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Leveragingmultiple data types for improved
compound-kinase bioactivity prediction

Ryan Theisen1 , Tianduanyi Wang1, Balaguru Ravikumar1, Rayees Rahman1,2 &
Anna Cichońska 1,2

Machine learning provides efficient ways to map compound-kinase interac-
tions. However, diverse bioactivity data types, including single-dose andmulti-
dose-response assay results, present challenges. Traditional models utilize
only multi-dose data, overlooking information contained in single-dose mea-
surements. Here, wepropose amachine learningmethodology for compound-
kinase activity prediction that leverages both single-dose and dose-response
data. We demonstrate that our two-stage approach yields accurate activity
predictions and significantly improves model performance compared to
training solely on dose-response labels. This superior performance is con-
sistent across five diverse machine learning methods. Using the best per-
forming model, we carried out extensive experimental profiling on a total of
347 selected compound-kinase pairs, achieving a high hit rate of 40% and a
negative predictive value of 78%. We show that these rates can be improved
further by incorporating model uncertainty estimates into the compound
selection process. By integrating multiple activity data types, we demonstrate
that our approach holds promise for facilitating the development of training
activity datasets in a more efficient and cost-effective way.

The enormous size of the kinase inhibitor chemical space poses a
considerable challenge for traditional experimental approaches to
map compound-kinase interaction spaces, highlighting the need for
alternative strategies that can expedite the kinase inhibitor discovery
process. Beyond traditional molecular docking approaches, machine
learning methods have emerged as promising tools in this context,
offering time- and cost-effectivemeans to navigate the kinase chemical
space. In fact, several new models for compound-kinase binding pre-
diction are introduced every month1–4. They differ in the learning
algorithm used, such as simple k-nearest neighbor regression5, deci-
sion trees6, kernel learning7–10 and deep learning methods5,11–14, as well
as compound and protein descriptors, including compound SMILES
and graphs15, protein amino acid sequences5,12 and, lately, more com-
plex 3D structure-based features16–19 and embeddings from pretrained
large language models14. Most recent methods modeling compound-
kinase activities learn from the descriptors of both compounds and
kinases, and are referred to as proteochemometric models. For

example, the BiMCAmodel is based on a bimodal neural network that
incorporates convolutional and attention layers, using text sequences
of SMILES for compounds and amino acids for kinases5. On the other
hand, ConPLex, another deep learning model, predicts compound-
kinase activities using compound ECFP4 fingerprints, with kinase fea-
tures derived from a pretrained ProtBert language model20. Further-
more, ConPLex employs a contrastive learning stage, training the
model to predict activities while simultaneously learning to differ-
entiate real drugs from synthetically generated decoys14.

Although these machine learning methods have demonstrated
strong performance within their respective evaluation scenarios, the
available bioactivity datasets for model training are very hetero-
geneous, comprising a variety of data types, and thus pose significant
challenges for compound-kinase interaction modeling. Specifically,
compound activity against a kinase is typically determined either from
a single dose of compound (e.g., percentage inhibition or activity
readouts) or more comprehensive and costly dose–response profiling
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(e.g., dissociation constant Kd, inhibition constant Ki, or half-maximal
inhibitory concentration IC50 readouts). Conventional approaches
modeling compound-kinase activity rely on dose–response data only,
thereby ignoring a substantial portion of the available information.
The neglect of point-of-concentration (POC) measurements is parti-
cularly noteworthy given the prevalence of such data in public data-
bases. For example, approximately 40% of all kinase activity data in
ChEMBL bioactivity database21 consists of compounds for which only
POC activities weremeasured. This large pool of compoundswith POC
data has yet to be utilized by current activity modeling approaches,
therefore limiting compound-kinase activity training spaces and
potentially overlooking valuable chemical matter.

To address these limitations, in this work, we develop a two-stage
machine learning methodology for compound-kinase activity predic-
tion, integrating both single-dose and dose–response experimental
readouts. In the first stage, we use a random forest model to learn a
mapping from POC to dose–response activity values. This model is
then employed to generate proxy dose–response activity labels for
compounds with only POC measurements, thereby expanding the
available dose–response training dataset. Predictions from the first-
stagemodel, combined with experimentally measured dose–response
activities, are used to predict compound-kinase binding affinities
based on chemical structures and kinase features (Fig. 1). We demon-
strate that our approach enables the exploration of a more extensive
chemical space and enhances the accuracy of compound-kinase
interaction predictions across various learning algorithms used in
the second stage, ranging from random forest to more sophisticated
kernel and deep learning methods. We then use our top-performing
model to screen a large purchasable compound library against 13
kinase targets and experimentally measure 297 of themost promising,
previously untested compound-kinase interactions, achieving a hit
rate of 40%, notably higher than those typically reported in virtual
screening studies22,23. Additionally, we provide a practical guide to
obtaining uncertainty estimates for kernel-based activity predictions.
Retrospective analysis reveals that incorporating these model uncer-
tainty estimates into the compound selection process could further
enhance the model’s hit rates. Lastly, we experimentally profile an
additional 50 compound-kinase pairs to assess themodel’s accuracy in
predicting inactive compounds, an often overlooked yet crucial
aspect, especially in designing compounds that avoid toxic anti-
targets. In this task, the model achieves a negative predictive value
of 78%.

Results
IC50’s are accurately recovered from point-of-concentration
measurements
Due to its low cost, percentage inhibition remains the most prevalent
POC activity measurement in compound-kinase interaction studies. It
is theoretically compatible with the IC50 metric which is derived
through curve fitting based on percentage inhibition data points at
multiple compound concentrations. However, outside the IC50 con-
text, percentage inhibition is typically determined at only a few (one to
three) compound concentrations. This limitation restricts the applic-
ability of curve-fitting methodologies for extracting a more robust
metric of compound-kinase activity.

