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Abstract Fracture nonunion, a serious bone fracture complication, remains a challenge in
clinical practice. Although the molecular pathogenesis of nonunion remains unclear, a better
understanding may provide better approaches for its prevention, diagnosis and treatment at
the molecular level. This review tries to summarise the progress made in studies of the path-
ogenesis of fracture nonunion. We discuss the evidence supporting the concept that the devel-
opment of nonunion is related to genetic factors. The importance of several cytokines that
regulate fracture healing in the pathogenesis of nonunion, such as tumour necrosis factor-a,
interleukin-6, bone morphogenetic proteins, insulin-like growth factors, matrix metalloprotei-
nases and vascular endothelial growth factor, has been proven in vitro, in animals and in hu-
mans. Nitric oxide and the Wnt signalling pathway also play important roles in the
development of nonunion. We present potential strategies for the prevention, diagnosis and
treatment of nonunion, and the interaction between genetic alteration and abnormal cytokine
expression warrants further investigation.
The translational potential of this article: A better understanding of nonunion molecular
pathogenesis may provide better approaches for its prevention, diagnosis and treatment in
clinical practice.
ª 2018 The Authors. Published by Elsevier (Singapore) Pte Ltd on behalf of Chinese Speaking
Orthopaedic Society. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Fracture healing is a complex but well-orchestrated pro-
cess that results in the regeneration and functional resto-
ration of bones. The US Food and Drug Administration has
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defined fracture nonunion as the absence of radiographic
healing over 9 months with no visible healing progression in
the last 3 months. As a serious fracture complication,
nonunion has a significant effect on the quality of life and
financial situation of patients and may be associated with
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severe functional and psychological impairments. The lat-
est research has demonstrated that the average risk of
nonunion per fracture was 1.9%, and the rate of nonunion
was up to 9% in specific fracture types (tibial and clavicular
fractures) and in old patients [1]. According to a 2007
study, the cost of nonunion treatment is as high as US$
25,000 per patient, more than twice that for normal
fracture healing [2].

Many factors, including systemic, local and treatment
factors, impair fracture healing and eventually result in
nonunion. Systemic factors mainly include age, nutrition
and systemic diseases, the most common of which are
diabetes mellitus, anaemia and endocrine disorders. Local
factors, such as the type of fracture, blood supply and
infection, may also influence fracture healing. In addition,
some evidence indicates that smoking and certain medi-
cations, including nonsteroidal antiinflammatory drugs
(NSAIDs) and corticosteroids, might have side-effects that
affect bone healing [3,4].

Although these environmental causes of nonunion at the
individual (macro) level have been extensively studied, the
specific signal pathways involved remain unclear. Under the
influence of external risk factors, the systemic or local
expression of specific cytokines and growth factors might
be disturbed. In addition, some patients present a predis-
position towards nonunion development because of genetic
defects. For example, young patients without any systemic
disease develop nonunion at every fracture site after mul-
tiple fractures, even when undergoing proper treatments.
Genetic factors also lead to abnormal expression of cyto-
kines and result in nonunion. Alterations of genes and cy-
tokines, at the molecular level, are discussed in this review
(Figure 1).

Three aspects involved in the molecular mechanism of
nonunion development are discussed in this review: genetic
factors, abnormal cytokine expression and other small
molecules. A clear understanding of the molecular patho-
genesis of nonunion can improve our knowledge of this
complication and provide different approaches for its pre-
vention, diagnosis and treatment at the molecular level.
Genetic factors

From a clinical perspective, it remains unknown why some
patients without systemic or local risk factors present a
predisposition towards nonunion development. Much evi-
dence indicates that specific genetic variants and abnormal
gene expression are the inherent causes of many diseases,
which may also be true for fracture nonunion. Indeed,
recent studies in this field have yielded valuable findings.
The genetic factors related to nonunion that have been
investigated to date are described below, and details of the
related experiments are summarised in Table 1.

