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ABSTRACT
The emergence of nanomaterials for drug delivery provides the opportunity to avoid the side effects
of systemic drug administration and injury caused by the removal of tumors, delivering great promise
for future cancer treatments. However, the efficacy of current nano drugs is not significantly better
than that of the original drug treatments. The important reason is that nano drugs enter the tumor
vasculature, remaining close to the blood vessels and unable to enter the tumor tissue or tumor cells
to complete the drug delivery process. The low efficiency of drug penetration into tumors has become
a bottleneck restricting the development of nano-drugs. Herein, we present a systematic overview of
recent advances on the design of nano-drug carriers in drug delivery systems for enhancing drug
penetration into tumors. The review is organized into four sections: The drug penetration process in
tumor tissue includes paracellular and transcellular transport, which is summarized first. Strategies that
promote tumor penetration are then introduced, including methods of remodeling the tumor micro-
environment, charge inversion, dimensional change, and surface modification of ligands which pro-
mote tissue penetration. Conclusion and the prospects for the future development of drug
penetration are finally briefly illustrated. The review is intended to provide thoughts for effective treat-
ment of cancer by summarizing strategies for promoting the endocytosis of nano drugs into
tumor cells.
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1. Introduction

The principal clinical treatment modalities for cancer cur-
rently involve surgical resection, radiotherapy, chemotherapy,
and immunotherapy (Rampling et al., 2004; Sun et al., 2014).
Early and mid-term cancers can be treated by surgical resec-
tion, but this is not applicable in terminal cancer.
Radiotherapy can be used for the treatment of advanced
cancer (DeSantis et al., 2014), but it is not selective. It kills
both cancer and normal cells, resulting in multiple side
effects (Earlam & Cunha-Melo, 1980). Tumor immunotherapy
relies mainly on the regulation or activation of the host’s
immune system to suppress or kill tumors, which has the
advantages of low toxicity and high efficiency (Green et al.,
2001; Sharma et al., 2011). However, due to an immunosup-
pressive microenvironment in solid tumors, some immune
cells or cytokines administered into the vascular system can-
not successfully reach the tumor (Chen et al., 2015; Sun
et al., 2020). Although immunotherapy is effective in tumors
of the blood, the effect is not obvious when applied to solid
tumors (Jiang et al., 2017). Chemotherapy is a systemic

method of treatment (Pathak et al., 2020). Chemotherapeutic
drugs are spread through blood circulation to most tissues
and organs of the patient, so it is the principal method of
treatment for blood and metastasized advanced tumors (Wu
& Chang, 2010). Chemotherapy using small molecule drugs,
such as doxorubicin (Cohen et al., 2012), camptothecin (Liu
et al., 2008), paclitaxel (Von Hoff et al., 2011), or cisplatin
(Siddik, 2003) are the most commonly-used anti-tumor treat-
ments (Sherman-Baust et al., 2011). All have issues of water
solubility (Sanches & Ferreira, 2019), structural stability, phar-
macokinetic distribution (Rosso et al., 2009) and biochemistry
(Carvalho et al., 2014; Gunasekaran et al., 2014), resulting in
low effective drug concentrations in tumor tissues. The emer-
gence of nanocarrier materials solves these problems and
avoids the side effects of drugs, representing considerable
promise for future cancer treatments (Meng et al., 2019).

Compared with traditional chemotherapy, nano-drug
delivery systems can safely and effectively deliver therapeutic
drugs to target cells, thereby avoiding undue effects on
healthy cells and adverse toxicity in patients (Cong et al.,
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2020). However, in clinical applications, nano-drug has only
been shown to reduce the toxicity and side effects of drugs
and does not significantly improve efficacy compared with
traditional methods of drug administration (Matsumura &
Maeda, 1986). The principal reason is that the drugs do not
infiltrate well into the cells and tissues of tumors located far
from blood vessels (Durymanov et al., 2015), especially in
hypoxic regions (Movsas et al., 1999; Bache et al., 2008), and
do not easily undergo intracellular drug entry or release,
resulting in unsatisfactory efficacy. Chemotherapeutic drugs
generally provide anti-tumor effects through the inhibition of
cell proliferation or DNA replication and can only cause this
effect at a particular concentration (Sui et al., 2011). In
regions of tumor tissue, especially in deep parts far from
blood vessels, the drug concentration is almost zero due to
the low osmotic capacity of nano-drugs, so efficacy cannot
be achieved. The low permeability of solid tumors has
become a bottleneck restricting the development of nano-
drugs (Maeda et al., 2000). Therefore, a deeper understand-
ing of the reasons for the low levels of nano-drugs penetra-
tion and promotion of nano-drug endocytosis into cells is
key to solving this problem (Nakamura et al., 2016).

The reasons for poor nano-drug penetration into tumor
tissues relate to the size of the nano-drug and pathological
features of the tumor tissue. Positive charges on their surface
can promote integrated endocytosis of nano-drug systems
into cells, which promote their penetration into tumor tissue
(Gratton et al., 2008; Chen et al., 2016; Pang et al., 2016).
However, this increases recognition by the reticuloendothe-
lial system in the blood circulation, accelerating the rate of
clearance and reducing its accumulation in tumor tissue
(Chen et al., 2017). In addition, a large size (�100 nm) can
result in a longer persistence of circulation of nano-drug in
the blood, which is not consistent with tissue penetration.
Nano-drugs that are smaller (<20 nm) more effectively pene-
trate into tumor tissues, but this leads them to be more rap-
idly cleared from the blood. For the delivery of nano-drugs,
carriers are required to overcome different biological barriers,
some even requiring contradictory strategies. Therefore,
achieving greater drug delivery efficiency requires dynamic
strategies designed to regulate the properties of nano-drugs.
Herein, we present a systematic overview of the strategies
that promote drug penetration and discuss the design of
nano-drugs. The drug penetration process in tumor tissue
involving paracellular and transcellular transport (Bugno
et al., 2016) is summarized first, after which strategies for the
promotion of tumor penetration are introduced, including
remodeling of the tumor microenvironment, charge inver-
sion, dimensional change and surface modification of ligands
which promotes tissue penetration. Finally, the prospects for
the future development of drug penetration are briefly
illustrated.