Here, we start by demonstrating our ability to accurately predict
pIC50 values, i.e., �log10(IC50), using percentage inhibition measure-
ments obtained at just a few points of concentration. To do this, we
first create bins of concentrations ranging from < 100 nM to ≥10000
nM, and select compound-kinase pairs for which at least two percen-
tage inhibition measurements in different bins have been collected.
We then construct feature vectors that contain at index i themeasured
percentage inhibition value at bin i (if it is measured), and otherwise a
special dummy value representing N/A if the value is not available. This
is illustrated in the bottom panel of Fig. 1A. To train a POC → pIC50

model, we further select among these pairs those that additionally
have a measured pIC50 value. This results in 1563 compound-kinase
pair examples, which we further split into training and validation sets
of size 1329 and 234, respectively. Our compound-kinase activity
dataset used throughout this work was carefully curated based on
information from the ChEMBL21 and PubChem24 databases, as outlined
in Section “Data”.

For the POC → pIC50 prediction task, we train a random forest
regression model using the featurized percentage inhibition values to
predict the measured pIC50 value (refer to Section “POC data inte-
gration”). The random forest was chosen over alternative methods
because tree-based models are particularly well-suited to handling
problemswithmanymissing values. These valuesmust be represented
numerically using a dummyvalue (see Section “POCdata integration”),
and tree-based models efficiently manage such dummy values by
making thresholded splits along each input dimension. In contrast,
methods involving linear transformations of the inputs would be
heavily biased by the choice of dummy value.

Performance of the first-stage random forest model is visualized
in Fig. 2A. We obtain a validation set root mean squared error (RMSE)
of 0.704, and a Spearman rank correlation between predicted and
measured pIC50 values of 0.820, suggesting the model is a strong
predictor of pIC50. Supplementary Fig. 1 presents the predicted pIC50’s
plotted against the measured percentage inhibition values. To further
evaluate the performance of the POC → pIC50 model, we analyzed the
variation in experimental IC50 measurements and compared it to the
model’s error rate. For this analysis, we gathered all examples of
compound-kinase pairs with at least two independent IC50 measure-
ments, totaling approximately 8,000pairs.We computed the standard
deviation in pIC50 units for each compound-kinase pair andplotted the
distribution of these deviations. The results, displayed in Supplemen-
tary Fig. 2, underscore the robustness of the POC → pIC50 model, as its
performance closely matches the inherent variability observed in
experimental data, with an average between-measurement standard
deviation of 0.560 pIC50 units.

Using the trained POC → pIC50 model, we can now generate
inferred pIC50 values for compound-kinase pairs that have only a few
measured percentage inhibition values (specifically, measurements in
at least two different concentration bins), but nomeasured IC50, Ki or
Kd. Using our dataset, we are able to extract approximately
70,000 such unlabeled compound-kinase pairs (see “Data”). In Fig. 2B,
we plot the distribution of predicted pActivity values for this set
(shown in blue), along with the distribution of measured pIC50 values
from ChEMBL and PubChem (in red). Notably, compared to the
background distribution, the majority of the inferred activity values
are predicted to be inactive (defined here as pActivity ≤ 6, or equiva-
lently, activity ≥ 1000 nM). This augments our dataset with a large
number of negative examples indicating a lack of compound-kinase
binding. This is not surprising given that compounds found inactive in
initial single-dose assays are typically not subjected to further
dose–response profiling. However, it’s important to highlight that
within this framework, we still identify 13% of the compound-kinase
pairs as inferred active (pActivity > 6), suggesting potential interac-
tions worth further investigation.

Inferred compound-kinase pairs improve kinome binding pre-
dictor performance
We next assess whether integrating inferred pActivity values with the
experimentally measured ones enhances the performance of kinome
binding predictor models. We benchmarked five models based on
varied learning principles, including pairwise kernel ridge regression
(pwkrr)25,26, random forest27, and three deep learning-based methods
from the literature: BiMCA5, DeepDTA11, and ConPLex14. For the pwkrr,
random forest, and ConPLex models, we utilized ECFP4 compound
fingerprints. We chose the ECFP4 fingerprint based on early
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Fig. 1 | Schematic overviewof the bioactivity data integrationmethodology for
compound-kinase binding prediction. A Approximately 40% of kinase activity
data in public databases comprises point-of-concentration (POC) readouts, such as
percentage inhibition. These data points are relatively inexpensive to generate
compared to dose–response measurements such as IC50, but they are typically
ignored when training compound activity prediction models. B Here, we present a
two-stage framework that integrates POC readouts with dose–response data to
improve activity prediction model performance. First, a random forest model is
employed to learn the mapping between POC and dose–response measurements.
Subsequently, proxy dose–response labels are generated and combined with

experimentally determined ones in a second-stage model. This model predicts
compound-kinase activities using chemical and kinase features. C A schematic
representation of the three prediction scenarios considered in this study. 1.
Compound-kinase split: a prediction scenario aimed at filling in missing kinase
activities for compounds that may be present duringmodel training. 2. Compound
split: a prediction scenario to infer activities of a compound that is not explicitly
observed during training butmay have close analogs present in the training data. 3.
Cluster split: a prediction scenario to predict activities of a series of compounds
within a compound cluster not observed during training.
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experiments that demonstrated its superior performance over other
fingerprint types, such as RDKit fingerprint and MACCS. Conversely,
the BiMCA and DeepDTA were applied directly to compound SMILES
strings. In terms of kinase features, the pwkrr, BiMCA, and DeepDTA
were trained on 85-residue binding pocket sequences. On the other
hand, the ConPLex model’s kinase features were generated using a
pretrained ProtBert protein language model20. The random forest
model was built separately for each kinase, and thus it does not rely on
kinase features. For a more detailed description of all the methods,
refer to Section “Second-stage models”. We selected this diverse col-
lection of models to evaluate whether our data integration metho-
dology can benefit methods developed for compound-kinase binding
prediction, regardless of the peculiarities of individualmodels. Among
the three deep learning models, our selection was motivated by the
following factors: (1) model popularity; (2) a diverse set of model
architectures leveraging distinct feature representations of com-
pounds and kinases, exemplifying models developed in both industry
and academia; and (3) distinct training strategies, such as ConPlex
requiring training on decoy molecules.