The first clinical study on the genetic predisposition to-
wards nonunion was published in 2011 by Dimitriou et al.
Fifteen single nucleotide polymorphisms (SNPs, which are a
variation, such as a substitution, deletion or insertion, in a
single nucleotide at a specific gene position) in four genes
of the bone morphogenetic protein (BMP) pathway (BMP-2,
BMP-7, Noggin and Smad6) were examined in 109 patients
retrospectively. Two specific SNPs in Noggin and Smad6,
both inhibitors of BMPs, appear to be responsible for the
development of atrophic nonunion. It should be noted that
this study did not exclude patients with other environ-
mental risk factors, such as the type of fracture, smoking
and NSAIDs use, because no significant difference in these
factors was found between groups; however, the conclusion
is weak because of the small size of the specific samples
[5]. Thus, the correlation between these genes and
nonunion needs to be further investigated. After excluding
patients with other environmental factors, Zeckey et al.
analysed SNPs in several cytokine genes that regulate
fracture healing in patients with aseptic nonunion after
femoral and tibial shaft fractures. Based on a comparison of
the findings with those for patients with normal fracture
healing, a platelet-derived growth factor (PDGF) haplotype
was reported to be associated with aseptic nonunion [6]. In
a study assessing the mutation frequency of genes that are
crucial for the recognition and elimination of pathogens
and fracture healing, the T and C/T alleles of the trans-
forming growth factor-b (TGF-b) gene codon 10 and the
mutated TLR4 gene W/1 were identified as possible risk
factors for impaired recognition and elimination of bacte-
ria, increasing the susceptibility of a fracture patient to
develop septic nonunion [7].

Several recent studies have also suggested that genetic
alterations significantly contribute as an etiological factor
to the development of nonunion. Sathyendra et al. found
that patients carrying five SNPs in four genes showed a
significant association with atrophic nonunion [8]. Another
study demonstrated that a T/G genotype at SNP rs3753793
in the CYR61 gene, which encodes an important signalling
molecule that participates in many signalling pathways,
may contribute to the development of nonunion [9]. The
haplotype GTAA in BMP4 and C allele at rs13317 in FGFR1
are also associated with nonunion [10].

Some researchers have attempted to analyse the local
gene expression at the fracture site and investigate
different gene expression patterns between normal and
impaired fracture healing. For instance, expression of eight
genes in nonunion tissue was significantly increased
compared with fresh callus tissue based on a cDNA array.
Among these genes, CDO1, COMP, FMOD and FN1 are
important for the assembly and stabilisation of the extra-
cellular matrix, CLU and TCS22 induce cell differentiation
and proliferation and ACTA2 and PDE4DIP gene products,
such as actin, participate in cytoskeletal organisation and
maintenance. Moreover, overexpression of these genes in
fracture tissue may impair the structure and function of
bone healingerelated cells, eventually leading to nonunion
[11].

MicroRNAs (miRNAs) regulate gene expression related to
many biological processes, such as cell proliferation, dif-
ferentiation and organ development. Increasing evidence
suggests that miRNAs play a key role in fracture healing and
development of nonunion by regulating bone formation,
resorption and remodelling. A comparison between frac-
ture tissues with normal healing and those with impaired
healing in mice showed that five miRNAs, miR-140-3p, miR-
140-5p, miR-181a-5p, miR-181d-5p and miR-451a, are
significantly upregulated in normally healing tissues [12].
Interestingly, a similar study in mice also reported that five
different miRNAs, miR-31a-3p, miR-31a-5p, miR-146a-5p,



Figure 1 The pathogenesis of nonunion at molecular level. Both environmental risk factors and genetic factors lead to the
abnormal expression of cytokines, which is the key point for nonunion development. Genetic factors and abnormal cytokine
expression, at the molecular level, are discussed in this review.
BMP Z bone morphogenetic protein; IGF Z insulin-like growth factor; IL Z interleukin; MMP Z matrix metalloproteinase;
SNP Z single nucleotide polymorphism; TNF-a Z tumour necrosis factor-a; VEGF Z vascular endothelial growth factor.
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miR-146b-5p and miR-223-3p, are highly expressed in
nonunion tissues [13], suggesting that miRNAs may
contribute to the development of nonunion at the molec-
ular level. Recently, investigators designed a new scoring
system to assess the miRNA contribution to impaired frac-
ture healing, and 11 miRNAs were identified to impairing
fracture healing in aged female mice [14]. The expression
of five miRNAs (miR-140-3p, miR-140-5p, miR-181a-1-3p,
miR-210-3p and miR-222-3p) is altered in diabetic mice with
impaired fracture healing when compared to normal mice
[15]. As SPC3649, the first miRNA-targeting drug for the
treatment of hepatitis C virus infection, is being investi-
gated in clinical trials [16], we speculate that promoting or
inhibiting miRNA function is a potential therapy for
nonunion. Human studies need to be conducted to inves-
tigate the exact role of miRNAs in nonunion development.