2. Drug delivery process

Nanocarriers have to overcome a series of biological barriers
in order to deliver drugs into solid tumors (Blanco et al.,
2015). For example, after intravenous injection of a cancer

nano-drug system, it resides in the blood circulation (C) for
transportation throughout the body (Maeda et al., 2013). The
EPR effect (Padera et al., 2002) results in nanoparticle accu-
mulation near the tumor (A) after which the nano-drug pen-
etrates deep into the tumor tissue (P). The cancer cells
internalize the drug (I) causing the nanocarriers to release (R)
the cancer nano-drugs. These five steps are referred to as
the ‘CAPIR’ cascade (Figure 1) (Sun et al., 2014). Only when
the ‘CAPIR’ process is successfully implemented can a thera-
peutic effect be guaranteed (Zhong et al., 2020). In this pro-
cess, the steps P and I are the most difficult to achieve and
represent a major obstacle that restricts cancer treatment.

In terms of this 5 step cascade, researchers have achieved
considerable success in long cycling (C) (Klibanov et al.,
1990; Hu et al., 2011), tumor enrichment (A) (Wu et al., 2014;
Song et al., 2015), enhancement of intracellular endocytosis
(I) (Mizuhara et al., 2015; Deng et al., 2016), and intracellular
release (R) (Yu et al., 2015; Ahn et al., 2018), etc., but the
penetration of nanomaterials into tumor tissues (P) remains
the bottleneck in nanomaterial delivery (Kim et al., 2017),
preventing intracellular entry (I) and release (R) into tumor
cells far from blood vessels, especially in hypoxic regions,
resulting in unsatisfactory efficacy, an important reason for
the failure of many recently developed nano-drugs in clinical
trials. For example, DOXIL (Barenholz, 2012), a nano-drug
consisting of doxorubicin hydrochloride in liposomes, was
able to circulate steadily in the blood for several days, with a
significantly higher concentration of DOXIL at the tumor site
than that of a control group injected with the small molecule
adriamycin. However, the final therapeutic effect was similar
in both groups, failing to significantly improve drug efficacy.
The study demonstrated that a large quantity of DOXIL was
concentrated around the tumor blood vessels and did not
spread further to tumor cells far from the blood vessels, thus
failing to undergo intracellular entry and finally drug release
(Kohli et al., 2014).

The reasons for difficulties in achieving nano-drug pene-
tration into tumor tissues can be explained by two factors: 1)
the size of the nano-drug itself: nano-drugs range from a
few nanometers to more than 100 nanometers. The diffusion
rate is inversely proportional to its size, so the diffusion cap-
acity of large nano-drugs is considerably smaller than that of
small molecules. 2) Pathological features of tumor tissue:
tumor tissue has unique physiological and pathological fea-
tures such as very dense stromal tissue, high cell density,
high interstitial pressure and the lack of a capillary network
caused by unrestricted cell proliferation, making it very diffi-
cult for the nanomaterials to penetrate and spread within
the tissue (Scott et al., 2009). Additionally, many tumors are
distant from the blood vessel network and become hypoxic.
Tumor cells in hypoxic regions have strong drug resistance
and metastatic capability, and even small molecule drugs are
found in low concentrations in such regions.

In order to achieve better penetration of nano-drugs into
tumor tissues, it is important to understand how penetration
occurs. There are a variety of penetration modes for different
nano-drug delivery systems into tumor tissue, being
described as either paracellular or transcellular transport. For
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example, Figure 2 demonstrates the mechanism of penetra-
tion by PAMAM dendrimers using paracellular (G2) or trans-
cellular (G7) transport (Bugno et al., 2016). The nature of the
nanocarrier determines the mode of penetration. The size of
the carrier, its surface charge, the manner the drug enters
cells, and the modified targeting polypeptide all affect pene-
tration behavior in tumor tissues.

2.1. Paracellular transport

Bugno et al. (2016) prepared a series of PAMAM dendrimers
varying in size: G2-NH2, G4-NH2, and G7-NH2, and compared
their permeability in an extracellular matrix (ECM) model and
a 3D multicellular tumor spheroid (MCTS) model. The results

demonstrated that the smaller PAMAM dendrimer (G2-NH2)
not only diffused faster in the ECM model but was also more
effective in penetrating the MCTS core compared with the
larger molecule (G7-NH2). The higher generation PAMAM
(G7-NH2) was not found in significant quantities inside the
tumors as large molecules only penetrated cells through cell-
to-cell transmission, moving through internalization. In
addition, Cabral et al. (2011) compared the duration of circu-
lation and permeability of polymer micelles with their diam-
eter (30, 50, 70, and 100 nm) in tumor environments of low
and high osmolality. All polymer micelles were able to pene-
trate tumors of high permeability in mice, but only 30 nm
micelles could penetrate low permeability tumors and exhibit
an anti-tumor effect. Therefore, only drug delivery systems

Figure 1. CAPIR five-step cascade process (Sun et al., 2014).

Figure 2. Penetration behavior of the PAMAM dendrimers using paracellular (G2) or transcellular transport (G7) (Bugno et al., 2016).
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having a small particle size are able to infiltrate tumors, by
paracellular transport. Although a nano-drug permeation
model of tumor interstitium (ECM) is difficult to construct, it
was simulated by Sykes et al. (2016) using collagen of differ-
ent densities to study the penetration of varying sizes of
gold nanoparticle (AuNP) (Figure 3(a)). They found that the
process of ECM stromal infiltration by AuNPs could be con-
sidered as two steps: (1) Rapid enrichment on the substrate
surface; (2) Gradual permeation of the AuNPs into the matrix
from concentrated regions. The permeation of AuNPs into
collagen hydrogels after 900min postexposure is displayed
in Figure 3(b), with increasing collagen density weakening
AuNP nanoparticle permeability. Whisker plots confirm cumu-
lative AuNP penetration from blood vessels into tumor tis-
sues (Figure 3(c)).

