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Reconstructing B-cell receptor sequences from
short-read single-cell RNA sequencing with BRAPeS

Shaked Afik"*@®, Gabriel Raulet®*, Nir Yosef"***@

RNA sequencing of single B cells provides simultaneous
measurements of the cell state and its antigen specificity as
determined by the B-cell receptor (BCR). However, to uncover the
latter, further reconstruction of the BCR sequence is needed. We
present BRAPeS (“BCR Reconstruction Algorithm for Paired-end
Single cells” ), an algorithm for reconstructing BCRs from short-
read paired-end single-cell RNA sequencing. BRAPeS is accurate
and achieves a high success rate even at very short (25 bp) read
length, which can decrease the cost and increase the number of
cells that can be analyzed compared with long reads. BRAPeS
is publicly available at the following link: https://github.com/
YosefLab/BRAPeS.
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Introduction

B cells play a significant role in the adaptive immune system,
providing protection against a wide range of pathogens. This
diversity is due to the B-cell receptor (BCR), which enables dif-
ferent cells to bind different pathogens (1). Single-cell RNA se-
quencing (scRNA-seq) has emerged as one of the leading
technologies to characterize and study heterogeneity in the im-
mune system across cell types, development, and dynamic pro-
cesses (2, 3). Combining transcriptome analysis with BCR
reconstruction in single cells can provide valuable insights to the
relation between BCR and cell state, as was demonstrated by
similar studies in T cells (4-6).

The BCR comprises two chains, a heavy chain and a light chain
(either a k or A chain). Each chain is encoded in the germline by
multiple segments of three types—variable (V), joining (J), and
constant (C) segments (the heavy chain also includes a diversity
[D] segment, see the Materials and Methods section). The spec-
ificity of the BCRs comes from the V(D)) recombination process, in
which for each chain, one variable (V) and one joining (J) segment
are recombined in a process that introduces insertions and

deletions into the junction region between the segments, called
the complementarity-determining region 3 (CDR3) (7). The
resulting sequence is the main determinant of the cell’s ability to
recognize a specific antigen. After B-cell activation, somatic
hypermutations are introduced to the BCR, and the constant
region may be replaced in a process termed isotype switching (8).
The random mutations make BCR reconstruction a challenging
task. Although methods to reconstruct BCR sequences from full-
length scRNA-seq are available (9-11) (as well as single-cell V(D))-
enriched libraries from 10x Genomics: https:/ /www.10xgenomics.com/
solutions/vdj/), they were only tested on long reads (150 and 50 bp).
The ability to reconstruct BCR sequences from short (25-30 bp) reads
is important, as it can decrease cost which can, in turn, increase the
number of cells that could be feasibly analyzed.

We introduce BRAPeS (“BCR Reconstruction Algorithm for
Paired-end Single cells”), an algorithm and software for BCR re-
construction. Conversely to other methods, BRAPeS was designed
to work with short (25-30 bp) reads, and indeed we demonstrate
that under these settings, it performs better than other methods.
Furthermore, we show that the performance of BRAPeS when
provided with short reads is similar to what can be achieved with
much longer (50-150 bp) reads from the same cells, suggesting that
BCR reconstruction does not necessitate costly sequencing with
many cycles.

Results

BRAPes is an extension of the TCR reconstruction software
TRAPeS (4), with significant modifications added to address the
processes of isotype switching and somatic hypermutations,
which are specific to B cells (Fig 1, see the Materials and Methods
section for full description of the algorithm). Briefly, BRAPeS takes
as input the alignment of the reads to the reference genome.
BRAPeS first recognizes the possible V and J segments by finding
reads with one mate mappingto a V segment and the other mate
mapping to a J segment. All unmapped reads whose mates were
mapped to the V/J/C segments are then collected, assuming that
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Figure 1. The BRAPeS algorithm.
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most CDR3-originating reads will be unmapped when aligning to
the reference genome. Then, the CDR3 region is reconstructed
with an iterative dynamic programming algorithm. At each step,
BRAPeS aligns the unmapped reads to the edges of the V and )
segments, using the sequence of the aligned reads to extend the
V and ] sequences until convergence. Next, the BCR isotype is
determined by appending all possible constant segments to the
reconstructed sequence and taking the most likely complete
transcript based on transcriptomic alignment with RSEM (12).
Finally, BRAPeS corrects for somatic hypermutations by collecting
all reads aligning to the genomic regions of the CDR1, CDR2, and
the framework regions (FRs) and aligning these reads against
each otherto obtain a reconstruction of the consensus sequence.
The CDR3 sequences and their productivity are determined based
on the criteria established by the international ImMunoGeneTic
(IMGT) information system (13,14) (see the Materials and Methods
section).