This type of nonunion, which is caused by genetic al-
terations and abnormal gene expression, may account for
refractory nonunion and cases of undetermined aetiology in
clinical practice. New methods (e.g., genetic testing) can
quickly assess the risk of developing nonunion for fracture
patients, enabling prevention and timely intervention. If
fracture patients with nonsurgical indications present a
genetic predisposition for developing nonunion, then they
may need to undergo a more aggressive treatment strategy,
such as surgical treatment or adjuvant therapy, including
electromagnetic field and ultrasound therapies. Addition-
ally, if fracture patients with surgical indications present a
genetic predisposition towards nonunion development,
then bone-grafting or mesenchymal stem cells (MSCs)
transplantation or the use of BMPs may be advised during
the first surgical procedure to prevent nonunion. MSCs
transplantation is a representative approach of cell therapy
for promoting fracture healing [17,18]. Therapy selection
for nonunion can also benefit from knowledge of genes
related to nonunion. For example, the use of BMPs can
prevent patients with genetic defects in the BMP pathway
from developing nonunion and might be more effective for
nonunion treatment in such patients than in those without
such genetic defects. Because many studies have shown



Table 1 Summary of human studies that have investigated genes related to nonunion.

Author and date Groups Exclusion criteria Methods Genes related to nonunion

Dimitriou et al., 2011 62 patients with atrophic
nonunion
47 patients with normal
fracture healing

None SNP analysis Risk factors of nonunion: G/G genotype of the
rs1372857 SNP located within NOGGIN, T/T
genotype of the rs2053423 SNP located within
SMAD6

Zeckey et al., 2011 50 patients with femoral
and tibial nonunion
44 patients with normal
fracture healing

Smoking, diabetes, bilateral fractures, use of
corticoids and septic nonunion

SNP analysis Risk factors of nonunion: A PDGF haplotype
(rs1800814, rs62433334, rs13309625; CCG)

Grzegorz Szczęsny
et al., 2011

151 patients with nonunion
144 patients with normal
fracture healing

Open fractures, massive contusion of soft tissues
covering the fracture gap, trophic lesions of soft
tissues, chronic inflammatory foci and diseases
requiring medication with immunosuppressive
drugs.

Mutation
frequency
found
using gene
analysis

Risk factors of nonunion: T/T and C/T genotype
of TGF-b gene codon 10, mutated TLR4 gene
W/1

Sathyendra et al., 2014 33 patients with atrophic
nonunion
29 patients with normal
fracture healing

None SNP analysis Risk factors of nonunion: (OR>1): C/T or T/T
genotype at SNP rs2853550 within the IL1B
gene, the C/T or T/T genotype at rs2297514
and the A/G or G/G genotype at rs2248814
within the NOS2 gene
Protective factors (OR<1): G/G at rs3819089
within the MMP13 gene, G/G at rs270393 within
the BMP6 gene

Sabir Ali et al., 2015 250 patients with nonunion
250 patients with normal
fracture healing

Children and patients with a known systemic
inflammatory disease, osteoporosis and other
metabolic bone diseases, pathological fractures
and subsequent nonunion and hypertrophic and
infected nonunion

SNP analysis Risk factors of nonunion: T/G genotype at SNP
rs3753793 within the CYR61 gene

João Matheus Guimarães
et al., 2013

66 patients with nonunion
101 patients with normal
fracture healing

Patients presenting with pathological fractures,
osteoporosis, other bone diseases that could
interfere with calcium or phosphorus metabolism,
hypertrophic and infected nonunion, pregnancy,
and aged younger than 18 years

SNP analysis Risk factors of nonunion: A BMP4 haplotype
(rs2761884, rs17563, rs2071047, rs762642;
GTAA); C allele at rs13317 within the FGFR1
gene
Protective factors: G/T and G/G genotype at
rs1342913 within the FAM5C gene

G. Zimmermann
et al., 2012

8 patients with nonunion
7 patients with normal
fracture healing

Renal insufficiency, liver disease, malignant
tumours, collagenosis, inflammatory bowel
disease, haematological diseases, long-term
treatment with steroidal or nonsteroidal
antiphlogistic drugs or other immunosuppressive
agents, thromboprophylactic agents,
fluoroquinolones and tetracyclines, hormone
substitution and smoking

cDNA array
analysis

Eight genes are overexpressed in the nonunion
tissue: CDO1, COMP, FMOD, FN1, CLU, TCS22,
ACTA2 and PDE4DIP

SNP Z single nucleotide polymorphism.
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that the delivery of BMP genes as well as other genes,
including vascular endothelial growth factor (VEGF), PDGF,
fibroblast growth factor (FGF), Osterix, Nell-1 and Runx-2,
can enhance the generation of bone both in vivo and
ex vivo [19e23], gene therapy might become applicable for
nonunion in the foreseeable future and may represent the
most useful treatment for this serious condition.

However, more studies with larger sample sizes and
stricter screening criteria should be carried out to investi-
gate more genes that encode cytokines involved in the
fracture healing cascade and their expression patterns in
the fracture region. More genes associated with nonunion
remain to be found, thus offering greater possibilities and
more alternatives to gene therapy for this type of
nonunion. Notably, no study has shown an interaction or
coordination between genetic factors and environmental
risk factors, which both cause abnormal expression of cy-
tokines and are equally essential for the development of
nonunion. Therefore, these correlations await further
study.

