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Regulatory T cells (Tregs) are essential for mitigating inflammation. Tregs are found in
nearly every tissue and play either beneficial or harmful roles in the host. The availability of
various nutrients can either enhance or impair Treg function. Mitochondrial oxidative
metabolism plays a major role in supporting Treg differentiation and fitness. While Tregs
rely heavily on oxidation of fatty acids to support mitochondrial activity, they have found
ways to adapt to different tissue types, such as tumors, to survive in competitive
environments. In addition, metabolic by-products from commensal organisms in the gut
also have a profound impact on Treg differentiation. In this review, we will focus on the
core metabolic pathways engaged in Tregs, especially in the context of tissue nutrient
environments, and how they can affect Treg function, stability and differentiation.
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INTRODUCTION

The immune system is in a dynamic balance between inflammation and suppression. One critical
population in helping maintain this balance are regulatory T cells (Treg), a population first
identified in the mid-nineties (1). Humans bearing mutations in the forkhead box P3 (FOXP3) gene,
which leads to lethal autoimmunity, helped identify FOXP3 as the signature transcription factor for
Treg lineages (2). Tregs are derived from two different origins. Thymic Tregs (tTregs), also known as
natural Tregs (nTregs), are selected and educated during thymic development and egress to
secondary lymphoid organs (SLO). To further secure against uncontrolled inflammation, Tregs
arising from naïve CD4 T cells in the SLO, termed inducible Tregs (iTregs), require cues from IL2
and TGFb for differentiation (3).

The overarching function of Tregs is to maintain peripheral tolerance, such as in the colon which
commensal bacteria live in harmony with the host. Other functions include preventing
autoimmunity, limiting inflammation once the infection has been cleared and tissue repair,
which all benefit the host (4). However, there are situations where Tregs become harmful, such
as in tumors where they tip the balance towards tumor growth (5). There are several methods of
suppression that modulate immune responses: cytokine mediated inhibition (i.e. IL10 and TGFb),
IL-2 deprivation, prevention of dendritic cell (DC) maturation, and cytolysis (6–8).

Treg development and suppressive programs depend on signalling downstream of the T cell
receptor (TCR), CD28 and the IL2 receptor (CD25). These different inputs work either in tandem or
org April 2021 | Volume 12 | Article 6379601
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in parallel to regulate FoxP3 expression. TCR engagement
induces the activation of Class IA inositide lipid kinases,
PI3Ks, to recruit PDK1 and Akt to the plasma membrane.
Phosphorylation of Akt by PDK1 maintains suppressive
function and response to TCR signal strength in Tregs (9).
This signalling axis shapes Treg fate by regulating the FOXO
family of transcription factors and the activation of the
mammalian target of rapamycin complex I (mTORC1) (10,
11). STAT5, a transcription factor downstream of IL2
signalling, also determines Treg polarization, proliferation,
stability and competitive fitness (12–15).

Many of these transduction pathways converge on cellular
metabolism. Naïve T cells are in a state of quiescence and their
metabolic demand is therefore low; however, once activated T
cells upregulate anabolic and catabolic metabolism including
glycolysis and amino acid synthesis (16–18). A large number of
these anabolic pathways are reliant on adenosine triphosphate
(ATP) which is mainly produced from glycolysis and
mitochondrial oxidative phosphorylation (OXPHOS). Besides
proliferation, defined metabolic changes are required to
support specific T cell fates. For example, CD8+ effector T cells
transitioning into central memory cells rewire their metabolism
from glycolysis towards fatty acid oxidation (FAO) (19).
Complex metabolic alterations also support the differentiation
of CD4+ T cells towards different Thelper subsets. This topic has
been recently reviewed by Shyer et al. and Geltink et al. and will
not be the focus of this review (20, 21).