2.2. Transcellular transport

As described earlier, where nanoparticles reach tumors by
the blood circulation, smaller nanoparticles can penetrate
into their interior through the stroma, while larger-sized
nanoparticles are not able to penetrate as deep through this
pathway, more likely entering the interior of cells by endo-
cytosis. Not all nanoparticles that enter cells are digested.
After nano-drugs are integrated into tumor cells, many

nano-particles will be discharged via a variety of pathways
and taken up by adjacent tumor cells allowing delivery of
the nano-drugs to multiple neighboring cells. Hence, trans-
cellular transportation includes the endocytosis and exocyt-
osis of nanoparticles. There are four principal pathways that
cells use to take up nanoparticles: clathrin-/caveolar-medi-
ated endocytosis, phagocytosis, macropinocytosis, and pino-
cytosis (Xiao et al., 2019). Nanoparticles taken into cells form
endocytic vesicles. Some endocytic vesicles aggregate to
form multivesicular bodies (MVBs) and are then exocytosed
to the cell exterior. Some nanoparticles are internalized by
the cell and enter endosomes, entering early lysosomes,
those that escape taken up by the Golgi apparatus or endo-
plasmic reticulum, finally being secreted out through the
Golgi apparatus (Yanes et al., 2013; Ding et al., 2017). The
remaining nanoparticles in early lysosomes are finally dis-
charged from cells through late lysozymes in vitro (Figure
4(a)) (Oh & Park, 2014).

A requirement of the delivery of nano-drugs into cancer
cells is that the maximum possible quantity is transferred.
Nanoparticles with positively-charged surfaces interact with
negatively charged cell membranes, effective in promoting
cell internalization (Mintzer & Simanek, 2009; Aoshima et al.,
2013). Zhou et al. (2017a) prepared a dual-pH sensitive
charge-reversal nano-complex, in which polyethylenimine

Figure 3. (a) Schematic diagram depicting in vitro collagen model of AuNP transport through tumor ECM and illustration of the observed AuNP (red) infiltration
process in collagen hydrogels (green). (b) The permeation of AuNPs within the collagen hydrogels after 900 mins exposure. (c) Whisker plots depicting the cumula-
tive penetration of AuNP from blood vessels into tumor tissues (Sykes et al., 2016).
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(PEI) was used to modify poly (b-L-malic acid) (PLMA) to pre-
pare PMLA-PEI (Lee et al., 2006; Huang et al., 2012), causing
the entire system to be positively charged. pH-sensitive cis-
aconitic anhydride-modified doxorubicin (DOX-CA) was then
attached to PMLA-PEI (PMLA-PEI-DOX), to which the cell-pen-
etrating peptide TAT (Lange et al., 2007) was introduced to
further improve its tumor-penetrating capability. Finally, it
was PEGylated (Gratton et al., 2008; Knop et al., 2010;
Lankveld et al., 2011) into a drug carrier with pH responsive-
ness and good cell penetration capability (PMLA-PEI-DOX-
TAT@ PEG-DMMA) (Figure 4(b)). When the drug-loaded sys-
tem arrives at the tumor through blood circulation, the
nanoparticles are taken up into cells by becoming positively
charged. Following ingestion, the drug-loaded system
releases the nano-drugs, some becoming secreted into the
tumor stroma by lysosomes, and other cells inside the tumor
further ingesting the drugs, achieving transcellular drug
delivery. Ju et al. (2014) constructed a pH-responsive nano
hydrogel, NLSC-NG, designed to aggregate at the sites of
tumors due to the weak acidic tumor microenvironment and
become ingested. Some drugs entering cells also become
secreted, to be ingested by deeper within the tumor, repre-
senting transcellular delivery of the nano-drug.

Zhou et al. (2019) designed and synthesized a c-glutamyl
transpeptidase (GGT)-responsive charge-reversal polymer
(PGABEA-GGT), which was negatively-charged in blood, the
attached PEG exhibiting an outstanding half-life within the
circulation. The high expression of GGT around the blood
vessels following the entry of the polymer into the tumor
catalyzes the charge reversal, allowing the polymer drug-
loaded system to easily penetrate into cells leading to intra-
cellular drug release. High levels of tumor suppression have
been verified using animal models. The mechanism of the

high levels of permeability of PGABEA-GGT in tumor tissue
has been studied, finding that PGABEA-CPT rapidly pene-
trated tissues via cell-to-cell transmission through an endo-
cytosis-exosmosis pathway mediated by the cell membrane
(Syvanen et al., 2017). It was proposed that in addition to
enhancing passive accumulation through osmosis and main-
tenance effects (Shi et al., 2017) (Figure 5(a) (2)), endothelial
cell endocytosis was also able to actively transport nano-
drugs to tumor tissues through capillary walls (Figure 5(a)
(1)). Furthermore, this ATP-dependent mechanism also
bypassed the passive diffusion barrier described above,
allowing nano-drugs to actively infiltrate throughout the
tumor and reach distal cells (Figure 5(a) (3)). Extracellular-
dependent transport of conjugates has been further
described as ‘infection’ between different batches of cells. As
shown in Figure 5(b), the Cy5 signal from PBEAGACy5-CPT
was high in cells on coverslips (ii) and (iii), indicating that
some of the PBEAGACy5-CPT absorbed in cells onto coverslip
(i) was secreted into the medium, subsequently becoming
endogenous in cells on coverslips (ii) and (iii).