Abnormal cytokine expression

Fracture healing comprises four overlapping processes (the
inflammatory phase, the cartilage formation and minerali-
sation phase, the cartilage resorption phase and the
remodelling phase), each of which is regulated by expres-
sion of cytokines. The multiple cytokines that regulate the
fracture healing cascade can be grouped into three cate-
gories: (1) proinflammatory cytokines, (2) members of the
Table 2 Abnormal cytokines related to nonunion at the stage o

Stage of fracture
healing

Biological process

Inflammation Haematoma
Hypoxia
Inflammation
Recruitment of MSCs

Cartilage formation
and mineralisation

Chondrogenesis
Angiogenesis
Cartilage mineralisation
Initiation of primary bone
formation

Cartilage resorption Hypertrophic chondrocytes apoptosis
Cartilage resorption by osteoclasts
Angiogenesis
Secondary bone formation

Remodelling Mineralised bone matrix
resorption by osteoclasts
Bone marrow established

BMPZ bone morphogenetic protein; IGFZ insulin-like growth factor;
NO Z nitric oxide; NSAID Z nonsteroidal antiinflammatory drug; ROS

a Altered cytokine expression has been observed in patients with n
TGF-b superfamily and other growth factors and (3) met-
alloproteinases and angiogenic factors [24]. Under the in-
fluence of environmental risk factors, such as
hyperglycaemia and using NSAIDs, the local and systemic
expression of cytokines may be easily altered. Disruption of
any of these cytokines can impair fracture healing and
result in nonunion (Table 2). Based on the classification of
the cytokines, we discuss three categories of cytokines
which are related to fracture nonunion. Importantly, mo-
lecular targeted therapy is an effective, accurate and
feasible approach for this type of nonunion.

Proinflammatory cytokines

Proinflammatory cytokines, including tumour necrosis fac-
tor-a (TNF-a) and, interleukin-6 (IL-6), help initiate the
fracture healing cascade, and they may also play key roles
in the remodelling phase [25,26].

Tumour necrosis factor-a
Local application of low-dose TNF-a within 24 h of injury,
which corresponds to the inflammatory phase of fracture
healing, promotes fracture healing by upregulating the
innate immune response [27]. Based on research on the
delayed resorption of cartilage during endochondral bone
formation in TNF-a receptoredeficient mice, Gerstenfeld
et al. concluded that TNF-a regulates cartilage resorption
by inducing apoptosis in hypertrophic chondrocytes and
recruiting osteoclasts [28]. Smoking impairs fracture heal-
ing, and nicotine is the main factor responsible for
f fracture healing.

Correlation between abnormal cytokine
expression and nonunion

Interference of hypoxia increases ROS production,
impairing BMP-2 expression

Alteration of IL-6/sIL-6Ra inhibits differentiation of
MSCs to the osteogenic lineage
Decreased BMP-2a impairs MSC differentiation and
delays cartilage mineralisation (elevated MMP-7/MMP-12
degrades BMP-2; hypophosphate and NSAIDs impairs the
BMP-2 pathway)
IGF-Ia deficiency impairs cartilage mineralisation
Disturbance of Wnt pathway impairs cartilage formation
(caused by alcohol)
Elevated TNF-aa (caused by hyperglycaemia) accelerates
cartilage resorption, decreased TNF-a (caused by smoking)
delays cartilage resorption
Deficiency of MMP-13 and MMP-9 impairs cartilage resorption
by osteoclasts
Deficiency in MMP-2 impairs the remodelling of new bone
in the callus
Disturbance of NO and related amino acidsa can impair
the remodelling phase

MMPZmatrix metalloproteinase; MSCZmesenchymal stem cell;
Z reactive oxygen species; TNF-a Z tumour necrosis factor-a.
onunion.
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nonunion development in smokers [29,30]. Through the
cholinergic antiinflammatory pathway, the secretion of
TNF-a is inhibited by nicotine and the resorption of carti-
lage may be delayed [31].