Treg metabolism is a growing area of research in the field of
immunometabolism. In this review, we will focus on the
metabolic features, metabolites, and metabolic modulators that
influence Treg function, homeostasis, and plasticity. While
lymphoid organs may perhaps be metabolically rich
environments, Tregs extravasating to tissue sites face notably
different nutrient availability depending on their location. How
different metabolic environments affect Treg cell fate and biology
will be further explored in this review.
FATTY ACIDS AND MITOCHONDRIAL
METABOLISM IN TREGS

One key organelle that shapes Treg cell fate and function is the
mitochondrion. The metabolic pathways that support
mitochondrial activity and cell energy production are the
tricarboxylic acid cycle (TCA), amino acid and lipid metabolism.

A major source of ATP is derived from mitochondrial
oxidative phosphorylation (OXPHOS) which is driven by the
electron transport chain (ETC). The ETC and TCA cycle are
intrinsically coupled processes. For example, NADH/NAD+

recycling in the mitochondria relies on the TCA cycle
regenerating NADH, an electron donor, for the ETC (22). The
ETC comprises four subunits (Complex I-IV) and an ATP
synthase (Figure 1). Treg-specific deletion of ETC components
remarkably impair Treg suppressive function, underpinning a
fundamental function for mitochondrial OXPHOS in Tregs
Frontiers in Immunology | www.frontiersin.org 2
(23–25). The TCA cycle is driven by the oxidation of Acetyl
CoA, which could be generated from glucose-derived pyruvate
through the pyruvate dehydrogenase (PDH) complex (Figure 1).
Deletion of the negative regulator of PDH (PDH kinase)
increases PDH activity thus favoring oxidative cellular
metabolism for iTreg differentiation (26).

Genetic perturbations in regulators involved in maintaining
mitochondrial oxidative activity, such as the mitochondrial
transcription factor TFAM, reduce Treg differentiation,
function and result in lethal systemic autoimmunity (25, 27–
29). Other sources of acetyl CoA that can enter the TCA cycle
come from fatty acid oxidation (FAO), which catabolizes fatty
acids within the mitochondria into acetyl CoA units. Tregs take
up fatty acids and store them in the form of lipid droplets (30, 31)
(Figure 1). Surprisingly, in the context of cancer, human and
mouse Tregs engage in fatty acid synthesis (FAS) to support their
functional maturation (32, 33) (Figure 1).

FAS is an ATP-consuming process and relies on the rate
limiting enzyme acetyl CoA carboxylase (ACC) (Figure 1).
Inhibition of this rate-limiting step increases FAO and
preferentially skews naïve CD4+ T cells towards Tregs, delaying
disease onset in experimental models of autoimmunity (34).
Directing cells to engage in FAO, by replacing glucose with
galactose, enhances expression of FoxP3 in Tregs (30).
Mitochondrial activity and oxidation of fats are supported in
Tregs by fatty acid uptake (35). Fatty acids are characterized by
their carbon length – less than 4C are short chain FA (SCFA),
medium chain (MCFA) and greater than 12C are long chain FA
(LCFA). LCFAs require carnitine palmitoyl transferase 1 (CPT1)
to ease mitochondrial transportation by attaching carnitine (e.g.
palmitoyl-carnitine), while SCFAs and MCFAs move freely across
the membrane (Figure 1).

CPT1a loss, the predominant isoform in lymphocytes,
inhibits oxidation of LCFA in Tregs. However, this does not
affect the development of tissue resident Tregs, de novo
polarization, or suppression, suggesting that Tregs most likely
depend on SCFA and MCFA for FAO (23, 36). Nevertheless, this
does not mean that LCFAs do not modulate Treg metabolism.
The fatty acid binding protein 5 (FABP5), the dominant isoform
in Tregs, binds to LCFAs and negatively regulates Treg function,
suggesting an unexpected role for LCFAs in Tregs (37)
(Figure 1).