We evaluated BRAPeS' performance on 374 cells from two pre-
viously published datasets—174 human B cells and 200 mouse B
cells (see the Materials and Methods section and Table S1) (9,15). To
evaluate BRAPeS, we first trimmed the original reads (50 bp for the
human data and 150 bp for the mouse data) and kept only the outer
25 or 30 bases. We compared BRAPeS' performance on the trimmed
data to two other previously published methods—BASIC (9) and
VDJPuzzle (10) applied either on the trimmed data or the original
long reads.

BCR reconstruction from short scRNA-seq  Afik et al.

When applied to 30-bp reads, BRAPeS’ success rates are similar
to other methods for the light chain but are higher for heavy chain
reconstruction (Fig 2A and Table S2). BRAPeS reconstructs pro-
ductive heavy chains in a total of 348 cells, 93% of the cells across
both datasets and reconstructs productive light chains in 370 cells
(98.9% of the cells). These results are in line with the success rates
of BASIC and VDJPuzzle on the original long reads: BASIC re-
constructs productive heavy and light chains in 353 (94.4%) and 364
(97.3%) cells, respectively, and VDJPuzzle reconstructs heavy chains
in 346 (92.5%) cells and light chains in 368 (98.4%) cells. On 30-bp
reads, BASIC and VDJPuzzle achieve similar reconstruction rates for
the light chain (362 [96.8%] cells and 370 [98.9%] cells with a
productive light chain in BASIC and VDJPuzzle, respectively).
However, BASIC and VDJPuzzle see a decline in success rates for the
heavy chain, reconstructing a productive heavy chain in only 273
(73%) cells for BASIC and 242 (64.7%) cells for VDJPuzzle (Fig 2A and
Table S2).

BRAPeS is also able to maintain a high success rate on 25-bp
reads, reconstructing heavy chains in 328 (87.7%) cells and light
chains in 370 (98.9%) cells (Fig 2B and Table S3). Yet, we observe a
substantial decrease in the results of other methods. VDJPuzzle is
unable to reconstruct any chains with 25-bp reads. This is likely due
to its use of the de-novo assembler Trinity (16), which requires a
seed k-mer length of 25 bp that is unsuitable for very short reads.
Similarly to 30 bp, BASIC is able to maintain a high reconstruction
rate for light chains, with productive reconstructions in 363 (97.1%)
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(A) Fraction of cells with a successful reconstruction of a productive CDR3 in human and mouse B cells using the following methods: VDJPuzzle applied to the original,
long-read data (black line), and the trimmed version of the data, trimmed to 30 bp (light blue circle). BASIC applied to the long-read (grey line) and the trimmed data (dark
blue circle), and BRAPeS applied to the trimmed data (red circle). (B) Same as (A), but the trimmed version of the data was trimmed down to include only the outer 25 bp,

instead of 30 bp.

cells, butis only able to reconstruct productive heavy chains in 204
(54.5%) cells (Fig 2B and Table S3). Moreover, BASIC only outputs
fasta sequences, thus requiring further processing to annotate the
BCR.