We train each model using either only experimentally measured
pActivities (for the single-stage baseline model) or a combination of
experimentally measured and inferred pActivities (for the two-stage
model). For each deep learning model, we verified after training that
the training loss had converged. When evaluating the model’s perfor-
mance, we focus on three practical prediction scenarios (see Fig. 1C):

• Predicting the activities of new compound-kinase pairs, where
both the individual compound and kinase are present in the
training data, but the specific pair under consideration is not. This

scenario corresponds to filling in the gaps in an otherwise known
compound-kinase interaction matrix (‘ck split’).

• Predicting the activities of new compounds,where the compound
itself is not present in the training data, although similar com-
pounds may be included (‘compound split’).

• Predicting the activities of new compound clusters, which repre-
sents the most challenging scenario. Here, neither the compound
in question nor similar compounds within the same cluster are
present in the training data (‘cluster split’).

The results, summarized in Tables 1 and 2, highlight the
improvement in predictive performance achieved through the inte-
gration of POC data. Our two-stage approach consistently improves
performance across the prediction scenarios and learning algorithms
evaluated. The only exception is the random forest model under a
‘compound split’ scenario, where the baseline model slightly outper-
forms the two-stage model, but with the difference in Spearman cor-
relation being marginal, at the third decimal place. Notably, as
evidenced by the differences in evaluation metrics and supported by
rigorous permutation testing (refer to Section “Post-analysis on pre-
dictions”), the more challenging the prediction scenario, the greater
the improvement in performance achieved by the two-stage model
compared to the baseline. For example, when predicting the activities
of new compound clusters, the top-performingpwkrr two-stagemodel
achieved a Spearman correlation of 0.619, compared to 0.593
achieved by the baseline model. The improvement in performance is
notable across the chemical space, with the per-compound cluster
difference in Spearman correlation due to POC data integration

Fig. 2 | Prediction of IC50 values from the POCmeasurements. A Performance of
the POC topIC50 activity predictionmodel on the validation set. pIC50 values canbe
accurately predicted from only a few points of concentration. B Distribution of
measured versus inferred activities. We observe that a significantly larger fraction

of compound-kinase pairs with inferred activity values are predicted to be inactive,
compared to the baseline distribution of activity values. Source data are provided
as a Source Data file43.

Table 1 | Validation set Spearman correlation between measured and predicted pActivities for five benchmarked models
across three prediction scenarios

Model ck split compound split cluster split

Combo Single p-val Combo Single p-val Combo Single p-val

pwkrr 0.870 0.870 0.6574 0.837 0.837 0.5842 0.619 0.593 0.0000

Random forest 0.844 0.843 0.3526 0.845 0.846 0.9030 0.611 0.599 0.0000

BIMCA 0.832 0.832 0.5413 0.767 0.764 0.1201 0.451 0.439 0.0011

DeepDTA 0.846 0.843 0.0535 0.774 0.763 0.0001 0.487 0.433 0.0000

ConPLex 0.880 0.877 0.0004 0.821 0.817 0.0030 0.568 0.560 0.0011

P-values comparing two-stage (‘combo’) and single-stage (‘single’) model results were calculated using one-sided permutation tests (refer to Section “Post-analysis on predictions”). Significant
p-values are in italics, and metric values for the best-performing model under each prediction scenario are bolded. Higher Spearman correlation values indicate better model performance.
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reaching up to 0.4 (Fig. 3A). Visual inspection of clusters highlighted in
panel A of Fig. 3 reveals a tight grouping of compounds with common
scaffolds, exit vectors, and essentially structural changes within a
potential SAR series (Fig. 3B). For example, while 4-amino-7-
alkoxyquinazolines are common scaffolds in clusters 84 and 77, they
are distant in the t-SNE space, and it is noteworthy that the latter
cluster includes ligands with a unique feature, that is, covalent war-
heads of the acrylamide type. This analysis highlights the improved
capability of the two-stage model in identifying detailed variations
among kinase inhibitors. Supplementary Fig. 4 presents additional
results from a ten-fold cluster-based cross-validation, comparing
single-stage and two-stage models, specifically for the pwkrr and one
of the deep learning models. In 57 out of the 60 total evaluations, the
integrated model outperforms the single-stage model.

Interestingly, our results reveal that while a recent deep learning
ConPLex method surpasses other models in the easiest scenario of
predicting the activities of new compound-kinase pairs, the simpler
random forest and kernel learningmodels substantially outperformall
deep learning models benchmarked in the more challenging tasks of
predicting the activities of new compounds and compound clusters
(Tables 1 and 2). It is important to note this finding, as many newly
introduced activity prediction methods are currently benchmarked
against other published deep learning models, often neglecting com-
parisons with simpler approaches. To ensure fair comparison across
various models, in our experiments, the validation set remained the
same across all models within each respective prediction scenario.

Lastly, we assessed the potential for performance improvement in
predicting compound selectivity with the two-stagemodel. To do this,
we used the dataset from the Davis et al. study28, which includes
dose–response measurements for 72 compounds across approxi-
mately 400 kinases. We trained both single-stage and two-stage pwkrr
models, excluding all compounds from the Davis et al. dataset. ’True’
selectivity was defined as 1 minus the fraction of kinases each com-
pound binds at ≤ 1000 nM. This metric was correlated against the
predicted selectivity (calculated in a similar manner using predicted
activities) for both models. The single-stage model achieved a Spear-
man correlation of 0.542, compared to 0.581 for the two-stage model.
Although this difference is substantial, it is not statistically significant
(p = 0.2156, one-sided permutation test), which could be attributed to
the very small number of compounds in the validation set. Never-
theless, the results highlight the two-stage model’s improved cap-
ability in predicting kinase inhibitor selectivity, likely due to the
inclusion of POC compound measurements that are often evaluated
across multiple kinases, with only a few selected compound-kinase
pairs advancing to dose–response testing.