Tregs more often rewire their metabolism towards
mitochondrial oxidative metabolism and rely less on glycolysis,
which is in part mediated through the transcriptional activity of
FoxP3 (32, 38, 39). It is important to note that glucose is
absolutely required for Treg generation and that Tregs
transcriptionally express the glucose transporters GLUT1,3,6,
and 8. While GLUT1 is expressed by Tregs, it is dispensable for
differentiation, suggesting a role for other isoforms (Figure 1)
(25, 40). In addition, iTregs increase their glycolytic rate, albeit at
a lower extent than other CD4 lineages. Tregs generally prefer
oxidative glycolysis, which is characterized by glucose being
broken down into pyruvate, rather than anaerobic glycolysis
where pyruvate is shunted towards lactate production (38, 41)
(Figure 1).
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Blagih et al. Metabolic Environments and Treg Biology
FIGURE 1 | The mitochondria and fatty acid metabolism in Tregs. The core of Treg metabolism centres around mitochondrial activity, which is partially
supported by glycolysis. Glycolysis is the breakdown of glucose into pyruvate; however, glycolytic intermediates can feed into other pathways, such as the
pentose phosphate pathway (PPP) for NADPH production and the hexosamine pathway for amine sugar production (i.e. UDP-GlcNac) involved in post-
translational modifications (PTM). If the end product of glycolysis is pyruvate, which can enter the mitochondria, it is termed oxidative glycolysis. However, if
glucose-derived pyruvate is shunted toward lactate production it is termed aerobic glycolysis. Pyruvate enters mitochondria through the pyruvate
dehydrogenase (PDH) and generates acetyl CoA to drive the tricarboxylic acid (TCA) cycle. PHD is negatively regulated by PDH kinase. While the TCA cycle can
generate amino acids, its function is to regenerate NADH which is critical for electron transport chain (ETC) function. The ETC, composed of complexes I-IV,
builds a proton motif force to drive the generation of ATP by ATP synthase. Mitochondrial reactive oxygen species (mROS) are produced at complex I and III.
Fatty acids through fatty acid oxidation (FAO) can also provide acetyl CoA units for the TCA cycle. Tregs store fatty acids in the form of lipid droplets, which are
partially taken up from the environment. The fatty acid binding protein (FABP5) is a chaperone for long chain fatty acids (LCFAs) and plays a key role in
mitochondrial structure. LCFAs require assisted entry into the mitochondria, which is mediated by CPT1 and CPT2. Other sources of fatty acids are the short
chain (SCFAs) and medium chain fatty acids (MCFA), that pass freely into the mitochondria. Tregs also perform fatty acid synthesis (FAS) which takes
mitochondrial citrate and exports it into the cytoplasm to regenerate acetyl CoA by ATP citrate lyase (ACLY). Acetyl CoA is then committed to fatty acid
synthesis by the acetyl CoA carboxylase (ACC). The glycolytic enzyme, enolase (ENO1) can also moonlight as a transcription factor and bind to the FOXP3
promoter to mediate the generation of different splice forms.
Frontiers in Immunology | www.frontiersin.org April 2021 | Volume 12 | Article 6379603
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A common pharmacological approach for disrupting
glycolysis is with 2-deoxyglucose (2-DG) which inhibits both
phosphoglucose isomerase (PGI) and hexokinases (HK) (42, 43).
Tregs express HKI and HKII and 2-DG exposure promotes their
differentiation and function by limiting glycolysis (44–46).
Inhibition of PGI by 2-DG leads to diversion of glucose 6-
phosphate into the pentose phosphate pathway (PPP). Products
of the PPP are NADPH, ribose for ribonucleotides and glycolytic
intermediates (Figure 1) (47, 48). Although the PPP has yet to be
investigated in Tregs, 2-DG data suggests that it may play an
important role.

Another branching pathway from glycolysis is the
hexosamine pathway where fructose-6-phosphate produces
glucosamines, primarily UDP-GlcNAC (Figure 1). These sugar
amines play a critical role in maintaining FoxP3 stabilization and
suppressive function through post-translational modifications
(49–51).

It is worthy to note that Tregs are not restricted in their ability
to engage in aerobic glycolysis. In fact, proliferating and
expanding Tregs in response to multiple receptor stimuli, such
as Toll Like Receptors (TLR), TCR and CD28, metabolically
switch towards aerobic glycolysis (Figure 1). In many cases,
increasing aerobic glycolysis does not weaken their suppressive
activity; on the contrary, glycolysis reinforces suppressive
function in human and mouse Tregs (30, 35, 45, 52–55).
Interestingly, the glycolytic enzyme, Enolase 1 (ENO1) has a
secondary function in human Tregs. ENO1 binds to the FOXP3
gene as means to regulate FOXP3 splice forms (De Rosa et al.,
2015) (Figure 1). Overall, the relationship with glycolysis in
Tregs is a complex one. On the one hand its restricted function
allows for increased differentiation and on the other hand
glycolysis is integral to Treg expansion and suppressive activity.

