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Abstract 

Background:  The altered concentrations of amino acids were found in the bone marrow or blood of leukemia 
patients. Metabolomics technology combining mathematical model of biomarkers could be used for assisting the 
diagnosis of pediatric acute leukemia (AL).

Methods:  The concentrations of 17 amino acids was measured by targeted liquid chromatograph–tandem mass 
spectrometry in periphery blood collected using dried blood spots. After evaluation, the mathematical models were 
further evaluated by prospective clinical validation cohort for AL diagnosis.

Results:  The concentrations of 13 in 17 amino acids were statistically different between the periphery blood dried 
serum dots measured by targeted LC–MS/MS. The receiver operating characteristic analysis for the models of amino 
acid panel showed that the area under curve for AL diagnosis were 0.848, 0.834 and 0.856 by SVM, RF and XGBoost. 
The Kappa values in further prospectively evaluated clinical cohort were 0.697, 0.703 and 0.789 (p > 0.05) respectively, 
and the accuracies for the models were 84.86%, 85.20% and 89.46% respectively with further clinical validation.

Conclusions:  The established mathematical model is a faster, cheaper and more convenient way than conventional 
methods, and no significant difference on the effect of diagnosis comparing with conventional methods. The math-
ematical model can be clinically useful for assisting pediatric AL diagnosis.

Keywords:  Acute leukemia, Mathematical model, Amino acid panel, Mass spectrometry

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Acute leukemia (AL) is the most common cancer in chil-
dren under 15  years of age, divided into acute lympho-
blastic leukemia (ALL) and acute myeloid leukemia 
(AML), which ALL accounts for 60–70% and AML for 
30–40% [1]. The diagnosis of AL is dependent on the 
multiple laboratory tests, which require the combination 
of assays of morphological, immunological, cytogenetic 

and molecular (MICM) inputs [2]. The current proce-
dure (MICM assays) of using bone marrow cells from AL 
patients is painful and inconvenient for children [3]. The 
immunological tests rely on flow cytometry, while the 
molecular tests, such as, reverse transcription polymer-
ase reaction (RT-PCR) and high throughput sequencing 
are used to measure fusion genes and key mutations of 
the driven genes. All the tests are instrument-dependent 
and the proper interpretation of results is required. There 
are increasing interests in discovering the new sensitive 
and specific biomarkers in the peripheral blood (PB) as 
an easy way to assist AL diagnosis.

The connection between nutrient metabolites and 
cancers has been reported extensively [4]. The meta-
bolic environment is essential for cancer cell growth [5] 
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and the metabolomics analysis of samples from cancer 
patients, including leukemia, enables the identification 
of novel specific biomarkers [6]. Although most scientists 
focused on determining the relationship between glucose 
metabolism and different cancers [7], the occurrence and 
development of leukemia has been shown to be closely 
related to amino acid metabolism that affects the pro-
tein synthesis. For example, proline disturbs several key 
metabolic pathways to promote the disease progress 
and affects the treatment of leukemia [8]. Besides, oth-
ers’ report have proven that the amino acids were related 
with cell proliferation, apoptosis or drug treatment of dif-
ferent cancers [9–15]. Therefore, in this study, we aimed 
to determine whether the alterations of amino acid con-
centrations could be useful for the diagnosis of AL.

For measuring multiple amino acids simultaneously, 
the targeted liquid chromatograph–tandem mass spec-
trometry (LC–MS/MS), which is widely used in study-
ing the metabolism of cancer and other diseases [16], 
was used based on its sensitivity, repeatability and high-
throughput [17]. Moreover, the mathematical model of 
biomarkers, based on the alteration of multiple metab-
olites and analyzing the data by R programing, was 
reported to help diagnosis of breast cancer, and chronic 
graft-versus-host disease [18, 19]. It is feasible to estab-
lish the mathematical model of amino acid panel for AL 
diagnosis.

For establishing mathematical model of biomarkers, 
compared with R programing [18, 19], eXtreme Gradi-
ent Boosting (XGBoost), established by Chen, is proved 
to be higher accuracy and excellent generalization ability 
[20]. The number of the document of XGBoost folked on 
Github was more than 20,000. As it spreaded more and 
more, XGBoost was used to predict positive urinary tract 
infections and chemical-induced respiratory toxicity [21, 
22].