Experimental testing demonstrates practical model utility in
earlystage drug discovery
We next utilize the top-performing pwkrr two-stage model to screen
large purchasable compound libraries against 13 kinases which have a
varying number of available training data points (ACVR1, BTK, CSF1R,

EGFR, ERBB2, FLT3, IRAK1, IRAK4, JAK2,MERTK,MKNK1, PIK3CA, SYK).
For example, EGFR has roughly 6000 data points in our training set,
while ACVR1 has only about 200, making it a more challenging target
tomodel. Using a combination of 276 percentage inhibition assays at a
compound concentration of 1000 nM (DiscoverX’s KINOMEscan-sca-
nELECT) and 21 Kd assays (DiscoverX’s KINOMEscan-KdELECT, see
Section “Experimental profiling” for the experimental protocol), we
experimentally measured 297 previously untested compound-kinase
interactionswith a predicted pActivity ≥ 6 (or equivalently ≤ 1000nM),
aiming to validate our computational predictions. Supplementary
Data 1 provides the SMILES for compounds, alongwithUniProt IDs and
HGNC symbols for the kinases tested, and includes both the compu-
tational predictions and the corresponding results from experimental
assays. Supplementary Fig. 5 illustrates the distribution of experi-
mentally measured activity values across all kinases included in the
assays, whereas Supplementary Fig. 6 shows the distribution for each
kinase separately.

Consideringmeasured Kd ≤ 1000 nM and percentage inhibition at
1000 nM ≥ 75%, we attained a hit rate of 40%, which significantly
exceeds the average success rates reported in conventional virtual
screening endeavors, which often hover between 5% and 25%22,23. Our
hit rate, though reduced, remains notably high at 33%when evaluating
a more challenging subset of 142 compound-kinase pairs where nei-
ther the pair nor the compound overlaps with the training dataset
(‘new compounds’). Figure 4A displays the hit rates as a function of
varying percentage inhibition thresholds. Even at the most stringent
thresholds, both hit rates remain around 30%. It is worth noting that
seven of the experimentally confirmed new compound-kinase inter-
actions, spanning seven distinct compounds and five kinases, would
have been overlooked by a baseline single-stage model (see Supple-
mentary Data 1). Among these, four compounds lack very close
neighbors in the training dataset with an ECFP4-based Tanimoto
similarity to the nearest training compound ranging from 0.55 to 0.73.

Furthermore, we leverage the connection between kernel ridge
regression and Gaussian process29 to calculate the metric of model’s
uncertainty for each point estimate of compound-kinase activity (see
Section “Second-stage models” for details). The lower the value of this
metric, the greater the model’s confidence in its prediction. Uncer-
tainty estimates could be incorporated into the compound selection
process. For instance, our retrospective analysis demonstrates that
increasing the predicted pActivity threshold to ≥6.5, while also
applying a threshold of ≤0.6 for model uncertainty estimates, would
raise hit rates to 50% considering all compound-kinase pairs tested,
and to 43% for the ‘new compounds’ subset, which corresponds to a 10
percentage points increase (Fig. 4C, D).

We observe that model uncertainty estimates are strongly corre-
lated with hit rates for each kinase. As expected, ‘dark’ kinases30 and
those with limited training data, such as MKNK1 and ACVR1, present
greater prediction challenges and exhibit higher uncertainty estimates
compared to well-studied kinases like EGFR and FLT3 (Fig. 4E). This
pattern holds true for compounds as well; typically, the higher the

Table 2 | Validation set RMSE between measured and predicted pActivities for five benchmarked models across three pre-
diction scenarios

Model ck split compound split cluster split

Combo Single p-val Combo Single p-val Combo Single p-val

pwkrr 0.657 0.662 0.0047 0.708 0.710 0.1150 1.032 1.062 0.0000

Random forest 0.706 0.707 0.2779 0.691 0.686 0.9590 1.079 1.082 0.1694

BIMCA 0.741 0.747 0.0600 0.839 0.847 0.0218 1.241 1.251 0.0038

DeepDTA 0.703 0.713 0.0172 0.822 0.841 0.0000 1.222 1.267 0.0000

ConPLex 0.638 0.647 0.0001 0.751 0.759 0.0027 1.153 1.175 0.0000

P-values comparing two-stage (‘combo’) and single-stage (‘single’) model results were calculated using one-sided permutation tests (refer to Section “Post-analysis on predictions”). Significant p-
values are in italics, and metric values for the best-performing model under each prediction scenario are bolded. Lower RMSE values indicate better model performance.
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Fig. 3 | Performance comparison of the two-stage and single-stage model
across chemical space. A Difference in Spearman correlation per compound
cluster on the validation set, comprising 15,661 compounds, under the
'cluster split' prediction scenario, comparing the two-stage pairwise kernel
regression model (pwkrr) with its single-stage counterpart. A higher value
indicates superior performance of the two-stage model over the single-stage

model. Compounds were first clustered using k-means on ECFP4 finger-
prints, and t-SNE was applied for visualization (refer to Section “Post-analysis
on predictions”). We highlight selected compound clusters with the largest
differences in Spearman correlation, and example structures are shown (B).
See Supplementary Fig. 3 for the difference in RMSE. Source data are pro-
vided as a Source Data file43.
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distance of a tested compound from those in the training set, the
higher the associated model uncertainty in predicting its activity.
However, Fig. 4F reveals exceptions to this trend. The uncertainty
estimate depends on both the compound and the kinase information.
Therefore, even compounds overlapping with the training data can
have higher associated uncertainty for their activity predictions when
paired with less-studied kinases.