Mitochondrial ROS
The function of mitochondria expands beyond that of mere ATP
generation. Mitochondria are powerful signalling organelles,
including mitochondrial production of reactive oxygen species
(mROS) and programmed cell death (56). For example, TCR-
activated Tregs couple downstream signalling – namely the T-
cell specific tyrosine kinase Lck – with mitochondrial function by
mobilizing Lck to the mitochondria (57). Tregs show a clear
dependence on mitochondrial activity and as a consequence of
increased ETC function, Tregs display enhanced mROS
compared to activated effector CD4+ T cells (25) (Figure 1).
Impeding mROS production at complex III (CIII) by genetic
deletion of the CIII ROS-producing subunit in Tregs severely
reduces suppressive capacity and drives lethal multiorgan
inflammation (24). However, mROS can also arise from
inhibition of complex I (CI). Inhibition or mutation in CI
reduces Treg differentiation and suppressive function in vivo
(25, 58). Levels of mROS require fine tuning since too much of it
becomes damaging to the cell (59). In cases of chronic
inflammation, such as autoimmunity, circulating Treg numbers
decline and bear hallmarks of damaging mROS leading to cell
death (60). Collectively, Tregs are highly dependent on
mitochondrial metabolism for their survival, function, and
Frontiers in Immunology | www.frontiersin.org 4
differentiation. Any mitochondrial dysregulation leads to
deleterious effects in Tregs.
LIPIDS IN TRANSCRIPTIONAL
REGULATION

Peroxisome Proliferator Activated
Receptors - PPARs
Fatty acids and lipid-derivatives can also act as signalling
molecules which converge on transcriptional reprograming.
The family of peroxisome proliferator activated receptors
(PPARs) are part of a super family of nuclear hormone
receptors that bind to natural and synthetic lipophilic acids.
There are four types of PPARs: PPAR a, b, g, and d. Acting as
lipid sensors, PPARs heterodimerize with the retinoid receptor
RXR within the nucleus and bind to DNA at PPAR response
elements (PPRE) (Figure 2). For example, endogenous ligands
for PPARs are polyunsaturated fatty acids (PUFAs) and
eicosanoids that drive transcriptional regulation of glycolytic,
lipid and mitochondrial genes (61). The visceral adipose tissue
(VAT), an abundant site of lipid metabolism, harbors a
distinctive set of Tregs called VAT Tregs that express high
levels of PPARg (Figure 2). Indeed, Treg-specific ablation of
PPARg selectively reduces homeostatic levels of VAT Tregs (62).
Agonist activation of PPARa and g with natural and synthetic
lipophilic compounds act through transcriptional activity not
only to increase iTreg polarization, but also to boost their
function in vitro and in T-cell mediated colitis (63–65)
(Figure 2).

Natural PPAR agonists, such as omega-3 fatty acids (W-3-FA),
which are a class of PUFAs, display immunomodulatory effects
(Figure 2). Elevating dietary W-3-FA or genetically manipulating
their levels reduces severity in experimental models of
autoimmunity, such as T-cell induced colitis (66–68). In dietary
induced obesity, W-3-FA supplementation dampens adipose
tissue inflammation, in part by promoting de novo Treg
differentiation (68). In cases of cardiac allografts and milk
protein allergies, W-3-FA increase peripheral Tregs to achieve
immune tolerance (69, 70).