Diabetes mellitus is another common risk factor for
nonunion development. Cartilage resorption is accelerated
in diabetic mice overexpressing TNF-a, which induces an
increase in osteoclast numbers and apoptosis in chon-
drocytes [32,33]. Thus, applying TNF-a antagonists in a
diabetic mouse model might reverse the accelerated
resorption of cartilage caused by elevated TNF-a [33,34]. In
addition, angiogenesis is impaired, and MSCs are signifi-
cantly reduced in the fracture region in diabetic mice due
to the cooperation of TNF-a and high glucose levels, which
is also reversed by TNF-a antagonists [35,36]. Another study
found that the serum concentration of TNF-a in 28 fracture
patients with type 2 diabetes mellitus was significantly
higher than that in 25 fracture patients without the disease
[37]. However, in another study comparing 30 diabetic to 20
normoglycemic patients, no significant difference in the
serum concentration of TNF-a was observed [38]. Because
fracture patients with type 2 diabetes mellitus present a
higher risk of developing nonunion, these studies indicate
that the coordination between increased concentrations of
TNF-a and glucose might alter the specific cell behaviours
involved in cartilage resorption and angiogenesis, eventu-
ally resulting in nonunion. These findings indicate a po-
tential approach to the prevention or treatment of fracture
in patients with diabetes mellitus through TNF-a antago-
nists. Nonetheless, further studies are needed to prove that
accelerated cartilage resorption and impaired angiogenesis
are due solely to overexpression of TNF-a in diabetic
patient.

Interleukin-6
IL-6, along with its soluble receptor sIL-6R, is another
important proinflammatory cytokine that regulates
recruitment and proliferation of MSCs and their differenti-
ation to the osteogenic lineage [39,40]. Moreover, IL-6/sIL-
6R can induce peripheral blood monocytes to differentiate
into osteoclasts [41]. In IL-6 knockout mice, callus strength
decreased and callus mineralisation and remodelling were
delayed during early fracture healing because IL-6 in-
creases nuclear factor kappa beta ligand production to
promote osteoclastogenesis [42]. As other cytokines, such
as macrophage colony-stimulating factor, also promote
osteoclastogenesis, no difference in fracture healing was
observed between IL-6eknockout and wild-type mice at
4e6 weeks postfracture [43]. It seems that the IL-6 mainly
participates in the remodelling phase rather than the in-
flammatory phase. In another study, the investigators sup-
pressed the activity of IL-6 in inflammatory tissue and found
the fracture healing was unexpectedly promoted in frac-
ture mice [44].

An in vitro experiment demonstrated that elevating
the concentration of IL-6 alone does not promote MSCs
differentiation into the osteogenic lineage because IL-6
and sIL-6R do not synergistically induce differentiation
of MSCs under sIL-6R deficiency [45]. In fact, this study
proved that low concentrations of sIL-6R inhibit MSCs
differentiation. Cho et al. suggested that increasing
concentrations of IL-6 have no influence on osteogenesis
and can even inhibit the proliferation of primitive
mesenchymal cells [46]. Interestingly, a recent study
found significantly higher and lower serum concentrations
of IL-6 and sIL-6R, respectively, in nonunion patients than
in healthy individuals [47]. Thus, we can speculate that
the alteration of IL-6/sIL-6R may account for nonunion
development in some fracture patients. Indeed, raising
the concentration of sIL-6R may promote the differenti-
ation of MSCs and accelerate healing, especially in
nonunion patients who have been transplanted with
enriched MSCs. More recently however, researchers found
the IL-6/sIL-6R, the IL-6 trans-signalling pathway, is not
essential for fracture healing. Actually, the IL-6 classic
signalling, IL-6 with membrane-anchored IL-6 receptor,
plays a vital role in fracture healing [48]. As a result,
distinguishing the exact role of the IL-6 trans-signalling
pathway and IL-6 classic signalling in fracture healing is
necessary to clarify the mechanism of IL-6 signalling for
nonunion development.
Members of the TGF-b superfamily and other
growth factors

Members of the TGF-b superfamily include BMPs, TGF-b,
growth differentiation factors (GDFs), activins, inhibins and
Müllerian-inhibiting substance; other important growth
factors include insulin-like growth factors (IGFs), PDGF and
FGFs [49]. All are important mediators of fracture healing.
BMPs and IGFs, two types of cytokines that are related to
nonunion, are discussed below.

Bone morphogenetic proteins
BMPs have been used clinically for the treatment of
nonunion as an adjuvant therapy, and currently, BMP-2
and BMP-7 are the only commercially available BMPs
[50,51]. However, a prospective study found that no
benefit was observed when BMP-2 was added to autoge-
nous bone graft in fracture patients with long bone
nonunion [52]. Recently, a more convincing study that
aimed to investigate the efficacy of BMP therapy in
treating nonunion showed a similar result. The prospec-
tive, randomised, controlled cohort study demonstrated
that no difference was seen when BMP-2 or BMP-7 was
added to autogenous bone grafts in nonunion treatment
[53]. The therapeutic efficacy of BMPs is limited in clinical
practicedpossibly because the use of BMPs locally may
induce expression of BMP antagonists. Inhibition of BMPs
antagonist seems to enhance the osteoinductive capacity
of BMPs. However, this has only been proven in animal
models [54]. Moreover, a study showed that the compli-
cations associated with the use of BMPs in scaphoid
nonunion cannot be ignored [51]. These findings suggest us
to re-evaluate the use of BMPs and find novel method of
using BMPs in treating nonunion.