Lastly, we conducted experimental profiling (DiscoverX’s KINO-
MEscan-scanELECT, see Section “Experimental profiling” for the
experimental protocol) of an additional 50 compound-kinase pairs
with predicted pActivity ≤5.5 to evaluate the model’s performance in
predicting inactive compounds.This aspect is oftenunderemphasized,
even though it is critical in the context of designing compounds that
strategically avoid toxic anti-targets. Supplementary Fig. 7 shows the
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distribution of all experimentally measured percentage inhibition
values, and Supplementary Fig. 8 shows the distribution for each
kinase separately. Defining inactives as compounds with percentage
inhibition at 1000 nM ≤ 25%, the model achieved a negative predictive
value of 78% (Fig. 4B). This high rate of correctly identifying inactive
compounds underscores the model’s potential as a reliable tool, not
only for identifying promising kinase inhibitor drug candidates but
also for effectively ruling out non-viable or potentially harmful
compounds.

Discussion
The heterogeneity in available compound-kinase activity data calls for
machine learning approaches capable of integrating various experi-
mental readouts during model training. Here, we have introduced a
two-stage machine learning framework, which, to the best of our
knowledge, is the first to leverage the typically overlooked POC data
alongside dose–response activities for compound-kinase binding
prediction. We have demonstrated that our approach is adaptable to
various learning algorithms and molecular descriptors. The improve-
ment in performance is evident across all the algorithms evaluated
here, especially in the most challenging and practical early-stage drug
discovery tasks of predicting activities of new compounds and com-
pound clusters that were not seen in the training data. This represents
an advancement in navigating the complex compound-kinase inter-
action space, facilitating more effective exploration of a broader che-
mical spectrum. Due to the integration of POC screening results, often
carried out across larger kinase panels, our two-stage approach also
enhances the prediction of kinase inhibitor selectivity.

As experimental testing is the ultimate method for assessing a
model’s utility in drug discovery efforts, we have profiled a total of 347
compound-kinase pairs based on activity predictions from the top-
performing two-stagepairwisekernel regressionmodel, achieving ahit
rate of 40% and a negative predictive value of 78%. Our hit rate is
notably higher than those typically reported in virtual screening stu-
dies, which often range between 5% and 25%22,23. Our experimentally
generated data is available to the community alongside this publica-
tion. We also derived uncertainty estimates associated with kernel
model activity predictions and demonstrated how they could guide
the compound selection process, leading to improved hit rates.

Our study underscores the significance of thoroughly assessing
the applicability domain of activity prediction machine learning
models. An understanding of each model’s capacity to generalize to
previously unseen data is of utmost importance, and can be achieved
bymeticulously constructing training and validation splits with careful
consideration of compound and kinase overlaps between them31. This
is especially important given the intended application of the model.
For instance, in our study, the ConPLex method exhibited superior
performance in filling gaps in tested compound-kinase interaction
matrices. This is relevant, for example, in preparing activity data for
other downstream tasks where missing values are not allowed. Con-
versely, in screening new compound libraries, random forest and
kernel learning outperformed all deep learning approaches evaluated
here, demonstrating a notable Spearman correlation difference on the

same validation set of up to0.17. This shows that despite the increasing
popularity of deep learning algorithms in recent years, it is crucial to
compare these advanced methods not only against their counterparts
but also against simpler, yet still powerful, more traditional models.
This would ensure a comprehensive evaluation, highlighting the
strengths and limitations of each method in various contexts. Ran-
domly splitting compound-kinase pairs into training and validation
sets results in overoptimistic performance in terms of generalization
to previously unseen data, as was also observed in other work32.

Furthermore, constructing high-quality training data is essential.
In the literature,models are frequently trained and evaluatedon kinase
datasets such as those from Anastassiadis et al.33, Davis et al.28, and
Metz et al.34 studies. While these datasets are of high quality, they
represent a limited chemical spaces, typically including only up to a
few hundred compounds. Here, we have curated a kinome-wide
dataset from ChEMBL and PubChem, comprising roughly 80,000
compounds that have undergone rigorous cleaning workflow. This
process standardizes compounds and filters out structures with
undesirable characteristics. These include, among others, reactivity,
staurosporine-like structures, the presence of long aliphatic chains, or
atoms such as Si, Se, and I, as well as fragments prone to rapid oxi-
dation (see Section “Compound standardization and cleaning work-
flow”). We advocate for meticulous data preparation to ensure reliable
and effective machine learning applications in kinase research.

In this study, for simplicity, we used only IC50 values from the
available dose–response data during model training. However, our
methodology is equally capable of incorporating other commonly
used readouts, such as Kd and Ki values. IC50, Kd, and Ki readouts are
frequently used together in training models for kinase inhibitor
activity prediction. Incorporating these additional activity data could
further enhance both the robustness and accuracy of the predictive
model. The IC50 assays also vary and incorporate several formats such
as fluorescence, luminescence, and radioactivity-based measure-
ments. Our model is designed to generalize across these variations by
integrating diverse data points and leveraging their underlying che-
mical and biological relationships. Therefore, the diversity of assay
formats in our dataset, while adding complexity, also enriches the
training environment. However, further work is required to better
account for inconsistencies between various assays35. Even though we
focused on kinase targets, we anticipate that our two-stage framework
could be applicable to other protein classes with a similar spectrum of
data types.