Retinoic Acid Receptors - RARs
Other nuclear hormone receptors responding to lipophilic
metabolites also play key roles in regulating Treg biology.
While PPARg heterodimerizes with RXR, RXR also
heterodimerizes with the retinoic acid receptor alpha (RARa).
The RAR and RXR family of transcription factors bind to
metabolites of retinol (lipid soluble vitamin A), such as all-
trans retinoic acid (ATRA) or 9-cis-RA (71). Vitamin A is
absorbed in the small intestine and is either catabolized in
enterocytes or in the liver (Figure 2). ATRA exposure during
de novo Treg differentiation promotes the expression of gut-
homing receptors and RA supplementation increases Tregs at
the mucosal interface in experimental models of colitis (72, 73).
Pro-inflammatory cytokines weaken Treg stability; however, RA
April 2021 | Volume 12 | Article 637960
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can protect Tregs by preferentially enhancing FoxP3 expression
and stabilization (74–79) (Figure 2).

Another site of Vitamin A metabolism is the liver. Naïve
hepatic stellate cells (HSCs) store retinoids, which can account
for nearly 50% of all RA in the body, and produce ATRA upon
activation in the local environment (80). In addition to ATRA,
activated HSCs can produce TGFb, a potent combination for
Treg differentiation. Co-culture of HSCs with DCs and naïve
CD4+ T cells skewed differentiation towards Tregs in RARa-
dependent manner (81) (Figure 2). In conclusion, retinoic acid
metabolism, either at mucosal sites or in the liver, can promote
an immunosuppressive environment mediated through FoxP3
induction and stabilization.

Of note, other essential vitamins can influence Treg biology. It
has been shown that folic acid (Vitamin B9) is necessary for
maintenance of Tregs in the colon; mice fed a diet depleted of
folic acid were more susceptible to gut inflammation (82). Both
vitamin C and D have also been shown to enhance de novo Treg
induction; however, only vitamin D has demonstrated reduced
severity in experimental models of autoimmunity (83–87).
Frontiers in Immunology | www.frontiersin.org 5
OXYGEN POOR ENVIRONMENTS
AND TREG ADAPTATION

Tumors have been thought of as “wounds that do not heal”, with
many similarities in stromal reorganization reminiscent of
wound healing (88). One of the hallmarks of cancer is tissue
reorganization which leads to changes in local supply of
nutrients and oxygen surrounding the cells (89, 90). One
prominent cell type found in cancer are Tregs, which adapt to
these metabolically competitive environments.

Changes in oxygen levels within tissues are sensed intracellularly
by prolyl hydroxylases (PHD). When oxygen levels are within the
normoxic range (20% in tissue culture and around 5% in tissues),
PHDs hydroxylate the hypoxia inducible factor 1 a (HIF1a) and
target it for proteasomal degradation (91, 92). Under low oxygen
levels, HIF1a is released from PHD-dependent degradation and
heterodimerizes with HIF1b to translocate to the nucleus. HIF1a
upregulates genes involved in aerobic glycolysis, angiogenesis,
erythropoiesis, and cell survival as a mechanism for cellular
adaptation under hypoxia (93).
FIGURE 2 | Lipophilic sensors in shaping the transcriptional landscape of Tregs. Fatty acids are also powerful signalling molecules that can change the
transcriptional profile of cells. In Tregs, the lipophilic sensors, PPARa, PPARg, and the retinoic acid receptor (RAR) support Treg differentiation and functional
programs. The PPAR family of transcription factors respond to broad range of fatty acids, but quite potently to polyunsaturated fatty acids (PUFAs). Agonists for the
PPARs, such as rosiglitazone and thiazolidinedione (TZD) help boost Treg differentiation, FoxP3 stability and function. Visceral Adipose tissue (VAT) Tregs are in
constant supply of lipid ligands and upregulate PPARg. RARa also responds to lipophilic ligands, but only those derived from retinol or retinoic acid. Two key sites of
retinoic acid storage and production of all-trans retinoic acid (ATRA) are the liver and enterocytes. In addition, hepatic stellate cells can store retinoids and, when
activated, produce ATRA.
April 2021 | Volume 12 | Article 637960