Here, we used targeted LC–MS/MS to measure the 
amino acid profiles of PB between AL children and their 
matched control. The mathematical models were estab-
lished and optimized using XGBoost algorithm. We then 
evaluated the models in another clinical cohort to assess 
their sensitivities, specificities and accuracies, to prove 
the advantageous performance of our model for distin-
guishing between children with AL and children with 
non-malignant hematologic diseases, who had similar 
clinical symptoms.

Methods
Enrolled patients and matched controls
There were 520 newly diagnosed acute leukemia (AL) 
patients (ALL/AML = 358/162) recruited for this study 
and the inclusion criteria followed the AL diagnosis crite-
ria in the 2016 edition of the World Health Organization 

(WHO) [23], and 592 children in their matched control 
group from April 2016 to March 2018. AL children, who 
were newly diagnosed and received normal diet (just 
avoiding high protein diet intake) 3  days before admis-
sion, were chosen in our study during the period. Chil-
dren with missing clinical information related to MICM 
classification were not included in the study. The matched 
children controls were randomly chosen from patients 
with a non-malignant hematologic diseases, including 
anemia, infectious mononucleosis or thrombocytopenia, 
and received normal diet 3 days before admission in the 
same period and healthy children were chosen randomly 
from those who came to receive physical examination in 
the same period. Both matched healthy children (n = 220) 
and children with non-malignant hematologic diseases 
(n = 592) were used as controls to compare whether there 
was a difference among AL children, healthy children and 
children with non-malignant hematologic diseases. The 
sample size of controls were slightly larger than that of 
AL children (10–20% more) to ensure the data charac-
teristics of control group were matched with that of leu-
kemia group. The experimental design for this study was 
shown in Fig. 1. This project was approved by the institu-
tional ethics board of the Children’s Hospital of Chong-
qing Medical University (CHCMU2015031). Informed 
consents were signed and obtained from the legal guard-
ians of all patients.

MICM stratification
Briefly, the French–American–British (FAB) classifica-
tion standard for the morphological examination was 
used in this study [24]. For the immunological flow 
cytometry tests, BM cells from AL patients were incu-
bated with specific antibodies (BD Biosciences, USA; 
Additional file  1: Table  S1) and measured by Canto II 
flow cytometer (BD Biosciences, USA). The cytogenetic 
features of bone marrow cells were detected with Giemsa 
staining and karyotyping, and the tests for fusion genes 
were performed according to the manufacturer’s instruc-
tions (Yuanqi Bio-Pharm., Shanghai, China). The regime 
guidelines for AL patients were based on the 2016 edition 
of the World Health Organization (WHO) [23].

Amino acid quantitation using targeted LC–MS/MS
Seventeen amino acids were quantified using LC–MS/
MS (API 3200, Applied Biosystems) according to Tur-
geon’s report [25]. To ensure the quality of each dried 
blood spot, when the sample was collected, the standards 
and quality control were also spotted on filter papers at 
the same time. All the internal standards were prepared 
to achieve a series of gradient concentrations standards 
and spotted on filter paper (Whatman ProteinSaver 903). 
The standards, quality control and the sample was placed 
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in a clean area of our laboratory for 2 h (1 h in summer) 
to dry, after that, it would be saved in a zip-lock bag at 
4 °C until the experiment (no more than 3 h). The stand-
ards and quality control products were synchronized 
with the specimen. For experiment operations, briefly, 

metabolites from a dried blood spots were extracted with 
methanol. Internal standards (Cambridge Isotope Lab, 
USA) were added and samples were then dried under 
flowing nitrogen. The samples were butylated with HCl 
(50  µl) in each well. After evaporation under nitrogen, 

Overall Workflow and Experimental Design

Measured Concentrations
of Amino Acids

Established the Mathematical Models of Amino Acid Panel forALDiagnosis

10-fold Cross Validation

Confirmed the Best Mathematical Model of Amino Acid Panel for ALDiagnosis

308 Ctrl280 AL
184ALL/96AML

Prospective Clinical
Validation Cohort

Evaluated the Best Mathematical Model of Amino Acid Panel for ALDiagnosis
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Group B