Lastly, while our hit rate significantly exceeds those commonly
observed invirtual screening efforts22,23, it is important to acknowledge
that hit rates will vary based on the specific targets and chemical
libraries utilized. Although we primarily used percentage inhibition
assays to validate our computational predictions - due to their stan-
dard application in initial compound screening for their high
throughput and cost-effectiveness - they have their limitations. These
assays provide only a snapshot of compound activity at a single con-
centration under a specific set of experimental conditions, potentially
overlooking the complex dynamics and variety of compound-kinase
interaction mechanisms. This limitation may result in a partial or

Fig. 4 | Experimental results. Hit rate (A) and negative predictive value (B) as
functions of the varying percentage inhibition thresholds for all experimentally
measured compound-kinase pairs (‘all’), and subsets of pairs where neither the pair
nor the compound overlaps with the training dataset (‘new compounds’). The Kd

threshold for defining actives and inactives remains unchanged (≤1000 nM for
actives and >1000nM for inactives).CTwo-stagepwkrrmodel uncertainty estimate
plotted versus predicted pActivity for all predicted-as-active compound-kinase
pairs and their ‘new compounds’ subset (D). Green triangles indicate validated
actives, and red dots denote inactives. The inclusion of model uncertainty esti-
mates in the compound-kinase selection process, as indicated by dashed blue lines,
could increase hit rates by 10 percentage points. E Scatter plot of hit rate

percentage vs. median model uncertainty estimate for each kinase. The size of the
circles represents the number of compounds tested per kinase (N). F Top panel:
Scatter plot of the ECFP4-based Tanimoto distance to the nearest training com-
pound versus the model uncertainty estimate for each compound-kinase pair.
Bottom panel: Violin plots displaying the distributions of model uncertainty esti-
mates per kinase for compound-kinase pairs with compounds overlappingwith the
training data (i.e., with a Tanimoto distance of 0), illustrating that the uncertainty
estimates are dependent on both compound and kinase information. The central
mark in each violin plot represents the median of the distribution. Source data are
provided as a Source Data file43.
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misleading evaluation of a compound’s efficacy and selectivity. While
single-dose screening is a well-established strategy to identify hits,
confirmatory evaluation in dose–response assays is required for
accurate compound binding assessment. Additional biochemical
profiling experiments can reveal further insight into inhibition
mechanisms (e.g., competitive, allosteric or time-dependent
inhibition).

In conclusion, we believe that this works emphasizes the impor-
tance of careful model evaluation under various prediction scenarios
as well as sheds light on the untapped potential of POC experimental
readouts in the compound activity modelling tasks. Our approach
provides valuable insights into the compound-kinase interaction
landscape, and we anticipate that it will enable more efficient and
economical development of activity datasets for kinase drug
discovery.

Methods
Data
The bioactivity data used in our experiments was retrieved from two
public databases: ChEMBL3221 and PubChem24. We collected a total of
205,545 IC50 measurements from 90,091 compounds tested against
462wild-type human protein kinases.When available, we selected data
based on the binding assay type; otherwise, we included values with
missing assay type information. The IC50 values come from various
experimental techniques, including fluorescence, luminescence, and
radioactivity-based measurements. Negative IC50 readouts were fil-
tered out. Only IC50 values given in nM, μM, andmMwere included, all
of which were converted to nM before calculating pIC50

as �log10(IC50).
The compoundswere standardized, and those failing our cleaning

workflow were filtered out (see Section “Compound standardization
and cleaning workflow”). In cases where multiple activity measure-
mentswere present for a compound-kinase pair, we summarized these
into a single activity value by taking the geometric mean of the pIC50

values. After data cleaning and summarizing, we obtained a final
dataset comprising 79,075 compounds measured across 462 kinases,
for a total of 141,193 compound-kinase pairs.

Additionally, we collected single-dose activity measurements also
from the ChEMBL and PubChem databases. Specifically, we collected
examples of compound-kinase pairs forwhichpercentage activity and/
or percentage inhibition was measured at at least two separate con-
centrations. Percentage activity values were converted to percentage
inhibition by applying the formula 100 − %activity. This yielded a total
of 69,669 compound-kinase pairs, across 302 kinases.

Compound standardization and cleaning workflow. Compound
SMILES and InChIKeys were first standardized following a process
similar to theChEMBLstructure curationpipeline36.Duplicate structures
were then identifiedbymatching InChIKey strings. If noexactmatchwas
found, we further ensured there were no duplicates by running a
fingerprint-based similarity search using three different fingerprints:
Daylight, ECFP4, and ECFP6. If a Tanimoto score given by any of the
fingerprints equals 1, the compound is considered a duplicate.

The standardized compounds were then filtered using a set of
SMARTS filters, which included, among others, SMARTS for reactive
groups, phosphates, sugars, macrocycles, etc. (see ref. 37 for a full list
of SMARTS). The compounds were also filtered based on their mole-
cular weight, selecting those with a weight between 250 and 670.
Compounds reported with a fluorescence label were stripped down to
only their parent compounds. Additionally, a filter was applied to
exclude staurosporine- and cholesterol-like compounds, as broad-
spectrum tool compounds were not of interest to this study.

Prediction scenarios. Three different training and validation data
splits were explored, based on the difficulty of prediction tasks

(Fig. 1C). First, we created training and validation sets by randomly
splitting compound-kinase pairs (‘ck split’). Next, we split the com-
pounds randomly to ensure distinct compounds in training and vali-
dation sets (‘compound split’). In the most challenging scenario,
compounds were first clustered, and then some clusters were held out
for validation (‘cluster split’). It should be noted that in the ’ck split’, a
compound present in the training set might also appear in the vali-
dation set; however, specific compound-kinase pairs from the training
set will never appear in the validation set.

For the ‘cluster split’, we construct training and validation sets as
follows. First, we perform k-means clustering based on ECFP4 finger-
prints of all compounds in the dataset. Then, we continue to add
clusters of compounds to the validation set until 10% of the molecules
have been designated for validation. The remaining compounds (and
all associated compound-kinase pairs) are used for training.