3. Strategies for promoting penetration of
nano-drugs

A large number of cancer nano-drugs have entered clinical
application, including nanoparticulate albumin-bound pacli-
taxel (Abraxane) (Von Hoff et al., 2011), PEGylated liposomal
doxorubicin (Doxil) (Cohen et al., 2012), and liposomal
daunorubicin (DaunoXome) (Forssen, 1997). These nano-
drugs accumulate at the sites of tumors via the enhanced
permeability and retention (EPR) effect (Brigger et al., 2002),
but a technique that ensures cancer cells ingest anti-cancer

Figure 4. The four pathways of cellular uptake of nanoparticles: clathrin-/caveolar-mediated endocytosis, phagocytosis, macropinocytosis, and pinocytosis. The
three types of exocytosis include lysosome secretion, vesicle-related secretion, and non-vesicle-related secretion (Oh & Park, 2014). (b) Preparation of the pH-sensi-
tive drug delivery system PMLA-PEI-DOX-TAT@PEG-DMMA, and schematic illustration of the dual pH-sensitive DOX-loaded nano-complex with charge-conversion
function for effective tumor-targeted drug delivery and enhanced cellular uptake (Zhou et al., 2017a).
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nano-drugs effectively remains an important problem cur-
rently restricting the efficacy of cancer treatments. Therefore,
the focus of nano-drug design should be methods that
increase drug uptake by cancer cells, and enhancement of
penetration of the drugs into tumors. To improve the deep
penetration of drugs, many studies have focused on drug
carriers. Research has demonstrated that the remodeling of
the tumor microenvironment (Goetz et al., 2011), charge
inversion (Xiao et al., 2011), dimensional change, and surface
modifications (Ma et al., 2012), among other methods, can
improve one or more of the steps in the CAPIR cascade.
Combining these methods can greatly improve the thera-
peutic effect of drugs on cancer, and also provides a prac-
tical reference for cancer treatment.

3.1. Remodeling the microenvironment of tumor tissue

The cellular microenvironment consists of the intercellular
substances of a cell, the cytoplasm of the cell itself, and the
external environment of other cells around it (Allavena et al.,
2008). Tumors and their environments are both interdepend-
ent and mutually reinforcing, while also being antagonistic
and resisting each other. This is of great importance not only
for understanding the occurrence, development, and metas-
tasis of tumors, but also for their diagnosis, prevention, and
prognosis of patients. Compared with normal tissues, tumor
tissue has an anomalous vasculature, rigid extracellular
matrix, exhibit hypoxia, a weakly acid pH, and immunosup-
pressive conditions (Overchuk & Zheng, 2018; Zhou et al.,
2020). Microenvironment of tumor tissue plays an important

Figure 5. (a) Illustration of cationization-initiated transcytosis mediated active tumor penetration for transendothelial and transcellular transport of a nano-drug.
(b) Intracellular transfer of PBEAGACy5-CPT visualized by confocal microscopy (Zhou et al., 2019).
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role in the entry of nano-drugs into tumor cells. The concen-
tration of tumor-associated fibroblasts (TAF) in tumor micro-
environments is very high. They secrete extracellular matrix
consisting of collagen, laminin, and fibrin (Xing et al., 2010).
Nano-drugs must pass through this ‘barrier’ to enter the
tumor cells. In addition, the microenvironment also contains
fibroblasts (Kalluri & Zeisberg, 2006), immune cells (Galon
et al., 2006), vascular endothelial cells (Palmer et al., 1988),
stellate cells, and other cells, which affect the efficacy of
nano-drugs. Therefore, researchers utilize the characteristics
of tumor tissue microenvironment to design carriers with the
aim of improving the anti-tumor effect.

The dense extracellular matrix is the first barrier that
nanomedicines face when leaving blood vessels within
tumors. The density of tumoral stroma is considerably
greater than that of normal tissue, and so nano-drugs remain
on the surface of the tumor and do not diffuse deeply within
its tissues. Diop-Frimpong et al. (2011) found that after the
in situ injection of the collagen inhibitor-losartan into
tumors, matrix density within the tumor tissue declined sig-
nificantly, and diffusion of the nano-drug DOXIL into the
tumor was greatly enhanced. Ji et al. (2015) introduced a
FAP-a antibody onto the surface of nano-drugs to target
tumor angiogenesis factor (TAF). In addition, with the help of
cell-penetrating peptide R8, the nano-drugs were rapidly
internalized by the TAFs. The nano-drugs had been designed

to deactivate the TAFs and successfully improve the perme-
ability of the tumors to nano-drugs resulting in improved
anti-tumor efficacy (Figure 6). The tumor microenvironment
in pancreatic cancer is rich in connective tissue, accounting
for approximately 80% of the total (Bennewith et al., 2009).
This dense tumor interstitium not only results in the tumor
cells developing resistance to a variety of drugs but also
severely limits the penetration of nano-drugs into the tumor
tissue (Zhou et al., 2017b). Meng et al. (2013) found that
prior to nano-drug treatment, pre-injection of the TGF-b sig-
nal inhibitor, LY364947, was able to reform the pancreatic
tissue microenvironment, reducing the density of the tumor
stroma and reducing coverage of blood vessels by adventitial
fibroblasts in the tumor microenvironment, promoting pene-
tration of nano-drug into tumor tissues and enhancing the
curative effect of nano-drug treatment (Figure 7).

In the tumor tissue, excessive secretion of tumor vascular
endothelial growth factor (VEGF) promotes the formation of
a large number of new blood vessels, which generally have
wider vessel wall than that of normal blood vessels. There
are two opposing strategies for tumor treatment: vascular
disruption and vascular normalization. Vascular disruption
can be achieved by injecting vascular disrupting agents into
the tumoral stroma, such as 5,6-dimethylxanthenone-4-acetic
acid (DMXAA) and combretastatin A4 phosphate (CA4P), etc.,
resulting in insufficient blood supply to the tumor which

Figure 6. A dual-mode nano-drug with the ability to target CAFs with efficienttumor penetration (Ji et al., 2015).
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subsequently kills it. For vascular normalization, anti-angio-
genic drugs such as Cediranib, Sunitinib, Bevacizumab, and
DC101 can be utilized to reduce vascular penetration and
concentration of the matrix, which is conducive to the pene-
tration of nano-drugs allowing treatment of the tumors.