240 AL
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Selected Features and Best Model
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Fig. 1  The overview of study design. In the phase of model establishment, 240 newly diagnosed AL children (ALL/AML = 174/66), 284 children with 
non-neoplastic hematological diseases and 220 healthy children were recruited for amino acids quantization with LC–MS/MS (red part). Based on 
the concentrations of 17 amino acids in all the patients and controls, we evaluated the differences among groups (red part) and the best model was 
established by Python-sklearn (green part). The model was then improved and verified by parameters adjusting and cross-validation (green part). 
Finally, another prospective independent cohort consisting of 280 newly diagnosed AL (ALL/AML = 184/96) and 308 children with non-neoplastic 
hematological diseases were used for further clinical verification as Out-Sample Test (purple part)
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the samples were re-constituted in 100 µl of 80% acetoni-
trile. The samples (20 µl) were injected at 2-min intervals 
into a flowing stream of 80% acetonitrile. A neutral loss 
scan was used (m/z 102) for amino acids with a mass 
range of m/z 140–280. For the quality control of LC–MS/
MS, all the internal standards and quality control prod-
ucts are kept with records to avoid overdue, and the 
internal standards and quality control products for each 
the amino acid were purchased from Cambridge Isotope 
Lab, and synchronizedly dealed with the specimen, to get 
the data for drawing the Levey-Jennings curve [26]. If the 
experiment was out of control, we perform it again. And 
if the deviation of the experiment was increased, it was 
adjusted according to quality control deviation. Because 
there were standard substance with isotope labelling for 
17 amino acids and our targeted LC–MS/MS could only 
recognize isotope signals, we only detected 17 amino 
acids (shown in Table 1) in our study.

Mathematical models establishment and feature selection
The mathematical models of the profile of 17 amino acids 
in dried serum dots from AL patients and matched con-
trols, were established by support vector machine (SVM) 
[27], random forest (RF) [28] and XGBoost subsequently 
[20]. We only used the training set for the feature selec-
tion because it is critical for a model’s efficiency and 

performance. The concentrations of all the amino acids 
were normalized by zero-mean normalization. Consid-
ering the sample size we collected and avoiding overly 
complex model, any amino acid with Pearson correlation 
coefficient higher than 0.2 corresponding to the groups 
of children was chosen as a feature in the model. Simul-
taneously, if colinearity exhibit among different amino 
acids, we would choose only one amino acid, which had 
best Pearson correlation, as a feature.

Model selection
To establish the best model, three classification algo-
rithms (SVM, RF and XGBoost) were used and evaluated 
[20, 27, 28]. The classifiers were trained and evaluated by 
a tenfold cross-validation [27]. The final performance of 
each model was evaluated based on the averaging per-
formance. The model would be chosen based on the 
comprehensive consideration of sensitivity, specificity, 
accuracy and volatility among cross-validation.

Model development and validation
All clinical information and the altered concentration 
of amino acid panel determined by LC–MS/MS were 
analyzed using the Python-sklearn and SPSS. For mod-
els development, the patients of Group A (Fig.  1) were 
enrolled to establish models. The patients were randomly 
divided into training (80% samples) and validation (20% 
samples) sets. The models were trained using the training 
sets and subsequently used to predict a child with leu-
kemia using the validation sets. The prediction accuracy 
was used to evaluate models by a tenfold cross-validation. 
To avoid over-fitting, learning_curve was introduced to 
evaluate whether algorithm was over-fitting at the statis-
tical level firstly.

Model assessment
The models were used to predict the patients of Group B 
(Fig. 1) to evaluate the models whether they were over-
fitting depending on the accuracy of each model on 
Group B. There were 280 children with AL and 308 chil-
dren with non-malignant hematologic disease included 
in the assessment. The stability of the final model, which 
was defined as “the ratio of the accuracy of Out-Sample 
Test to that of In-Sample Test”, was used to assess the 
performance of the final model.

Analysis and statistics
The concentrations of amino acids in different groups 
were analyzed by one-way ANOVA. The efficacy of the 
models was further evaluated by McNemar’s test and 
ROC analysis. SPSS version 13.0 and Python version 3.6 
were used, and the packages employed included “sklearn”, 
“seaborn”, “pandas”, “numpy” and “matplotlib”.