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Blagih et al. Metabolic Environments and Treg Biology
Treg migration and survival in inflamed peripheral tissues
and tumors depend on metabolic adaptation to support these
processes. One major metabolic change in migrating Tregs is
their switch towards aerobic glycolysis, which is mediated by
glucokinase (GCK) and HIF1a (53, 94). Once within the tissue,
Tregs are exposed and adapt to different O2 environments.
Localized tissue hypoxia can induce the differentiation of Tregs
through the direct upregulation of FoxP3 by HIF1a (95).
Hypoxia-induced Tregs may help limit tissue damage under
states of hypoxic inflammation. The gut has been documented to
function under a physiologically hypoxic environment in
comparison to other tissues (96). In fact, HIF1a-expressing
Tregs repress T-cell induced colitis, suggesting a key role for
hypoxia and aerobic glycolysis in mitigating inflammation in
oxygen-poor tissues (95). However, under conditions of
normoxia, HIF1a negatively regulates Treg differentiation,
suggesting that oxygen availability shapes Treg fate (44).

Tumor oxygenation is generally much lower than that of
normal tissues, yet Tregs readily populate tumors to provide
additional immune tolerance to support tumor growth (97, 98).
For instance, the brain is highly sensitive to oxygen variability
and functions around 4.4%pO2, yet Tregs manage to adapt in
order to survive under oxygen competitive environments (99,
100). Tregs in glioma use HIF1a to support this metabolic
adaptation by increasing aerobic glycolysis for migration and
depend mainly on fatty acid uptake to support OXPHOS-
mediated immune suppression (94, 101). However, other
tissues have different levels of O2 supply and degrees of O2

sensitivity. Oxygen ranges from 5.6-14.5% pO2 in the lung (100)
suggest that Tregs may adapt accordingly. In the case of lung
metastasis, PHD, the negative regulator of HIF1a is activated in
Tregs and drives their accumulation in the lung to create an
immune-tolerant metastatic niche (102).

In response to low O2 levels, the acidity of the local milieu
within tumors increases compared to normal tissue (103). This
increase in acidity imposes harsh conditions for surrounding T
cells. One main metabolite that could regulate local acidity is
lactate; the major transporters for lactate in T cells are SLC5a12
and MCT1 (41, 104–106) (Figure 3). Tregs within the tumor
interstitial space are able to outcompete other T cell subsets by
surviving under low glucose and high lactate conditions.
Intratumoral Tregs upregulate the SLC5a12 and MCT1
allowing lactate to fuel the TCA-cycle for OXPHOS-mediated
immune suppression and to support gluconeogenic pathways for
survival (41, 106) (Figure 3). Limiting tumor-derived lactate in
the context of anti-CTLA4 blockade increases glucose
consumption in intratumoral Tregs and skews the balance
towards IFN-g producing CD4+ T cells (107).

Other stromal components, such as cancer associated fibroblasts
(CAF), contribute to lactate production that preferentially selects for
intratumoral CD4+ Foxp3+ populations through a NF-kB-FoxP3
axis (108) (Figure 3). Another method of survival under lactic acid
rich environments is achieved by upregulating the fatty acid
receptor CD36. Intratumoral Tregs particularly express CD36 in
order to enhance PPARb expression as a means to support
mitochondrial metabolism in Tregs and their survival (109)
Frontiers in Immunology | www.frontiersin.org 6
(Figure 3). High levels of environing lactate due to the highly
glycolytic nature of cancer cells and CAFs could be part of a strategy
employed by tumors to promote immune suppression.
TISSUES AND AMINO ACID METABOLISM
IN TREGS

Other immunomodulatory nutrients found in inflammatory sites
and tumor lesions are amino acids and their catabolic by-
products (110, 111). General amino acid uptake and
breakdown is imperative for T cell proliferation and CD4+

Thelper differentiation. Known amino acid (AA) transporters
expressed on the surface of T cells are the SLC7A5/SLC3A2
(LAT1), and SLC1A5 (ACST2) (112, 113).

Non-Essential Amino Acids
Glutamine
Typical amino acids transported by ASCT2 are alanine, serine,
cysteine, methionine and glutamine (114). Interestingly, ASCT2
is dispensable for thymic development of nTregs and de novo
polarization (112). However, glutamine deprivation increases
FoxP3 expression upon TCR engagement and also increases in
a TGFb-dependent manner (115, 116). Glutamine restriction has
also been shown to enhance suppressive function in a T-cell
mediated colitis model (115), which could also be a method for
tumors to promote immune suppression (Figure 3).

