignant tumor, ovarian cyst, benign tu-
mor and normal samples. The detecting results of
TERT mRNA and telomerase activity showed sig-
nal increase ratios of 2/2 (100%) for cancer tissues
and 1/2 (50%) for ovarian cysts from normal tis-
sues (Fig. 4A and B) according to the definition
of fluorescence intensity ratios between the normal
specimens.

We further examined the expressions of TERT
mRNA and active telomerase in tissues by us-
ing our proposed imaging strategy. As shown in
Fig. 4C–E, Confocal Laser Scanning Microscope
(CLSM) images showed that two cancer tissues
displayed obvious red and blue fluorescence inten-
sity when incubating with PyTPA-DNA and Silole-
R, respectively. The tissue of cervical cancer and
ovarian cancer was mainly located in the stage of
cell proliferation, which was verified by immuno-
histochemical (IHC) staining for Ki67 and Prolif-
erating Cell Nuclear Antigen (PCNA) (Fig. 4F).
Moreover, fluorescence intensity of ovarian cysts
was much higher than that of normal tissues. Both
normal tissues exhibited almost non-fluorescence
in the presence of PyTPA-DNA and Silole-R. On
the other hand, the tissues were consistent with
hematoxylin-eosin (H&E) staining (Supplementary
Fig. 27).
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Figure 4. (A and B) Fluorescence response I/I0 of TERT mRNA and telomerase activity in various tissue specimens. (C–E) Images of the expression of
TERT mRNA, telomerase activity in different tissue specimens and their corresponding fluorescence intensities. (F) The IHC staining images of Ki67 and
PCNA in tissue specimens. Scale bar, 20 μm.

Figure 5. The expression of tumor markers during different phases of the cell cycle.

Other biomarkers also vary as the cell
cycle progresses
In order to acquire a map of transcriptome in-
formation during different phases of the cell cy-
cle, RNA sequencing was performed by using di-
viding cells synchronization. First, a list of known
cell-cycle-regulated genes was selected [49,50] and
found to have peak expression in each of our groups
(Supplementary Fig. 28). Then, the level of TERT
gene expression in each cell cycle was investigated
(Supplementary Fig. 29) and it was consistent with
the above-mentioned results. Next, great interest is
aroused in analyzing the expression of genes and

corresponding pathways during different phases of
the cell cycle (Supplementary Figs 30–35), which is
an important research area related to disease screen-
ing. Moreover, some biomarkers for various can-
cer detection were casually chosen to determine
their expression level during different phases of the
cell cycle, which suggested that tumor biomarkers
were highly diversified. As shown in Fig. 5, the pa-
rameters of CA9, CDKN1A, TK1 and EGFR were
significantly elevated in G1/S stage. However, the
activities of KRAS,CYC1 and PLOD3were remark-
ably weakened in G0/G1 and G1/S phases. Based
on evaluation, these results indicated that different
tumor markers were highly diversified and varied in
the functions of different cell cycles.

CONCLUSION
In summary, we have constructed a highly sensi-
tive system for imaging the cellular expression of
TERTmRNA and telomerase activity during differ-
ent phases of the cell cycle based on AIEgens. We
found that TERT mRNA and telomerase activity
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variedduring the cell cycle andwere able to affect the
accuracy of cancer identification. The fluorescence
intensities of cancer cells arrested at thephasesG1/S
and Swere increased. In contrast, the cancer cells ar-
rested at the phaseG2/Mand normal cells showed a
negligible fluorescence intensity, which suggested a
significant role of the cell cycle progression in regu-
lation of telomerase activation. Herein, the cell cycle
accounted for the sensitivity and efficiency of diag-
nosis in the field of telomerase identification.

It is worth noting that the cell cycle had a ma-
jor role in cellular processes and had the ability to
modulate variousbiomarkers. Some tumorbiomark-
ers varied as the cell cycle progressed, such as CA9,
TK1 and EGFR, which were more abundantly ex-
pressed at early S stage. Hence, our AIEgens bio-
probes provided potent tools of differentiation of
TERTmRNA and telomerase activity in the cell cy-
cle and an important guidance tool for the develop-
ment of probes for cell-cycle-dependent detection.

METHODS
Telomerase activity detection
by Silole-R bioprobe
Telomerase extracts from different numbers of
HeLa cells and HFL-1 cells were first diluted in lysis
buffer and stored in the−80◦C refrigerator. Telom-
erase extracts and 7.8μM Silole-R with dNTPs, TP
and RNase inhibitor were incubated at 37◦C for 1 h,
then transferred to 94◦C for 5 min to end the exten-
sion. Finally, the fluorescence emission spectra were
measured in the range from 400 to 700 nm (λex=
360 nm).

TERT mRNA detection by PyTPA-DNA
The 50 μL solution consisted of PyTPA-DNA (10
μmol/L), Exo III (1U/μL),Helps 1-2 (4μmol/L),
dNTPs (200 μmol/L), recombinant RNase in-
hibitor (0.8 U/μL) and varying concentrations of
RNA extracts. After incubation at 37◦C for 1 h, the
reaction mixture was transferred to 95◦C for 5 min
to stop the reaction.

Electrophoresis experiment
PAGE (12%) in 1 × TBE was used to test different
samples (with 1 × loading buffer) at 100 V, 24◦C.
After separation, the gel was stained with Gel Red
and photographed under a UV lamp.

Cellular imaging of TERT mRNA
and telomerase activity
HeLa cells were seeded in a 20 mm confocal
dish for 24–48 h. For imaging of TERT mRNA,

PyTPA-DNA (5 μM) and 0.5 U/μL Exo III were
transfected into cells by using lipofectamine 2000
(4μL) inOpti-MEMfor 1–3h. Subsequently, trans-
fection mixtures were removed from cells by us-
ing PBS buffer. For imaging of telomerase activ-
ity, the 3.6 μM TP was transfected using 3 μL of
lipofectamine-2000 in Opti-MEM at 37◦C for 1 h.
Subsequently, 5.0 μM Silole-R was added into the
medium for 30min. Before the imaging observation,
cells had to be washed three times by using PBS
buffer.

Clinical sample imaging of TERT mRNA
The clinical tissue samples were incubated with the
above cellular TERT mRNA and telomerase activ-
ity imaging mixture for 1 h. Then, corresponding
samples were washed with PBS buffer three times
under a Zeiss LSM 880 confocal laser scanning
microscope.
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