POC data integration
At the data integration step, we train a model to learn a mapping from
individual POC measurements to a dose–response IC50 value. The
inputs to the model are vectors containing percentage inhibition
values at different binned concentration values. Specifically, an input is
x = (x1, …, xK) where xj corresponds to a percentage measurement (a
scalar between 1 and 100), at concentration bin j. The bins are defined
in nanomolar (nM) units, with thresholds set at b0 = 0 nM, b1 = 100 nM,
b2 = 500nM, b3 = 1000 nM, b4 = 5000nM, b5 = 10,000nM,
b6 = 50,000 nM, b7 = 100,000 nM, b8 = 1,000,000 nM, b9 = ∞. A con-
centration falls into bin j if it is between bj and bj+1. If a given input has
nomeasurement in bin j, it is assigned a special value − 10 representing
“no measurement”. During training, we restrict to compound-kinase
pairs that have (1) percentage inhibition measurements in at least two
separate bins, and (2) an associated IC50 value. A schematic repre-
sentation of our approach can be found in Fig. 1A. Because of the
presence of missing values in the data, we choose to use a random
forest for the data integration step, which can naturally handle this
aspect of the data27.

Second-stage models
In total, five second-stage models were trained and evaluated on
training and validation datasets derived from ’ck split’, ’compound
split’ and ’cluster split’ (Section “Prediction scenarios”). Two distinct
metrics were reported for eachmodel: Spearman correlation, and root
mean squared error (RMSE). We assessed the impact of integrating
POC data by training the models with the inclusion of inferred IC50

values (two-stage model) and without them (baseline single-
stage model).

Note that in this section, the terms ‘compound’ and ‘ligand’ aswell
as ‘protein’ and ’kinase’ are used interchangeably.

Pairwise kernel ridge regression. We use a pairwise kernel ridge
regression model25,26, that operates on an input protein-ligand pair
(p, l), where the protein p is represented as an 85-residue kinase
binding pocket sequence retrieved from the KLIFS database38, and the
ligand l is represented as a 1024-bit ECFP4 fingerprint computed using
the RDKit library. For a given input (p, l), the model’s activity predic-
tions are computed as

f ðp, lÞ=
Xn
i = 1

αikððp, lÞ,ðpi, liÞÞ, ð1Þ

for training protein-ligand pairs (p1, l1),…, (pn, ln). The pairwise kernel k
operating onprotein-ligandpairs is definedby the product of a protein
kernel and a ligand kernel:

kððp, lÞ,ðp0, l0ÞÞ= kPðp,p0Þ � kLðl, l0Þ, ð2Þ
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where kP is calculated based on the (normalized) Striped-Smith-
Waterman sequence alignment, and kL is the Tanimoto kernel. Note
that asboth kP and kL are boundedbetween0and 1, the pairwise kernel
k is also bounded within this range. The parameters α1,…, αn are fit by
minimizing a standard kernel ridge regression objective using the
conjugate gradient method.

The pairwise kernel ridge regression model also admits a con-
venient interpretation as aGaussian process associatedwith the kernel
k29. This means that we can naturally compute an uncertainty estimate
associatedwith eachactivity prediction. Specifically, sinceour pairwise
kernel is 1 for identical compound-kinase pairs, the expression for the
variance of a new compound-kinase pair (p, l) is given by

σ2ðp, lÞ= 1� kððp, lÞ, SÞðK+ λInÞ�1kðS, ðp, lÞÞ, ð3Þ

whereK is the n × n training kernel, λ is a regularization parameter, In is
the identity matrix on Rn, and k(S, (p, l)) is the n-dimensional vector
whose ith entry is k((pi, li), (p, l)) for the ith training example (pi, li)∈ S.

Random forest. We use a standard random forest model as imple-
mented in scikit-learn softwarepackage39. Rather thandesigning a
single model that takes protein-ligand pairs as inputs, we fit separate
random forests for each kinase. For ligands, we use 1024-bit ECFP4
fingerprints computed using the RDKit library.

DeepDTA. The DeepDTA11 architecture consists of two embedding
modules: one ligand embedding module, and a second protein
embedding module. Both embedding modules share the same archi-
tecture, consisting of a series of convolutional layers, followed by a
pooling layer to obtain sequence-level embeddings from compound
SMILES and 85-residue kinase binding pocket sequence strings,
respectively. After embedding a SMILES string and an amino acid
sequence, the resulting feature vectors are concatenated, and passed
through a series of linear layers interspersed with dropout layers to
obtain the final scalar output.

BiMCA. Similar to DeepDTA, BiMCA5 uses convolutional neural net-
work layers to learn feature embeddings fromboth compound SMILES
and protein sequence strings. Then, unlike DeepDTA, BiMCA uses
context attention layers to fuse information from both modalities,
allowing the ligand representation access to contextual information
from the protein embedding, and vice versa. Finally, the resulting
feature vectors are concatenated and passed through a fully con-
nected module to produce a scalar output.

ConPLex. ConPLex14 is another recent neural network-based model
used to predict compound-kinase binding affinity. ConPLex fea-
turizes ligands using ECFP4 fingerprints, and kinases using a pre-
trained ProtBERT language model20. The model then uses fully con-
nected layers with ReLU activations to project compound and kinase
features into a shared embedding space. From this shared space,
binding affinity between a compound and a kinase is estimated by
computing a dot product between the compound and kinase
embeddings. Unlike the other models considered here, ConPLex also
employs contrastive learning stage, wherein the model is trained to
simultaneously predict bioactivities, while maximizing the distance
between real drugs and synthetically-generated decoys in embed-
ding space. Here, we used the same features as those reported in
their model for binding affinity prediction, along with the same
contrastive learning procedure.

Post-analysis on predictions
Significance testing. To test the statistical significance of the
improvement from data integration, we use a non-parametric per-
mutation test. For every example in the validation set, we make

predictions using both the single- and two-stagemodels, and compute
the difference in performancemetrics between the twomodels. Then,
to generate a null distribution, we randomly permute single- and two-
stage labels 10,000 times across examples in the validation set, and
calculate the difference in each performance metric for each permu-
tation. The observed differences are then compared against the null
distribution to calculate p-values for each metric and model.