How glutamine negatively regulates Treg induction and
activity is still poorly understood. Interestingly, deletion of
glutaminase (GLS), an amidohydrolase enzyme that converts
glutamine to glutamate, does not affect homeostatic Treg
frequencies nor their differentiation in vitro (117) (Figure 3).
This would suggest that Tregs do not depend on glutamine to
fuel the TCA cycle and further supports the notion that Tregs
utilize other carbon sources, such as fatty acids (Figure 3).

Unexpectedly, increased transamination - the transfer of
amine groups either from glutamine or glutamate that
generates glutamate or aKG respectively – negatively impacts
Treg biology. Aminooxyacetate (AOA), a global transaminase
inhibitor, increases FoxP3 expression both in Treg and Th17
polarization conditions (118) (Figure 3). Deletion of GOT1,
which transfers amino groups between aspartate and glutamate
interchangeably to produce OAA and aKG, rewires Th17 cells
towards Tregs in vitro and in experimental autoimmune
encephalomyelitis (EAE). This effect was partially due to the
promiscuous nature of dehydrogenases (e.g. isocitrate
dehydrogenase – IDH) leading to conversion of aKG into 2-
hydroxyglutarate (2-HG). Elevated levels of 2-HG inhibit the
DNA demethylating enzymes TET1-3 and this inhibition keeps
the Foxp3 promoter silenced (118) (Figure 3).

Arginine
While the majority of amino acids are neutral, basic amino acids,
such as arginine and to a lesser extent histidine, require cationic
amino acid transporters (CAT) (119). CAT1 is highly expressed
on proliferating T cells and transports arginine downstream of
April 2021 | Volume 12 | Article 637960
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FIGURE 3 | Lactate and amino acid metabolism in Tregs. Lactate and amino acid metabolism in Tregs play important roles in their differentiation and
function. Lactate can arise in the tumors and from cancer associated fibroblasts (CAFs) as a consequence of their highly glycolytic nature. The transporters
for lactate are SLC5a12 and MCT1. Tregs metabolically adapt to a low glucose/high lactate environment by using lactate to fuel the TCA cycle that supports
oxidative phosphorylation in the mitochondria. Intra-tumoral Tregs increase the fatty acid receptor CD36 when extracellular lactate concentrations increase.
The import of fatty acids activates the transcription factor PPARb to maintain mitochondrial fitness. Other transported nutrients are amino acids. ASCT2, a
neutral amino acid transporter, is responsible for the intake of amino acids such as alanine, serine, glutamine. Serine uptake and biosynthesis (serine
synthesis pathway – SSP) are involved in antioxidant defence in Tregs. The amino acids, alanine and aspartate, can enter central carbon metabolism
through transamination by glutamate pyruvate transaminase (GPT) and glutamate oxaloacetate transaminase (GOT), both of which are negative regulators of
FoxP3 induction. Both GOT and GPT are inhibited by the transaminase inhibitor, aminooxyacetate (AOA). Another negative regulator is alpha-ketoglutarate
(aKG) which can be converted by the error-prone isocitrate dehydrogenase (IDH) to 2-hydroxyglutarate (2-HG). 2-HG inhibits the family of DNA
demethylases – ten eleven translocase (TET) 1-3. Another amino acid that can enter the TCA cycle is arginine which is transported by the cationic
transporter (CAT1). Arginine helps fuel the urea cycle, where arginase (ARG2) converts arginine to ornithine and later citrulline. The transport of branched
chain amino acids (BCAA), and aromatic amino acids, such as isoleucine and tryptophan, use the L-type amino acid transporter (LAT1). BCAA can help fuel
the TCA either through acetyl CoA or succinate generation. Tryptophan (TRP) can be converted into kynurenine by the Indoleamine 2,3-dioxygenase (IDO1)
in dendritic or tumor cells, which activates the ligand receptor, Aryl hydrocarbon Receptor (AhR). Ligand-bound AhR translocates to the nucleus and
upregulates Foxp3 expression.
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TCR engagement (120) (Figure 3). In cases of muscle wound
healing, a specific Treg population infiltrates the site for damage
resolution as well as causes a local increase in arginine
metabolism (110, 121). Intracellular arginine can be broken
down in the urea cycle by arginase (ARG1 and ARG2) into
ornithine and citrulline (122). Activated Tregs found in the skin
enhance ARG2 expression to outcompete and deprive effector T
cells of environmental arginine (123) (Figure 3). Tregs can also
utilize citrulline, a component of the urea cycle, for enhancing
FoxP3 induction, thus potentially still surviving in arginine
competitive environments, such as in arginine-addicted tumors
(124, 125) (Figure 3).