Studies also have shown that hypoxia hinders the forma-
tion and metastasis of blood vessels, increasing drug resist-
ance, and leading to the failure of radiotherapy and
photothermal therapy. There are several ways to reduce hyp-
oxia, including improving blood flow, delivering oxygen, in
situ oxygen production and reduction of oxygen consump-
tion, etc. Photothermal therapy (PTT) can increase blood flow
and relieve hypoxia, while delivering oxygen carriers to over-
come the resistance of hypoxia-mediated tumor radiother-
apy. In addition, oxygen production in situ at the site of a
tumor can be achieved through use of MnO2, CaO2, catalase,
or photo-driven water lysis. A weakly acidic pH is also a
defining characteristic of tumors, and which also promotes
their spread and migration. Studies have demonstrated that
the aggressiveness of a tumor can be reduced through use
of sodium bicarbonate, imidazole, and lysine as acidity buf-
fers to adjust their pH.

In addition, tumor cells can secrete a variety of immuno-
suppressive factors, inhibit the secretion of regulatory cyto-
kines, and regulate the activity of immune effector cells. This
will protect tumor cells from specific cytotoxic T lymphocytes
(CTL), thereby promoting tumor growth. For example, trans-
forming growth factor-b (TGF-b), interleukin 10 (IL10), and
vascular epidermal growth factor (VEGF) (Phuengkham et al.,
2019) secreted by tumor associated macrophages (TAMs),
regulatory cells (Tregs) and myeloid-derived suppressor cells
(MDSCs) which have the effect of negatively regulating the
body’s immune response to tumors and promoting tumor
growth. Reshaping tumor immune microenvironment pro-
vides a new idea for cancer treatment. The research showed
that low-dose gemcitabine can selectively eliminate MDSCs
in mice bearing mesothelioma without killing T cells and B
cells. On the one hand, gemcitabine can kill tumor cells and
reduce tumor burden, on the other hand, it can eliminate
MDSC in the body and effectively relieve immunosuppres-
sion. In addition, indoleamine 2,3-dioxygenase (IDO), matrix
metallo-protease (MMP), TGF-b and chemokines CXCL12 and

other soluble mediator-related inhibitors have also received
extensive attention in regulating tumor immune microenvir-
onment (Zhou et al., 2020).

3.2. Charge inversion

The surface of a cell is highly negatively-charged, and so
researchers have hypothesized that a positively-charged drug
carrier would promote endocytosis of the drug by cancer
cells due to the principle of mutual attraction between het-
erogeneous charges. However, this approach leads to the
recognition by the reticuloendothelial system in the blood
circulation, accelerating its rate of clearance (Chen et al.,
2017). Several groups have studied the effects of surface
charge on the pharmacokinetics polymer nanoparticles and
their total accumulation in tumors, finding that inherently
neutral or negatively charged nanoparticles were more likely
to accumulate in tumors. In addition, negatively charged or
neutral nanoparticles were found to circulate for longer in
blood. Therefore, dynamic charge strategies should be
designed to regulate the efficacy of nano-drugs. By compar-
ing the penetration of PEGylated nanoparticles with different
charges in tumor tissues, Miura et al. (2014) found that weak
positive charges on the surface of nanoparticles greatly
increased their capability to penetrate tumor tissues. Positive
charges on nano-drugs improved their capability to pene-
trate into cells and achieve intracellular drug release, an
effective method of solving the three-step PIR process
described above for drug delivery. However, positively
charged nanoparticles in the blood are quickly cleared by
macrophages and the mononuclear phagocytic system
(MPS), resulting in an overly short duration in the blood cir-
culation. Therefore, positive charges of the carrier should be
shielded in the blood circulation system by neutral or nega-
tive charges in order to accomplish ‘invisibility.’ Such a
charge reversal strategy is currently the principal method
used to solve this problem.

Tumor tissues create an acidic microenvironment, the pH
of tumor stroma being between 6.5 and 7.4. Researchers
have attempted to modify the surface of nano-drug carriers
with an acid-sensitive anhydride. In the neutral environment
of blood, the surface of nano-drugs is negatively charged.

Figure 7. Role of the TGF-b signaling pathway and the effects of pathway inhibition on drug penetration (Meng et al., 2013).
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When accumulating in tumor tissue due to the EPR effect,
the acid-sensitive anhydride is shed, exposing amino groups
that are positively charged, promoting endocytosis and
tumor penetration. Using acid-sensitive 2,3-dimethyl maleic
anhydride (DMMA) on the surface of nano-hydrogels, Du
et al. (2010) fabricated hydrogels that were negatively
charged in a neutral environment. Within tumor tissues, the
hydrogels were hydrolyzed to become positive, improving
endocytosis of the nano-drugs and promoting their penetra-
tion into tumor cells. Koren et al. (2012) prepared a multi-
functional target transmembrane liposome system with a
nucleosome-specific monoclonal antibody conjugated to
PEG3400-phospholipid and cell-penetrating peptide (TATp).
The hydrazone bond in system remained stable in the blood
circulation (pH 7.4), the TATp fragment effectively shielded
by the long-chained PEG3400. In the extracellular acidic
environment of the tumor, the hydrazone bond was hydro-
lyzed, removing the long chain of PEG3400, exposing TATp
which effectively mediated penetration of liposomes into tar-
get cells and greatly enhancing penetration capability of the
nano-drug into tumor cells, further promoting the endocytic
process. A variety of other pH-sensitive groups and polymers
is presented in Table 1.

Jin et al. (2013) designed a drug carrier that greatly
increased cell penetration. They first modified the TAT cell-
penetrating peptide which contains a large proportion of
lysine, the amine of which is amidated, not only achieving a
stealth effect by the nanocarrier in the blood circulation but
also inhibiting nonspecific interactions. The modified cell-
penetrating peptide, referred to as aTAT, retains strong cell-
penetrating capability. In addition, aTAT was attached to
PEG-PCL for the preparation of micelles in which the nano-
drugs were encapsulated (Figure 8). In this way, an
uncharged drug-delivery system for application in the blood
circulation was constructed. Using the EPR effect, the drug-
loaded system was able to accumulate close to the tumor.
Because the tumor microenvironment is weakly acidic, the
amides were hydrolyzed, regenerating the original function
of the cell-penetrating peptides in the extracellular fluid of

the acidic tumors, exposing amino groups, causing the entire
system to become positively charged. In this way, it bound
the negative charges on the surface of the cancer cells,
thereby greatly enhancing endocytosis of the drugs, increas-
ing their accumulation in tumor cells, and ultimately improv-
ing treatment efficacy.