Table 1  Concentrations of  amino acid among  children 
in Group A

Ala: alanine; Asp: aspartic acid; Glu: glutamic acid; Met: methionine; Phe: 
phenylalanine; Tyr: tyrosine; Leu: leucine; Trp: tryptophane; Val: valine; Arg: 
argnine; Cit: citrulline; Gly: glycine; Orn: ornithine; Gln: glutamine; His: histidine; 
Ser: serine; Thr: threonine

Amino acid AL children
n = 240

Ctrl
n = 284

Healthy 
children
n = 220

p value

Ala 134.59 ± 49.41 148.99 ± 47.90 144.87 ± 47.93 0.084

Asp 17.59 ± 8.58 14.17 ± 3.39 13.63 ± 2.77 < 0.001

Glu 27.94 ± 14.69 20.84 ± 4.95 29.75 ± 6.49 < 0.001

Met 18.35 ± 11.18 21.88 ± 10.17 16.24 ± 6.61 0.002

Phe 59.81 ± 23.23 35.96 ± 7.77 49.99 ± 28.98 < 0.001

Tyr 35.85 ± 14.88 31.17 ± 10.62 39.87 ± 18.55 0.001

Leu 55.81 ± 16.56 66.57 ± 15.64 62.82 ± 15.46 < 0.001

Trp 20.28 ± 13.15 14.77 ± 4.06 17.27 ± 5.18 < 0.001

Val 95.41 ± 28.42 103.12 ± 23.40 112.37 ± 29.90 0.001

Arg 60.68 ± 20.43 60.83 ± 15.51 66.12 ± 19.70 0.177

Cit 11.90 ± 4.44 16.45 ± 4.25 15.40 ± 5.93 < 0.001

Gly 80.60 ± 33.77 66.36 ± 14.91 69.04 ± 19.80 < 0.001

Orn 21.61 ± 4.88 24.23 ± 2.62 33.01 ± 3.08 < 0.001

Gln 16.45 ± 5.88 17.06 ± 2.80 6.47 ± 2.39 < 0.001

His 84.98 ± 79.31 73.50 ± 61.55 73.38 ± 22.13 0.357

Ser 9.99 ± 4.31 8.73 ± 1.67 11.10 ± 2.99 < 0.001

Thr 14.92 ± 7.72 14.52 ± 3.94 16.41 ± 6.75 0.215
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Results
Patients and clinical characteristics
The experimental design for this study and the char-
acteristics of a total of 1332 children were enrolled in 
this study, including 520 newly diagnosed AL patients 
(ALL/AML = 358/162), 592 children in their matched 
control group and 220 healthy children, were also given 
(Fig.  1 and Additional file  1: Table  S2). The initial 240 
AL children and 284 children with a non-malignant 
hematologic diseases were assigned to Group A, and 
the 220 healthy children were also chosen in the same 
period. After model establishment, another 280 AL 
children and 308 children with a non-malignant hema-
tologic diseases were chosen and assigned to Group B. 
There were no significant differences in the patients’ 
gender ratio and ages between the groups of AL and 
the matched control, nor WBC account and the per-
centage of blast cells in peripheral blood (BIPB) in 
the AL group. All related data were collected for each 
patient and control, and evaluated based on the same 
procedure.

Feature selection and model selection
The concentrations of 17 amino acids in the serum 
from another 240 newly diagnosed AL patients (ALL/
AML = 174/66), 284 matched control children and 220 
healthy children were measured by targeted LC–MS/
MS (Table  1). The levels of 13 amino acids (aspartic 
acid, glutamic acid, methionine, phenylalanine, tyros-
ine, leucine, tryptophane, valine, citrulline, glycine, 
ornithine, glutamine and serine) were statistically dif-
ferent among the AL children, controls and healthy 
children group, whereas other four amino acids (ala-
nine, argnine, histidine and threonine), which didn’t 
show any statistical differences, were not enrolled in 
mathematical model.

The eight amino acids (aspartic acid, glutamic acid, 
phenyl alanine, tryptophan, glycine, valine, citrulline and 
ornithine) were chosen to be included in the model for 
clinical diagnosis as each Pearson correlation coefficient 
was higher than 0.2 (Fig. 2) and each was related with cell 
proliferation, apoptosis or drug treatment of different 
cancers [9–15].