Compound-wise analysis. To further analyze the impact of integrat-
ing inferred IC50 values on predicting the activities of structurally
diverse compounds, we applied k-means clustering to the compounds
in the validation set for the ‘cluster split’ scenario, using ECFP4 fin-
gerprints. We set the number of clusters at 100 to capture potential
common scaffolds within each cluster. After clustering, we calculated
the differences in performance metrics (Spearman correlation and
RMSE) between the single-stage and two-stage models for compound-
kinase pairs associated with compounds in each cluster. Additionally,
for visualization purposes, we first applied PCA to the compound
ECFP4 fingerprints, and then we employed t-SNE on the 20 principal
components (Fig. 3A and Supplementary Fig. 3).

Experimental profiling
We experimentally profiled a total of 347 compound-kinase pairs,
encompassing 13 kinases (ACVR1, BTK, CSF1R, EGFR, ERBB2, FLT3,
IRAK1, IRAK4, JAK2, MERTK, MKNK1, PIK3CA, SYK) and 139 com-
pounds (see Supplementary Data 1 for a list of compound SMILES),
based on predictions from the top-performing two-stage pwkrr model
(see Section “Experimental testing demonstrates practical model uti-
lity in early-stage drug discovery”). Compounds were purchased from
a compound vendor (MolPort) and confirmed to be at least 95% pure.
To generate new dissociation constant (Kd) and percentage inhibition
values, we sent the compounds to DiscoverX (Eurofins Corporation)
for KINOMEscan profiling service. The KINOMEscan screening plat-
form utilizes an active site-directed competition binding assay to
measure interactions between test compounds and selected human
kinases, without the need for ATP. This technique hinges on the prin-
ciple that compounds binding to the kinase active site prevent the
kinase’s interaction with the immobilized active-site directed ligand,
and therefore result in a diminished amount of kinase captured on the
solid support40.

In our experiments, Kd determination was conducted using the
KdELECT method (https://www.eurofinsdiscovery.com/solution/
kdelect), while percentage inhibition at a compound concentration
of 1000 nM, relevant in the context of kinase inhibition, wasmeasured
using the scanELECT protocol (https://www.eurofinsdiscovery.com/
solution/scanelect). Both methods are parts of the KINOMEscan
platform.

KINOMEscan protocol description. Kinase-tagged T7 phage strains
were grown in an Escherichia coli host derived from the BL21 strain.
The E. coli were grown to log-phase, infected with T7 phage (multi-
plicity of infection=0.4), and incubatedwith shaking at 32 °Cuntil lysis
occurred (90–150 min). The lysates were then centrifuged (6000 × g)
and filtered to remove cell debris. The remaining kinases were pro-
duced in HEK-293 cells and subsequently tagged with DNA for qPCR
detection.

Streptavidin-coated magnetic beads were treated with biotiny-
lated small molecule ligands for 30 min at room temperature to gen-
erate affinity resins for kinase assays. In order to remove unbound
ligand and reduce non-specific binding, the ligand-bound beads were
then blocked with excess biotin and washed with a blocking buffer
(SeaBlock (Pierce), 1% BSA, 0.05% Tween 20, 1 mM DTT). Binding
reactions were constructed by mixing kinases, ligand-bound beads,
and test compounds in 1× binding buffer (20% SeaBlock, 0.17× PBS,
0.05% Tween 20, 6 mM DTT).

Article https://doi.org/10.1038/s41467-024-52055-5

Nature Communications |         (2024) 15:7596 10

https://www.eurofinsdiscovery.com/solution/kdelect
https://www.eurofinsdiscovery.com/solution/kdelect
https://www.eurofinsdiscovery.com/solution/scanelect
https://www.eurofinsdiscovery.com/solution/scanelect
www.nature.com/naturecommunications


Test compounds for percentage inhibition assays were prepared
as 40× stocks in 100% DMSO, whereas for Kd assays, they were pre-
pared as 111× stocks in 100% DMSO. Kd’s were determined using an 11-
point threefold compound dilution series with three DMSO control
points. Prepared compounds were directly diluted into the assays. All
reactions were carried out in polypropylene 384-well plates in a final
volume of 0.02 ml. Following incubation at room temperature with
shaking for 1 h, the affinity beads were washed with a wash buffer (1×
PBS, 0.05% Tween 20). Subsequently, the beads were resuspended in
an elution buffer (1× PBS, 0.05% Tween 20, 0.5 μM non-biotinylated
affinity ligand), and incubated at room temperature with shaking for
30 min. Finally, the concentration of each kinase in the eluates was
measured using qPCR.

Determination of percentage inhibition andKd. In case of percentage
inhibition assays, test compounds were screened at a single con-
centration of 1000 nM, and the percentage inhibition of a kinase was
calculated as follows:

Percentage Inhibition = 100� Test CompoundSignal� PositiveControl Signal
NegativeControl Signal� PositiveControl Signal

� �

× 100,

ð4Þ

where the negative control is DMSO (0% inhibition) and the positive
control is the control compound (100% inhibition).

Kd’s were calculated with a standard dose–response curve using
the Hill equation:

Response =Background+
Signal� Background

1 + K Hill Slope
d =DoseHill Slope

� � : ð5Þ

The Hill Slope was set to -1, and curves were fitted using a non-linear
least square fit with the Levenberg–Marquardt algorithm41,42.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Kd and POC data generated in this work are provided in the Supple-
mentary Data 1. Training data are available in our GitHub repository
https://github.com/Harmonic-Discovery/activity-integration. Source
data are provided on Zenodo43. Source data are provided with
this paper.

Code availability
The code is available at https://github.com/Harmonic-Discovery/
activity-integration.
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