However, the acidic microenvironment in tumors, with a
pH of less than 7.0, is located far from the tumor capillary
network and undergoes hypoxia, while the pH close to the
capillaries is close to normal (almost 7.4). As a result, nano-
materials ooze from tumor capillaries and remain within the
normal pH of the interstitium, unable to undergo charge
reversal and unable to diffuse into the acidic regions, causing
them to accumulate close to the tumor blood vessels.
Therefore, nanomaterials with high tumor permeability must
also be able to exude from the tumor capillaries and gener-
ate positive charge reversal. Therefore, identification of a
‘signal’ close to tumor capillaries capable of triggering charge
reversal is key to anti-tumor efficacy. There are sufficient
nutrients and oxygen surrounding tumor capillaries, so that
the tumor cells can be highly metabolically-active with rapid
proliferation, causing them to overexpress a variety of spe-
cific enzymes, such as primordium glutamyl transpeptidase,
matrix metalloproteinase, and aminopeptidase N, etc (Choi
et al., 2012). Therefore, enzyme-catalyzed amine groups
attached to the nano-drugs ensure positive charges on the
nano-drug following enzyme catalysis. Enzyme-responsive
charge-reversal elements must be electrically neutral to
ensure long-term persistence in the blood circulation (Dong
et al., 2019).

Zhou et al. (2019) designed a series of GGT-responsive
vectors. Firstly, a GGT-responsive molecule and CPT nano-
drug were attached to PEG-PCL, using the self-assembly of
block copolymers to form micelles, and preparing two drug-
loading systems, PBEAGA-CPT and PEAGA-CPT. Being nega-
tively charged, these two systems exhibited a greatly pro-
longed duration in the blood circulation. Within a specific
tumor site that has high levels of GGT, the c-glutamyl in
PBEAGA-CPT is immediately hydrolyzed to release hidden

Table 1. pH-responsive chemical bonds and groups (Liu et al., 2016).

pH ¼ 6.5–7.2 pH ¼ 4.5–6.5

pH-sensitive group
Polysulfonamide
Polyhistidine

Maleic acid derivative
Acrylic derivative

PH-sensitive
chemical bonds
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amino groups, causing the entire drug-loaded system to
become positive. Electrostatic interactions greatly promote
endocytosis by the tumor cells, resulting in substantial accu-
mulation in the cells, enhancing therapeutic efficacy.
However, when placing the PEAGA-CPT drug-loaded system
in an environment with high GGT expression, charge reversal
did not occur and in subsequent animal experiments, a
therapeutic effect inferior to that of PBEAGA-CPT was
observed. Gordon et al. (2018) proposed a simplified prote-
ase activation strategy to explore the generation of peptide
N-termini on the surface of particles, for the promotion of
cellular uptake (Figure 9). This can be achieved by attaching
a protease-cleavable peptide to a nanogel at its C- and N-ter-
mini which is shielded by PEG. The peptide could be hydro-
lyzed by MMP-9, in which PEG is removed, exposing a
polyamine-type surface at the N-terminus. Due to charge
conversion, reduced steric stabilization, and enhanced mem-
brane interaction, the synthesized ‘active’ nanogels can be
expected to internalize faster than ‘passive’ pegy-
lated nanogels.

3.3. Dimensional change

Rational adjustment of the physical and chemical properties
of nanoparticles, and modifying their size and shape pro-
vides an alternative solution to the problem of penetration
(Chauhan et al., 2011; Lee et al., 2013; Blanco et al., 2015). A
large number of studies have established that large nanopar-
ticles generally exhibit the EPR effect and have a higher ten-
dency to diffuse, accumulating close to the blood vessels of
tumors, but with poor penetrability and dispersibility in
dense tumor stroma (Johnston et al., 2003; Perrault et al.,
2009; Wang et al., 2015). The size of nanoparticles has a sub-
stantial effect on endocytosis in cancer cells. An appropriate
size helps promote the accumulation of drugs in the tumor,
inappropriate size being counterproductive (Zutter et al.,
1998; Choi et al., 2006; Wong et al., 2011). Studies have
shown that the particle sizes of polymer micelles after drug
loading is larger than those that are unloaded, so that the
entire drug loading system requires careful consideration

(Shuai et al., 2004a, 2004b; Elhasi et al., 2007). Nano-drugs
range in diameter from a few nanometers to more than 100
nanometers. Because diffusion rate is inversely proportional
to diameter, the diffusion of large nano-drugs is considerably
smaller than that of small molecules (Ceradini et al., 2004). In
particular, drugs smaller than 20 nm have reduced resistance
to diffusion and therefore have better penetration capability
within tumor tissues. In addition, they are taken up more
rapidly than larger particles (Chithrani & Chan, 2007; Jiang
et al., 2008; Jin et al., 2009). However, such small nano-drugs
also have a number of drawbacks, such as a short duration
within blood circulation due to their more rapid removal
from the blood circulation. Large (>100 nm) nanoparticles
can exist for long periods in the blood circulation, but their
cell penetration capability is very poor, which are contradict-
ory effects. Therefore, a solution would be the design of a
drug carrier with a large particle size during blood circulation
which quickly reduces in size in the vicinity of tumor cells
(Cabral et al., 2011).