The data of the eight amino acids were used to develop 
models based on the three classification algorithms 
(SVM, RF and XGBoost). Accuracy, sensitivity, specificity 
and area under the curve (AUC) of the three algorithms 
were shown in Table 2. Although XGBoost had the best 
sensitivity, accuracy and AUC, and its specificity was also 
better than RF, but each indicator of XGBoost was not 
better than SVM and RF. All the three algorithms should 
be optimized and evaluated further.

Parameter optimization in models for AL diagnosis 
and validation
To establish a better model for AL diagnosis, we focused 
on optimizing several key parameters. For SVM, the 
parameters included C, kernel, degree, gamma, coef0, 
max_iter; For RF, the parameters included n_estima-
tors, max_depth, min_samples_split, min_samples_leaf, 
max_leaf_nodes; For XGBoost, the parameters included 
learnin_rate, n_estimators, max_depth, gamma, sub-
sample, colsample_bytree and nthread. The optimized 
parameters were confirmed by performing tenfold cross 
validation on the training and validation data sets [27]. 
The final models were also verified with ROC and AUC 
by cross-validation (Table 3). The mean AUC was 0.848 
(95% CI 0.819 to 0.877) for SVM. The mean AUC was 
0.834 (95% CI 0.811 to 0.857) for RF. The mean AUC was 
0.856 (95% CI 0.809 to 0.923) for XGBoost.

Evaluation of amino acid panels for AL diagnosis
Before assess the accuracy of the models, all of them 
should be proved whether they were over-fitting by 
learning_curve (Fig. 3). It was obvious that the difference 
of errors between the testing samples and training sam-
ples in each model converged as the number of samples 
increased, which mean all the models we built were not 
over-fitting at the statistical level.

To further assess the accuracy of the models, they 
were evaluated according to the reported protocol 
[29]. We further validated the models on Group B. 
There were 280 newly diagnosed AL patients (ALL/
AML = 184/96) and 308 children in their matched con-
trol group, who were included in Group B (Table  1). 
There was no significant difference between the con-
ventional methods and each model on AL diagnosis 
according to Table  4 (p > 0.05). The sensitivity, speci-
ficity, accuracy and AUC of the models were shown 
in Table  4. The sensitivity of SVM, RF and XGBoost 
for Out-Sample Test was 84.64%, 82.50% and 90.00% 
respectively. The specificity of SVM, RF and XGBoost 
for Out-Sample Test was 85.06%, 87.66% and 88.96% 
respectively. The accuracy of SVM, RF and XGBoost 
for Out-Sample Test was 84.86%, 85.20% and 89.46% 
respectively. The AUC of SVM, RF and XGBoost for 
Out-Sample Test were 0.797, 0.803 and 0.830 respec-
tively. Comparing with the accuracies of these models 
for In-Sample Test (Table  3), the accuracies of SVM, 
RF and XGBoost for Out-Sample Test were all in 95% 
confidence interval. It was another evidence to prove 
that all of our models were not over-fitting. The sen-
sitivity, specificity and accuracy of XGBoost were the 
best among the three models (Table  4). The generali-
zation ability of each model, which was defined as “the 
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accuracy of Out-Sample Test/the mean accuracy of In-
Sample Test” in our study, was 0.945 (84.86%/89.84%), 
0.945 (85.20%/90.12%), 0.979 (89.46%/91.35%) respec-
tively. XGBoost model also had the best generalization 
ability.

Next, we compared the true positive and negative 
prediction performance on XGBoost model with mor-
phological tests (Table 5). The performance of XGBoost 
was much better than that of morphological tests alone. 
Furthermore, if we combine morphological tests and 

Fig. 2  The heatmap of the Pearson correlation coefficients between each amino acid group. Ala: alanine; Asp: aspartic acid; Glu: glutamic acid; Met: 
methionine; Phe: phenylalanine; Tyr: tyrosine; Leu: leucine; Trp: tryptophane; Val: valine; Arg: argnine; Cit: citrulline; Gly: glycine; Orn: ornithine; Gln: 
glutamine; His: histidine; Ser: serine; Thr: threonine; Group: The classification of children (All the children were divided into three groups: AL children, 
controls and healthy children, so each child had a label. Because we would establish model under supervised learning protocol, we need to 
evaluate the correlation between every amino acid and each label. The value of each amino acid to Group was higher, which mean the correlation 
between the amino acid and the diagnosis of AL was closer.)