The expression levels of BMP-2, BMP-3, BMP-3B, BMP-6
and BMP-7; GDF-5 and GDF-7 and the BMP antagonists
noggin, drm, sclerostin, BAMBI and follistatin are signifi-
cantly lower within fibrous nonunion tissue when compared
with a standard healing callus at several time points both in
animal and human studies [55,56], and BMP-4 upregulation
in nonunion tissue is proven in a prospective self-control
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study [56]. BMP-2, BMP-7 and BMP-14 expression levels are
also decreased by a larger margin within the cartilage of
human nonunion fractures [57,58]. As a result, the efficacy
of other members of the BMP family in the treatment of
nonunion need further study. Another study demonstrated
no significant difference in circulating BMP levels between
patients with nonunion and those with normal fracture
healing [59], suggesting that BMP expression at the fracture
site is not directly correlated with systemic BMPs. These
findings provide evidence for the use of BMPs at fracture
and nonunion sites and suggest that detecting the local
concentration of BMPs might aid in the early diagnosis of
nonunion.

Many environmental factors may lead to disturbance of
the BMP pathway. NSAIDs, which are frequently used for
postoperative pain control, may be a risk factor to develop
nonunion [60]. Most NSAIDs inhibit the activity of
cyclooxygenase-1 and cyclooxygenase-2 (COX-2), and
thereby decrease the synthesis of prostaglandins. A study
conducted by Daluiski et al found that after treating
osteoprogenitor cells with NSAIDs to inhibit the activity of
COX-2, the response of osteoprogenitor cells to BMP de-
creases. As a result, the osteogenic potential of the cells is
reduced [61]. Another study demonstrated that through
upregulating the expression of COX-2, BMP-2 induces the
phosphorylation of ATF4 in chondrocytes, which plays a
critical role in skeletal development and maintenance [62].
It can therefore be speculated that by inhibiting the ac-
tivity of COX-2, NSAIDs can impair fracture healing through
the BMP pathway. Animal studies and clinical studies are
needed to validate that NSAIDs impair fracture healing
through the BMP pathway. BMP-2 expression of MSCs de-
pends on hypoxic signals in the fracture tissue, which is
mediated by reactive oxygen species. Interference of hyp-
oxia during the early inflammatory phase of fracture heal-
ing leads to deficient scavenging and abnormal increase in
reactive oxygen species production, thus impairing BMP-2
expression and cartilage ossification during endochondral
bone formation, which leads to delayed union or nonunion
[63].

Model mice with femoral fracture that received a
phosphate-restricted diet exhibited BMP-2 resistance,
resulting in impaired fracture healing exactly resembling
that is observed in the absence of BMP-2 signalling [64].
Moreover, phosphate restriction increased parathyroid
hormone-related peptide expression, further attenuated
chondrocyte differentiation and impaired hypertrophic
chondrocyte apoptosis via the parathyroid hormone/
parathyroid hormone-related peptide receptor [65].
Combined with phosphate, the use of BMP-2 in the
treatment of nonunion may be more effective. However,
as for acute fracture healing, a double-blind, randomised,
controlled phase-II/III trial performed in 2013 on the ef-
ficacy and safety of recombinant human BMP-2/calcium
phosphate matrix for treating closed tibial diaphyseal
fracture suggested that the use of rhBMP-2/CPM did not
significantly accelerate fracture healing after patients
were treated with reamed intramedullary nailing [66].
Calcium phosphate bone substitute is a suitable alterna-
tive to the bone grafts used for clinical nonunion treat-
ment. Regardless, further study is needed to determine
whether increasing the local concentration of phosphate
or combining BMP-2 with phosphate is effective for
treating nonunion.

Insulin-like growth factors
IGFs, the most abundant growth factors in bone, comprise
IGF-I and IGF-II. IGF-I is more potent than IGF-II. When
bound to the IGF type 1 receptor (IGF1R), IGF-I activates
autophosphorylation of the IGF1R cytoplasmic kinase
domain, stimulating downstream signalling pathways
through its interaction with various docking proteins,
including insulin receptor substrate-1 (IRS-1) and Src ho-
mology/a-collagen [67]. IGF is a mediator of growth hor-
mone, whereas the function of IGF is regulated by specific
binding proteins, including IGF-binding proteins (IGFBs;
IGFBP-1 to IGFBP-6) and acid-labile subunit [68].