Wu’s group developed a dual-response nanocarrier with
variable size and structure. Nanocarriers were formed by self-
assembly of the cell-lysing peptide melittin, the near-infrared
photothermal molecule cypate, and hyaluronic acid (HA) pol-
ymers with tumor-targeting capability (Figure 10) (Jia et al.,
2019). At a pH of 7.4, nanospheres with a particle size of
approximately 50 nm are formed, helping to achieve a long
duration of circulation of the nano-drugs in blood. When
specifically targeted to a tumor site, the particles transform
in situ from nanospheres to nanofibers due to the slightly
acidic environment of the tumor (pH ¼ 6.8), greatly promot-
ing endocytosis in the cells, causing the accumulation of
nano-drugs in tumor cells and improving treatment efficacy.
Similarly, Li et al. (2016a) designed and synthesized a
clustered nano pharmaceutical system, PCL-CDM-
PAMAM(iCluster)/Pt, with ultra-sensitive responsiveness to
tumor microenvironments (Figure 11). They attached a few
nanometers of PAMAM dendrimer to polycaprolactone via an
acid-responsive chemical bond through a series of chemical
modifications (Cong et al., 2019), then further co-assembled
it with PEG-PCL and PCL to obtain a clustered nanocarrier,
iCluster/Pt. Within the blood circulation, the size of the

Figure 8. (a) Illustration of the use of TAT as an example of a cell-penetrating peptide (CPP) to demonstrate the concept of CPP deactivation in the blood compart-
ment and its activation in the tumor interstitium or cells to acheive in vivo tumor-targeted drug delivery. (b) Amidization of TAT’s primary amines to succinyl
amides for acid-triggered hydrolysis (Jin et al., 2013).
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Figure 9. MMP-9 response charge reversal gel system showing a more rapid rate of endocytosis rate and representing a passive PEGylated gel system (Gordon
et al., 2018).

Figure 10. Schematic illustration of the preparation of MEL/Cypate @ HA complex and continuous size/morphology transition induced by weakly acidic tumor
microenvironments and near-infrared laser irradiation (Jia et al., 2019).
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nanocarrier was maintained at approximately 80 nm, effect-
ively avoiding recognition by the reticuloendothelial system.
Therefore, it was designed to persist within the blood circula-
tion for long periods. Finally, the drug became enriched
within the tumor after arriving within its vicinity. Since the
pH was acidic, the diameter of the carrier reduced to
approximately 10 nm, allowing more efficient uptake of the
drug into the cancer cells.

Researchers have also found that the optimum size of a
nano-drug for endocytosis depends strongly on the cell line
under investigation. For example, the uptake of PLGA-DNA
complexes by Caco-2 cells depends on their size. Uptake was
found to be greatest with particles with a mean diameter of
100 nm (Desai et al., 1997). However, uptake was highest in
COS-7 and HEK293 cell lines for particles with mean diame-
ters of 70 nm and 200 nm, respectively. Therefore, it is neces-
sary to consider the cell type the carrier is targeting (Prabha
et al., 2002). Li et al. (2016b) synthesized the pH-responsive
nanocarrier PEG-b-PAEMA-PAMAM/Pt (Figure 12(a)), in which
the PAEMA block was pH-sensitive. In the neutral environ-
ment of the blood circulation, the PAEMA block was hydro-
phobic, forming nano-micelles by directed self-assembly of
PEG-b-PAEMA-PAMAM/Pt into SCNs/Pt, with a mean particle
diameter of approximately 80 nm, allowing extended dur-
ation within the blood circulation (Zahr & Pishko, 2007; Pei
et al., 2010). Upon reaching the tumor, PAEMA rapidly proto-
nates and becomes hydrophilic in the weakly acidic environ-
ment (Lee et al., 2008), causing SCNs/Pt to instantly
disintegrate into small nanoparticles that can penetrate the
tumor. CLSM images displaying in vitro penetration of

fluorescence-labeled PEG-b-PAEMA-PAMAM/Pt/Cy5 into
tumor cells are shown in Figure 12(a), which demonstrates
deep penetration and uniform distribution of Cy5 at pH 6.7
following rapid disintegration into small particles.

Shen et al. designed and fabricated a ‘bullet-shaped’ lipo-
some assembly with small dendrimers that fill ‘bullet’-like lip-
osomes (Figure 12(b)). This approach was effective in
avoiding the drawback of the rapid clearance of small nano-
particles from the blood, allowing the liposomes to process
of drug delivery can be efficient, finally demonstrating excel-
lent anti-tumor activity in in vivo tumor inhibition experi-
ments and a long time circulatation. After reaching and
penetration of nano-drugs in the tumor tissue. After reaching
and aggregating at the tumor due to the EPR effect, den-
drimers of several nanometers within liposomes were
released, promoting the penetration of nano-drugs in the
tumor tissue. Thus, the CAPIR process of drug delivery can
be efficient, finally demonstrating excellent anti-tumor activ-
ity in in vivo tumor inhibition experiments. In addition, we
also summarized the strategies for constructing dimensional
changed drug delivery systems, as shown in Table 2.

3.4. Surface modification

Targeted groups of nanoparticles can specifically identify
tumor cells, trigger receptor-mediated endocytosis, accelerate
the distribution of nano-drugs in tumor tissues, and promote
their deep penetration (Liu et al., 2015; Ruoslahti, 2017;
Zhang et al., 2020). Many peptides that are effective for
penetration in tumor tissues contain the sequence:

Figure 11. (a) Self-assembly and structural change of PCL-CDM-PAMAM/Pt in response to tumor acidity and an intracellular reductive environment. (b) Self-assem-
bly and structural change of iCluster/Pt in response to tumor acidity and an intracellular reductive environment (Li et al., 2016a).
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(R/K)XX(R/K) (Figure 13(a)(1)), where X represents an amino
acid other than lysine or arginine. These peptides are also
known as CendR peptides. As shown in Figure 13(a)(2), the
principle of rapid infiltration of CendR peptides into tumor
tissues is as follows: (i) the peptide binds to the primary
receptor on the surface of tumor endothelial cells. For

example, the primary receptor of iRGD is an avb3/avb5
integrin, and that of the Lyp-1 peptide sequence is p32/
gC1qR. (ii) the CendR sequence of the polypeptide becomes
exposed by hydrolysis of the protease (C-terminal); (iii) the
CendR sequence binds to neuropilin-1 (NRP-1) on the cell
surface, which becomes rapidly integrated into the cell to be
subsequently excreted out by exosmosis, where it ‘infects’
other adjacent tumor cells for rapid infiltration into the
tumor tissue.