Table 2  The performance of  models on  AL diagnosis 
for In-Sample Test

SVM: support vector machine; RF: random forest; XGboost: eXtreme Gradient 
Boosting; AUC: area under curve
a  ROC analysis

SVM RF XGBoost

Sensitivity (%) 92.23 ± 4.32 94.44 ± 5.27 95.86 ± 4.21

Specificity (%) 94.43 ± 3.77 91.76 ± 4.85 94.21 ± 4.96

Accuracy (%) 87.24 ± 4.23 88.76 ± 5.11 90.23 ± 4.89

AUC​a 0.812 ± 0.036 0.821 ± 0.032 0.828 ± 0.035
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XGBoost model to diagnose AL in clinical application, 
it would greatly reduce the false negative ratio of mor-
phological tests and improve the diagnosis efficacy of 
XGBoost model.

Discussion
The classical diagnosis of AL is usually based on the 
MICM information of patients’ bone marrow [3] and the 
relationship between amino acid profile and AL diagnosis 
has not been established previously. Here, we developed 

new strategies to diagnose AL by measuring concentra-
tions of PB amino acids with LC–MS/MS and further 
data mining. Additionally, all the models for AL diagno-
sis were verified by tenfold cross validation and used to 
assist AL diagnosis.

As others’ report, SVM maps the input data into a 
high-dimensional feature space through some kernel 
functions and constructs an optimal separating hyper-
plane in this space [22], but it could require more com-
putation time; RF is considered to be more accurate 

Table 3  The cross-validation of best model for each algorithm on AL diagnosis for In-Sample Test

SVM RF XGBoost

Mean of accuracy (%) (95% CI) 89.84 (84.72, 94.96) 90.12 (84.67, 95.57) 91.35 (87.05, 95.65)

Mean of AUC (95% CI) 0.848 (0.819, 0.877) 0.834 (0.811, 0.857) 0.856 (0.809, 0.923)

a
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Fig. 3  The learning-curve for the three algorithm. a The learning-curve for SVM; b the learning-curve for RF; c the learning-curve for XGBoost; red 
curve stood for training set and green curve stood for testing set
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and robust than decision trees and the most important 
advantages of it is that it can handle a large number 
of features without overfitting, and can give an esti-
mate of the importance of the features [22]; XGBoost 
is a new implementation of the gradient tree boosting 
technique and has been tested in a series of datasets, 
achieving high accuracy and requiring much less com-
putation time than deep neural nets [22], so we chose 
these three algorithms as candidates. Because XGBoost 

algorithm used the second order Taylor expansion [20], 
it could get a more accurate result on predicting than 
normal gradient tree boosting algorithm and it has 
a better convergence effect than SVM and RF. In our 
study, all the three models were not overfitting and the 
generalization ability of each of them (more than 94% 
samples would be correctly predicted) deserved fur-
ther clinical application. According to our data, there 
was no significant differences on accuracy and AUC 

Table 4  The validation of models on AL diagnosis for Out-Sample Test

SVM: support vector machine; RF: random forest; XGB: XGBoot; FN: false negative; FP: false positive; AUC: area under curve
a  Our model or clinical diagnosis were both positive-children were with leukemia
b  Our model diagnosed children as normal, but the clinical diagnosis of them was leukemia
c  Our model diagnosed children as leukemia, but the clinical diagnosis of them was normal
d  Our model or clinical diagnosis were both negative, and children were normal
e  Number of +/+ for each model/(number of +/+ for each model plus number of ∓ for each model) × 100%
f  Number of −/− for each model/(number of −/− for each model plus number of ± for each model) × 100%
g  (Number of −/− for each model plus number of +/+ for each model)/588 × 100%
h  McNemar’s test
i  ROC analysis