The knockout of IGF systemerelated genes impairs em-
bryonic development and postnatal development of the
skeleton in mice [69e71], and a recent study using an
osteoblast-specific IGF1R conditional knockout mouse
model also demonstrated impaired endochondral bone
formation [72]. However, knockout of IGF-I in osteocytes of
mice augmented the healing of a fracture gap because loss
of IGF-I was compensated for by upregulation of BMP-2 and
Wnt [73]. Significantly higher gene expression of IGF-I/II
and IGFBP-6 has been reported in mice with nonunion,
and IGFBP-5 expression in these mice is significantly lower
than that in mice with normal fracture healing, thus
exhibiting opposite trends [74]. Another prospective study
showed that the time course of the serum concentrations of
GH (growth hormone)/IGF-I axis components in patients
with atrophic nonunion are significantly different from
those of patients with normal fracture healing. Acid-labile
subunit expression is lower during the early and late
stages of fracture healing, while IGFBP-3 expression is
lower during the late stage of fracture healing in nonunion
[75]. Mathieu et al also proved that the serum concentra-
tions of IGF-I are lower in patients with nonunion [47]. The
GH/IGF-I axis is easily affected by endocrine disorders; for
example, in diabetic mice with fracture, the concentration
of IGF-I is lower in both the serum and the fracture region
[76]. Therefore, further studies in vivo are necessary to
validate whether changes in the GH/IGF-I axis might
initially prompt the development of nonunion before ther-
apeutic targeting of GH/IGF-I axis can be considered.

The broken ends of fractures cannot connect in IRS-1
gene knockout-mice because IRS-1 deficiency cannot be
compensated for by other signalling molecules, and trans-
planting MSCs that express IGF-I into these mice can induce
the transplanted MSCs to differentiate into the osteogenic
lineage via autocrine and paracrine regenerative effects; as
a result, the resulting increased bone volume and callus
mineralisation rescue the failed fracture healing [77]. In
addition, transplanting MSCs with systemically delivered
IGF-I can also enhance fracture healing [78]. From the
perspective of promoting fracture healing, IGF-I has shown
great benefit in many experiments. Indeed, experiments
with several animal models have shown that local admin-
istration of IGF-I can accelerate fracture healing [79e81].
Furthermore, the application of the recombinant human
IGF-I/IGF binding protein-3 complex in osteoporotic pa-
tients with femoral fracture may be feasible and safe [82].
However, the potential therapeutic effects of IGF-I on



52 Z.-c. Ding et al.
nonunion require further study. As the factor that poten-
tially initiates the development of nonunion, the GH/IGF-I
axis represents a possible target for the prevention and
treatment of the condition. Notably, either transplanting
MSCs expressing IGF-I or transplanting MSCs with systemi-
cally delivered IGF can fully implement the regenerative
capacity of these cells to repair bone, suggesting a novel
approach for improving the therapeutic efficacy of MSCs
transplantation.
Metalloproteinases and angiogenic factors

Matrix metalloproteinases
During the endochondral ossification and remodelling pha-
ses, matrix metalloproteinases (MMPs) degrade the extra-
cellular matrix of cartilage and bone, allowing vascular
invasion into the newly generated bone. Imbalance among
MMP family members and their regulators, tissue inhibitors
of metalloproteinases, may also account for the molecular
pathogenesis of nonunion. In MMP-13eknockout mice,
chondroclast recruitment to the fracture callus is
disturbed, thus slowing cartilage resorption [83]. A similar
phenomenon was observed in MMP-9eknockout mice,
whereby persistent cartilage hindered vascular penetration
into the newly generated bone [84]. In contrast to the MMP-
13e and MMP-9eknockout mice, MMP-2eknockout mice
exhibit no defects in chondroclast recruitment or cartilage
resorption [85]. These findings indicate that MMP-13 and
MMP-9 affect both cartilage and bone remodelling, whereas
MMP-2 delays only the remodelling of new bone in the
callus. A prospective study showed that patients with
nonunion had significantly higher serum concentrations of
pro-MMP-1 and MMP-8 compared with those with normal
fracture healing but that tissue inhibitors of
metalloproteinase-1 was lower at several times points after
fracture surgery [86]. Because the serum concentrations of
enzymes may reflect local enzyme activity, detecting
serum MMP levels might represent a novel approach for
evaluating the risk of nonunion development in fracture
patients. Interestingly, noninvasive examination of the
levels of MMP-9 and MMP-13 in urine, which is more accu-
rate than the serum levels, demonstrated that these mol-
ecules are potential biomarkers for fracture healing [87].
Moreover, MMP-7 and MMP-12 are significantly elevated in
hypertrophic nonunion tissue, and these proteinases may
bind to and degrade BMP-2 [88].