Based on the targeted binding and internalization mech-
anism of CendR described above, exogenous nanomaterials
can be transported effectively to tumor tissues by corre-
sponding peptides on surface-modified nanomaterials. Peng
& Kopecek (2015) prepared matrix metalloproteinase 2
(MMP-2)-responsive N-(2-hydroxypropyl)- methacrylamide
(HPMA) copolymer drugs and tumor penetrating peptide
conjugates (P-DOX-PLGLAG-iRGD). Significant improvement
in the permeability of HPMA to tumor tissues was achieved
by partial modification of the surface of HPMA with iRGD
peptides (Figure 13(b)). Similarly, Li et al. attached the iRGD
peptide onto the surface of cell membranes to significantly
improve the permeability of red blood cell-based drug nano-
particles in tumor tissues and improve the in vivo therapeutic
effect of the nano-drug system (Su et al., 2016). Tumor

Figure 12. (a) Schematic illustration showing pH-sensitive cluster nano-bombs (EG-b-PAEMA-PAMAM/Pt), a robust nano-platform to overcome biological barriers
to drug delivery in poorly permeable tumors, and CLSM images of fluorescence-labeled PEG-b-PAEMA-PAMAM/Pt/Cy5 (Li et al., 2016b). (b) Schematic diagram of
the cluster-bomb-like nanoassembly and how it accomplishes the CAPIR cascade. Nanoassembly structure: the dendrimers were self-assembled with DOPE and
DSPE-PEG lipids in addition to cholesterol to form a nanoassembly with a dendrimer core and lipidic shell, as confirmed by cryo-TEM imaging (Sun et al., 2014).

Table 2. Strategies to construct dimensional changed drug delivery systems
(Yu et al., 2020).

Methods and strategies Responsive molecule

Aggregation strategies
Enzyme Matrix metalloproteinase, legumain,

hyaluronidase (HAase), gelatinase, furin, and
caspase 3/7

pH Hydrolysis-susceptible citraconic amide, 11-
mercaptoundecanoic acid, and (10-
mercaptodecyl)-trimethylammonium bromide)

Light Azobenzene, spirobenzopyran, triphenylmethane,
and cinnamenyl

Temperature PPCs, PNIPAm, PDEAm, PEO, PPO, and
polyphosphoesters

Redox Disulfide bond with GSH
Size-shrinkage strategies
pH Amino polymers, DMA, and Schiff base
Enzyme MMPs, HAase, amylase, and thrombin
Redox disulfide bond
ROS Thioketal, thioester, polypropylene sulfide, and

phenylboronic ester
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osmotic peptides, such as tlyp-1 (Liang et al., 2015) and
PFVULI (Cai et al., 2014) have also been shown to signifi-
cantly improve the penetration of nano-drugs into tumor tis-
sues. Gao et al. developed a method for the treatment of
breast cancer in combination with the tumor homing pep-
tide iRGD and IDDHN, a type of multistage-responsive pene-
trating nanoparticle. IDDHN was composed of a hyaluronic
acid (HN) shell modified by an NO donor and small-sized
dendrimer. iRGD was specific for the target receptor, avb3,
located in breast cancer cells. The IDDHN/iRGD nanocarrier
was variable in size with a particle diameter of approximately
330 nm in the blood circulation but only 35-60 nm within the
tumor tissue. They confirmed that its combined use with
iRGD significantly improved tumor targeting and penetration
capability of IDDHN, achieving satisfactory treatment
of tumors.

Conclusions

The inability of nano-drugs to penetrate deep into tumor tis-
sues as part of the ‘CAPIR’ process remains a bottleneck
restricting the development of nano-drugs. This review sum-
marizes recent developments in the penetration of nanoma-
terials into tumor tissues, presenting regulatory strategies
that can provide a solid source of information for the scien-
tific community. Nano-drugs can be transported into tumor
tissue by paracellular or transcellular transport and the size
of the nano-drugs and pathological features of the tumor tis-
sue remain the principal factors controlling endocytosis. In

addition, high recognition of the reticuloendothelial system
in the blood circulation will accelerate the rate of clearance
and reduce the accumulation in tumor tissue. Hence, to con-
struct a drug delivery system that promotes endocytosis, the
core principle is construction of a dynamic strategy (i.e.
remodeling the microenvironment of the tumor tissue,
charge inversion, dimensional change, or surface modifica-
tion of ligands). These dynamic strategies can be activated
within specific tumor microenvironments (pH, reducing sub-
stances, and enzymes). We have summarized the construc-
tion methodologies of these dynamic drug delivery systems
that promote deep penetration into tumor tissues. It has
been shown that drug delivery systems that promote endo-
cytosis achieve the accumulation of nano-drugs in tumor
cells and improve cancer treatment efficacy.

Although we can use the special tumor microenvironment
to build drug delivery systems, the inevitable problem
remains that many nanoparticles in the blood circulation will
be uptake into different organs (especially the kidney).
Hence, the biocompatibility and safety of a drug system
remain the top priority for cancer treatment. The multiple
specific conditions in the tumor tissue microenvironment
need to be fully exploited to create a more accurately tar-
geted and efficient drug delivery system so that a greater
quantity of the drug reaches the tumor and exert their effi-
cacy. Multi-response drug carriers utilize a synergistic effect
of different environment-responsive molecules, overcoming
various physiological obstacles encountered in drug delivery
systems. However, the design, synthesis, and quality control

Figure 13. (a) Peptides containing the sequence (R/K)XX(R/K) are effective at penetrating tumor tissues (Ruoslahti, 2017). And schematic representation of the
CendR trans-tissue transport pathway(Qiao et al., 2018). (b) Schematic illustration and proposed fate of P-DOX-PLGLAGiRGD, and penetration of DOX conjugates
and controls in DU-145 MTS, control, iRGD, P-DOX, PDOXþ iRGD, and P-DOX-PLGLAG-iRGD (Peng & Kopecek, 2015).
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of multi-stimulus response drug carriers are complex. With
the development of polymer materials, tumor pharmacology,
molecular biology, and other disciplines, these problems will
be solved, and intelligent nano-drug carriers will develop
toward more accurate drug delivery. The development of
penetration strategies for nanomaterials is without doubt far
from complete, as many difficulties and challenges in cancer
treatment remain. More bioresponsive drug delivery strat-
egies with few side effects and high treatment effect
are required.
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