Diagnosis (model/clinical diagnosis) χ2 Kappa value p value AUC​i

+/+ a ∓b ±c −/−d

Result-SVMh 237 43 46 262 0.1011 0.697 0.751 0.788

Sensitivitye (%) 84.64

Specificityf (%) 85.06

Accuracyg (%) 84.86

Result-RFh 231 49 38 270 1.3908 0.703 0.238 0.803

Sensitivitye (%) 82.50

Specificityf (%) 87.66

Accuracyg (%) 85.20

Result-XGBh 252 28 34 274 0.2903 0.789 0.446 0.830

Sensitivitye (%) 90.00

Specificityf (%) 88.96

Accuracyg (%) 89.46

Table 5  The true positive and negative prediction performance of morphology and XGBoost model in Group B

McNemar’s test

M: morphology; X: XGBoost model; AUC: area under curve
a  Our model or clinical diagnosis were both positive-children were with leukemia
b  Our model diagnosed children as normal, but the clinical diagnosis of them was leukemia
c  Our model diagnosed children as leukemia, but the clinical diagnosis of them was normal
d  Our model or clinical diagnosis were both negative, and children were normal
e  ROC analysis

Diagnosis (model/clinical diagnosis) Kappa value p value AUC​e

+/+a ∓b ±c −/−d

M 268 12 86 222 0.670 < 0.001 0.742

X 252 28 34 274 0.789 0.720 0.830

M + X 262 18 26 282 0.850 0.523 0.872
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among the three models after parameter optimization 
during training process, but the sensitivity, specificity 
and accuracy of XGBoost were better than SVM and RF 
(Table  4). XGBoost had the best generalization ability 
among them, which is the most important character of 
model, in the Out-Sample Test. Above all, we recom-
mend XGBoost to be the auxiliary diagnostic model at 
present. Combining the three models but not limited to 
them to establish artificial neural network for the diag-
nosis of AL would be our next step.

According to Table 4, the sensitivity and specificity of 
XGBoost were more than 88.96% comparing with tradi-
tional protocol on AL diagnosis and there was no statistic 
significant difference between them (p > 0.05). Simulta-
neously, the new model we established does not aim to 
replace the conventional methods. The most important 
contribution of the strategy is that it could help doctors 
distinguish acute leukemia patients from others hema-
tological diseases which may appear similar phenotype 
as leukemia in an easier way and faster, so that they can 
determine treatment plan in time, not waiting for days to 
make a decision. It would be helpful for doctors from the 
department of hematology to screen suspicious patients, 
especially for outpatient. Considering the accuracy of our 
model (88.96%), it is good enough to help doctors from 
the department of hematology as an auxiliary diagnostic 
method.

There were three advantages of our new model com-
paring with conventional assays. Firstly, for the time-
consuming of assays, the conventional laboratory assays 
to diagnose AL including morphological tests, karyotype, 
flow cytometry and molecular detections [2]. It usually 
needs at least 3  days to diagnose AL. Our new strategy 
based on LC–MS/MS and mathematical model, which 
only took 4–6  h to complete analysis; Secondly, for the 
expense, different kinds of antibodies and professional 
assay kits were needed for flow cytometry and molecu-
lar detections (The prices for antibodies and kits could 
refer to BD Biosciences and Yuanqi Bio-Pharm), it took 
approximate $250 for each child to complete the assays 
in China, however, the main expense of our new strat-
egy is approximate $20 for each child in China; At last, 
for sample collection and operation, bone marrow should 
be collected to perform karyotype, flow cytometry and 
molecular detections for conventional laboratory assays, 
and karyotype would consume a lot of manual operation, 
but only PB sample should be collected for our model, 
which is much easier to collect and less painful, especially 
for children [3], and the main assay in our model, LC–
MS/MS, is a automation technique requiring little man-
ual operation. Based on the statement above, our strategy 
is faster, cheaper and more convenient way than con-
ventional strategy (Table  6). As the combination results 

shown in Table 5, combining XGBoost model and mor-
phological tests would gain a better predictive power. It 
was another evidence to prove that our model was abso-
lutely related to AL, only the exact mechanism between 
the amino acid profile and AL had not been clarified.