We next turn to evaluate the accuracy of the short-read-based
CDR3 reconstructions, by comparing the resulting sequences to
those obtained with long reads (Fig 3 and see the Materials and
Methods section). We use the long-read-based reconstruction of
BASIC as a reference (we achieve similar results with VDJPuzzle on
the long-read data; see Fig S1) and evaluate the accuracy in terms of
sensitivity (how many of the CDR3 sequences in the full-length data
have an identical reconstruction with the short-reads) and spec-
ificity (how many of the CDR3 sequences in the short-read data
have an identical long-read reconstruction). In general, all methods
show a high level of specificity, having almost all CDR3 sequences
identical to the sequences reconstructed on long reads, whenever
both read lengths produce a productive reconstruction (Fig 3A and
B). In accordance with the higher success rate, BRAPeS shows a high
sensitivity, with a rate of 0.96 for 30-bp data and 0.92 for 25-bp data
(Fig 3C and D). This is in line with the agreement of different
methods on the original data, as VDJPuzzle on long reads has a
sensitivity rate of 0.96. On the trimmed data, BASIC and VDJPuzzle
show a lower sensitivity rate—BASIC achieves sensitivity rates of
0.87 and 0.78 for 30- and 25-bp, respectively, and VDJPuzzle has a
sensitivity rate of 0.83 for 30 bp. These results also hold if we only
take the top-ranking reconstruction of BRAPeS, as more than 97.5%
ofthe identical CDR3 sequences between BRPAeS and BASIC are the
highest ranked sequences for both 25 and 30 bp (Figs S2 and S3).

BRAPeS’ correction of somatic hypermutations is also accurate
across the various regions of the transcript (Fig 3). Besides a slight
decrease in specificity for CDR2 and FR1 reconstruction, BRAPeS
maintains a very high level of specificity across all regions in line
with the other methods. We note that BASIC achieves lower
specificity rates for FR1 reconstructions for short reads mostly
because of partial reconstructions. Overall, BRAPeS has a high

BCR reconstruction from short scRNA-seq  Afik et al.

sensitivity rate across all regions (0.92-0.97 for 30 bp and 0.88-0.94
for 25 bp), comparable with the sensitivity of VDJPuzzle on long
reads (0.87-0.95). Similar to the CDR3 results, the high sensitivity
and specificity hold when comparing only the top-ranking re-
construction, as identical regions are 96.8-99.9% of the top-ranking
regions for 30 bp and 95.4-100% of the top-ranking regions for 25 bp
(Figs S2 and S3).

Discussion

Coupling BCR reconstruction with transcriptome analysis in single
cells can provide valuable information about the effect of antigen
specificity and isotype to cellular heterogeneity. Despite an in-
crease in technical noise in transcriptome analysis compared with
longer reads (17,18), short-read sequencing is still widely used as it
can reduce sequencing costs by hundreds to thousands of dollars
per run, depending on the sequencing platform and desired total
number of reads. However, current methods do not provide a
sufficient solution for reconstructing immune cell receptors from
short reads (18). To this end, we provide BRAPeS, a software for BCR
reconstruction tailored to work on short-read scRNA-seq. BRAPeS is
accurate and has a success rate on short reads similar to other
methods applied to long reads, demonstrating that BCR re-
construction can be achieved at a much lower cost. BRAPeS is
publicly available at https://github.com/YosefLab/BRAPeS.

Materials and Methods
The BRAPeS algorithm

The input given to BRAPeS is a directory where each subdirectory
includes genomic alignments of a single cell.
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when running BASIC on the long-read data.

The BRAPeS algorithm has several steps, performed separately

for each chain in each cell:

1. Identifying possible pairs of V and ] segments: BRAPeS searches
for reads where one mate of the pair is mapped to a V segment
and the other mate is mapped to a J segment. BRAPeS collects
all possible V-J pairs and attempts to reconstruct complete
BCRs from all possible pairs. Because the D segment is very
short, reads do not align to it; thus as part of the reconstruction
step (step 3), the sequence of the D segment is also recon-
structed. If no V-J pairs are found, BRAPeS will look for V-C and
J-C pairs and will take all possible V/J pairing of the found V and
) segments.

In case of many possible V- pairs (which can occur because
of the similarity among the segments), the user can limit the
number of V-] pairs to attempt reconstruction on. BRAPeS will
rank the V- pairs based on the number of reads mapped to them
and take only the top few pairs (the exact number is a parameter
controlled by the user).