Vascular endothelial growth factor
The VEGF-dependent pathway modulates angiogenesis
during fracture healing [89]. Fracture healing in rabbits
could be delayed by anti-VEGF antibody [90]. During frac-
ture healing, the expression of VEGF and vascularisation
was higher in mice with impaired fracture healing when
compared to mice with normal fracture healing [91].
Human studies showed a similar result: serum VEGF con-
centrations in patients with nonunion were higher
compared to the patients with normal fracture healing
during the 6-month observation after the fracture [92].
However, local application of VEGF can promote bone
repair in established nonunion animal models [93,94]. It
seems that hypervascularisation may impede fracture
healing especially in the early phase of fracture healing
whereas the treatment of an established nonunion can
benefit from VEGF administration and vascularisation.

Other molecules

Nitric oxide

As a free radical gas, nitric oxide (NO) is a well-known in-
flammatory mediator in fracture healing [95,96]. NO-
mediated vasodilation is essential for increasing blood
flow into the fracture site in the inflammatory phase [97].
During the remodelling phase, NO mediates vascular reac-
tivity, bone formation and resorption [98,99]. NO is pro-
duced through the conversion of arginine to citrulline,
which is catalysed by nitric oxide synthases (NOSs). In
another pathway, arginine can be converted to ornithine
and urea by arginase as a precursor of collagens.

NOS-knockout mice exhibit disturbed arginine-NO
metabolism and impaired fracture healing [100]. More-
over, a study in humans found lower concentrations of
arginine, citrulline and ornithine in the fracture callus of
patients with atrophic nonunion than in those with normal
fracture. Compared to patients with normal fracture heal-
ing, arginine was significantly higher and ornithine was
lower in the fracture callus in patients with hypertrophic
nonunion [101]. We can conclude that amino acids meta-
bolism related to NO is compromised in atrophic nonunion
calluses, and the concentration of arginine and NO pro-
duction increase in hypertrophic nonunion calluses. These
findings suggest that NO is involved in the molecular path-
ogenesis of nonunion. Under stress conditions, such as
wound healing and sepsis, arginine levels decrease, and
arginine-NO metabolism can be disturbed; these changes
may be the initial events in the development of nonunion,
especially atrophic nonunion, in some patients [102e104].
Additionally, animal studies showed that oral L-arginine and
oral products which can upregulate NOS expression pro-
mote fracture healing [105,106]. However, whether argi-
nine or NOS supplementation can prevent and treat
nonunion need to be investigated.

Wnt signalling

Wnts are a family of secreted glycoproteins involved in the
fracture healing process. In the canonical Wnt signalling
pathway, Wnts bind to the membrane receptor Fzd and one
of the coreceptors, LRP5 and LRP6 (low-density lipoprotein
receptor-related protein), and eventually the cytoplasmic
level of b-catenin increases to regulate gene expression.
The gene expressions involved in Wnt signalling pathway
were upregulated during fracture healing in mice [107].

Acute alcohol exposure can disturb the Wnt signalling
pathway by deregulating b-catenin expression in mice.
Thus, fracture healing is impaired as a result of cartilage
formation deficiency [108]. Applying a Wnt pathway acti-
vator can increase the level of b-catenin and reverse the
impaired fracture healing in mice under alcohol exposure
[109]. It is reported that the FOXO transcription factors,
antagonists of the Wnt signalling pathway, may also be
activated by alcohol [110].
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The Wnt signalling pathway could be targeted to
enhance fracture healing. Sclerostin and Dkk1 can inhibit
the Wnt signalling pathway and impede fracture healing by
binding to the LRP5/6 and other transmembrane protein.
Sclerostin depletion and systemic administration of a scle-
rostin antibody with or without BMP-2 have shown the ef-
fect of promoting bone repair in mice [111e113]. Dkk1
antibodies also have the ability to enhance fracture healing
in mice [114]. However, the therapeutic potential of Wnt
antagonists for the nonunion treatment and prevention
needs further researches.

Summary

Undoubtedly, some variations in genes, gene expression
and cytokines related to fracture healing are associated
with the development of fracture nonunion, though some
aspects of the molecular pathogenesis remain unclear. A
number of new approaches targeting different genes and
cytokines might aid in the early identification of nonunion
development risk in fracture patients and might be useful in
preventing and treating nonunion. However, some cytokine
alterations discussed may be caused by genetic factors
rather than by external risk factors because both genetic
factors and external risk factors contribute to abnormal
cytokine expression. The current evidence needs to be
validated in animal and human studies, and the interaction
and coordination between genetic factors and environ-
mental risk factors, as well as correlations among different
cytokines, warrant further investigation.
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