We also tried to establish models to predict the prog-
nosis of AL patients, but the result was unsatisfied 
with the following reasons. Firstly, the prognosis of AL 
patients was not only determined by risk classification, 
but also influenced by the status of compliance of medi-
cal treatment. Our model could not take the therapeu-
tic status into account. Secondly, the prognosis of AL 
has improved to a long-term survival rate of 89% [30]. 
Our results showed no significant difference because 
there were few ALL patients die during our observation 
stages.

We also attempted to establish a mathematical model 
of amino acid profile to separate ALL and AML. How-
ever, the model was not able to evaluate its actual per-
formance. There were two main reasons that our model 
could not distinguish ALL and AML. Firstly, AML sam-
ples were dispersed because of the high heterogeneity of 
AML [31], resulting in few samples (< 25) in each subtype 
of AML (Additional file 1: Table S2); Secondly, there was 
a high abandon rate among AML patients with less clini-
cal information. Based on the above reasons, the sam-
ple size of AML was not enough for establishing model. 
Moreover, we tried to investigate if there was a difference 
on amino acid concentration among various karyotyping 
or fusion gene groups in ALL, but there was no signifi-
cant difference among them (Additional file 1: Tables S3 
and S4). There was no significant difference among them, 
so we did not build model to analyze it through SVM, RF 
or XGBoost algorithm.

The new biomarkers using small molecule metabo-
lites for diagnosis is a hot area for different cancers. For 
example, a biomarker panel including phenylacetic acid, 
l-fucose, caprylic acid, acetic acid, propionic acid and 
glycine achieved good performance with the sensitiv-
ity of 80% and specificity of 100% for predicting small 
cell lung cancer [32]. A diagnosis panel containing cir-
culating tumor cell number and lactate dehydrogenase 
level was found to be a surrogate for survival at the 

Table 6  The comparison between  new strategy 
and conventional methods

New strategy Conventional methods

Time-consuming 4–6 h 3 days

Expense $20 per child $250 per child

Sample collection Peripheral blood 
(easy to collect)

Bone marrow (hard to collect)
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individual-patient level in metastatic castration-resistant 
prostate cancer [33]. A series of metabolites, including 
d-mannose, palmitic acid, stearic acid, etc., which are 
present in the disease state, were identified as candi-
date biomarkers for B-ALL diagnosis, but no prediction 
model was used [34]. To our best knowledge, there was 
no report focused on amino acid panel for the diagnosis 
of leukemia. Our study is the first attempt to establish 
a model to link amino acids profile and children acute 
leukemia.

This study mainly focused on the amino acids profile 
to establish the mathematical models for AL diagno-
sis. However, the underlying mechanism of amino acid 
metabolism in AL needs further investigation. Accord-
ing to the WHO guidelines for diagnosis and genotype 
of leukemia (2016 edition) [23] and previous reports 
[35], the molecular variation of patients is very impor-
tant for predicting the prognosis of AL. It is necessary to 
get more information of AL patients by next-generation 
sequence, including whole genome sequencing, tran-
scriptome sequencing, and RNA sequencing [36, 37], to 
create new cross-omics models, which integrate genom-
ics and metabolomics to provide all the information of 
enzymes in the pathways related to leukemia.

In addition, combining metabolomics approach and 
data mining to establish prediction models has been 
demonstrated as a strategy potentially useful for diagno-
sis or prognosis in different diseases [38, 39]. Although 
we demonstrated the precise diagnosis of leukemia in 
this study using the same approach, the model will be 
more accurate and reliable if a larger sample size is used, 
especially multi-center study, to refine the models in the 
future.

Conclusions
In summary, based on the PB amino acids profile, we 
developed a mathematical model to diagnose children 
AL. There was no significant difference on the effect of 
children AL diagnosis between our new model and the 
traditional protocol. Simultaneously, the model is a faster, 
cheaper and more convenient way than conventional 
methods. It could benefit the clinical practice for children 
AL diagnosis and treatment.

Additional file

Additional file 1: Table S1. The Surface Markers Detected by Flow 
Cytometry. Table S2. The characteristics of all patients in the sections. 
Table S3. Concentrations of amino acid among ALL children in different 
risk level based on chromosomal detection. Table S4. Concentrations 
of amino acid among ALL children in different risk level based on fusion 
gene detection.
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