. Collecting the set of putative CDR3-originating reads: BRAPeS
collects the set of reads that are likely to originate from the CDR3
region. Those are the reads that are unmapped to the reference

BCR reconstruction from short scRNA-seq  Afik et al.

genome, but their mates are mapped to the V/J/C segments. In
addition, because the first step of CDR3 reconstruction includes
alignment to the ends of the genomic V and ) sequences, reads
mapping to the V and ) segments are also collected.

. Reconstructing the CDR3 region: For each V-J pair, the edges of

the V and J segments are extended with an iterative dynamic
programming algorithm. In each iteration, BRAPeS tries to align
all the unmapped reads to the V and J sequences separately with
the Needleman-Wunsch algorithm with the following scoring
scheme: +1 for match, -1 for mismatch, -20 for gap opening, and
-4 for gap extension. In addition, BRAPeS does not penalize having
a read “flank” the genomic segment. All reads that passed a user-
defined threshold are considered successful alignments. BRAPeS
then builds the extended V and ) segments by taking for each
position the base which appears in most reads. This process
repeats for a given number of iterations or until the V and J
segments overlap. Because the purpose of this step is to re-
construct only the CDR3 region, to reduce running time the
alignment is performed only on a predetermined number of bases
leading to the ends of the V and ) segment (3’ end of the V segment
and 5’ end of the | segment). The number of bases taken from the
end of each segment is a parameter controlled by the user, set by
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default to the length of the ) segment. BRAPeS can also run a “one-
sided” mode, where if an overlap was not found (e.g, because of
assigning the wrong V segment), BRAPeS will attempt to determine
the productivity of only the extended V and only of the extended )
segment.

4. Isotype determination: To find the BCR isotype, for each V-J pair
with a reconstructed CDR3, BRAPeS concatenates the full se-
quences of all possible constant segments. Then, BRAPeS runs
RSEM (12) on all sequences using all paired-end reads with at
least one mate mapped to the genomic V/J/C segments as input.
For each V-J pair, the constant region with the highest expected
count is taken as the chosen constant segment.

5. Somatic hypermutation correction: All the reads from step 4 are
aligned against the genomic CDR1, CDR2, and framework se-
quences obtained from IMGT using the SegAn package (19).
Reads are chosen as candidates for reconstruction if the per-
centage of mutations in the aligned sequence is below a given
input threshold, set by default to 0.35 for CDRs and 0.2 for FRs.
Separate thresholds are used for framework and CDRs to account
for higher rates of somatic hypermutations in the CDRs. When reads
align across adjacent CDR-FRs, the rate of mutation is calculated
separately for the aligned framework segment and the aligned CDR
segment. If both score below their given thresholds, the read is
saved for reconstruction. Once all putative reads have been col-
lected, they are first aligned based on the coordinates obtained
from the genomic alignments. Then, to correct for possible mis-
alignments, the consensus alignment algorithm in the SegAn
package is run using these approximate positions as guides. Fi-
nally, the reconstructed sequence is obtained by aligning the
genomic sequences against the consensus sequence to find their
start and end coordinates.

6. Separating similar BCRs and determining chain productivity:
After selecting the top isotype for each V-J pair and correcting for
somatic hypermutations, BRAPeS determines whether the
reconstructed sequence is productive (i.e, the V and J are in the
same reading frame with no stop codon in the CDR3) and an-
notates the CDR3 junction. If more than one V- pair produces
a CDR3 sequence (either because of having more than one
recombined chain in the cell or because of similar V-) segments
resulting in the same CDR3 sequence reconstruction), the various
productive reconstructions are ranked based on their expression
values as determined by RSEM.

The output for BRAPeS is the full ranked list of reconstructed chains,
including the CDR3 sequences, V/J/C annotations and the number of
reads mapped to each segment, as well as a summary file of the success
rates across all cells. In addition, for each cell, the output is the full
sequence of each reconstructed BCR, as well as a file detailing the
sequences of the CDR1, CDR2, and FRs, a file with the read count for each
isotype and a file with the read count for each productive BCR.

BRAPeS is implemented in python. To increase the performance,
the dynamic programming algorithm and the somatic hyper-
mutation correction algorithm is implemented in C++ using the
SegAn package (19). Moreover, to decrease the running time for
deeply sequenced cells, BRAPeS has the option to randomly
downsample the number of reads for CDR3 reconstruction to 10,000
and the number of reads for somatic hypermutation correction to

BCR reconstruction from short scRNA-seq  Afik et al.

40,000. BRAPeS is publicly available and can be downloaded at the
following link: https://github.com/YoseflLab/BRAPeS.

Data availability and preprocessing

Raw fastq files of mouse B cells were downloaded from Wu et al
(ArrayExpress E-MTAB-4825) (15). All analyses were performed on the
200 cells that were available through ArrayExpress. Raw fastq files for
the human data from Canzar et al (9) were provided by the author. We
excluded single-end cells and cells filtered out in the original study,
leaving a total of 174 cells. Next, the reads were trimmed to be 25- or
30-bp paired-end with trimmomatic (20), keeping only the outer bases.

For BRAPeS, low-quality reads were trimmed using trimmo-
matic with the following parameters: LEADING:15, TRAILING:15,
SLIDINGWINDOW:4:15, and MINLEN:16. The remaining reads were
aligned to the genome (hg38 or mm10) using Tophat2 (21). Running
VDJPuzzle and BASIC on the reads after quality trimming resulted in
no reconstructions for VDJPuzzle and a slight decrease in recon-
struction rates for BASIC; thus, the results presented in the article
for VDJPuzzle and BASIC are for the raw reads.

Running BRAPeS

For this study, BRAPeS was run using the following parameters for
the human data: “-score 15 -top 6 -byExp -iterations 6 -downsample
-oneSide.” The “score” is the minimal alignment score for the CDR3
reconstruction step and “iterations” limits the number of times
BRAPeS attempts to extend the V and J segments. The parameters
“top” and “byExp” determine the maximal number of V-J pairs per
chain on which reconstruction is attempted, by ranking the pairs
based on their number of aligned reads and sampling from the
pairs with the highest read count. The “downsample” parameter
reduces the number of reads used for CDR3 reconstruction and
somatic hypermutation correction.

For the mouse data, BRAPeS was run with the following parameters:
“-score 15 -oneSide -byExp -top 10.” In addition, as some cells required a
higher alignment score threshold, we ran BRAPeS with a scoring
threshold of 21 for chains without a productive reconstruction (Table S1).

Running VDJPuzzle and BASIC

We ran VDJPuzzle using default parameters, providing VDJPuzzle
with the hg38 genome and GRCh38.p2 annotation for human, and
mm10 genome with the GRCm38.p4 annotation for mouse. We then
considered only reconstructions with a complete CDR3 (no missing
bases) that appeared in the “summary_corrected” folder as valid
productive reconstructions.

BASIC was ran with default parameters. After running BASIC, we
collected all the output fasta files and ran them through IMGT/Highv-
Quest (22,23). Only sequences that resulted in productive CDR3
according to IMGT were considered successful reconstructions.

Comparison of sensitivity and specificity
To determine the accuracy of the methods, we compared the recon-

structed CDR3 nucleotide sequences with the reconstruction produced
by running BASIC or VDJPuzzle on long reads. Only CDR3s with sequences
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identical to the sequences reconstructed on the long-read data were
considered accurate. In case of more than one reconstructed CDR3
sequence, if both methods had at least one identical CDR3 sequence it
was considered an accurate reconstruction, except for Figs S2 and S3, for
which we only compared the highest ranking reconstruction. We used
the same criteria of a perfect match to estimate the reconstruction
accuracy of CDR1, CDR2, FR1, FR2, and FR3 regions. The annotated FR4
VDJPuzzle output was much longer than that of BASIC, thus, when
comparing with BASIC, we considered the FR4 sequence accurate if the
FR4 prefix was identical to the full BASIC FR4 reconstruction.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/sa.
201900371.
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