Serine
Serine is a non-essential amino acid implicated in numerous
processes such as glycine synthesis, purine synthesis, anti-oxidant
defence and the methylation cycle whose overall function is critical
for T effector cell function (126). Anti-oxidant programs in T cells
include the de novo generation of glutathione from glutamate,
cysteine and glycine by glutamate cysteine ligase (Gclc) (127).
Gclc-loss in Tregs drives ROS-dependent serine uptake and de
novo serine synthesis leading to multiorgan autoimmunity (128).
Impeding serine metabolism in Gclc-null Tregs rescues Treg
suppressive activity, suggesting that reduced glutathione is crucial
for Treg function by restraining serine metabolism (Figure 3).

Essential Amino Acids
Essential amino acids also require transporters for uptake; for
example, LAT1 imports branched chain amino acids (BCAA)
and aromatic amino acids (e.g. Phenylalanine, histidine, leucine
and tryptophan) at the expense of exporting glutamine (129).
Interestingly, BCAA bypass first-pass hepatic metabolism, thus
allowing for the muscle (primarily) and other organs to
immediately acquire BCAA (130). In addition to being
essential to protein synthesis, BCAA help replenish the TCA
cycle and provide carbon units for fatty acids synthesis (131).
Disrupting BCAA metabolism by limiting dietary isoleucine
diminishes homeostatic numbers of Tregs and weakens their
suppressive function. Disrupting part of the BCAA transporter,
SLC3A2, similarly reduces Treg homeostatic survival and their
suppressive activity in experimental colitis models (132). In some
cases of cancer, such as pancreatic cancer, there is an early rise of
serum BCAA (133), which may perhaps support Treg function in
limiting anti-tumor immunity, but this is yet to be explored.

Tryptophan and Kynurenine
One well described mechanism of tumor evasion is the expression
by cancer cells or tolerogenic DCs of tryptophan-degrading
enzymes such as indoleamine-pyrrole 2,3-dioxygenase 1 (IDO1)
(Figure 3). This enzyme catalyzes the conversion of tryptophan into
kynurenine in a pathway that leads to the production of kynurenic
acid, quinolinic acid and NAD. Both the reduced presence of
tryptophan and the accumulation of kynurenine have been shown
to potentiate an immunosuppressive cancer microenvironment
(134–136).

One IDO-dependent mechanism of promoting immune
suppression is the generation of Tregs. It has been shown that
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under low-tryptophan/high kynurenine or IDO1-expressing
DC’s, naïve CD4+ T cells enhance FoxP3 expression (137, 138)
(Figure 3). In a mouse model of B16-OVA tumor cells implanted
in FoxP3-GFP reporter mice, IDO1 inhibition led to increased
IL-17 expression in Tregs cells suggesting that tryptophan and
kynurenine metabolism play an important role in Th17/Treg
plasticity in vivo (139).

Intracellular Sensing of Amino Acids
by mTOR
Amino acids play a critical role in modulating Treg homeostasis,
polarization, and function; however, T cells require intracellular
nitrogen sensors to couple availability with function. One major
nitrogen sensor is the mammalian target of rapamycin (mTOR) Ser/
Thr kinase. mTOR assembles into two distinct complexes termed
complex 1 (mTORC1) and complex 2 (mTORC2), with mTOR
harboring the catalytic function for both complexes. Amino acids,
growth factors, and glucose can stimulate mTORC1 activation for
global protein synthesis (140). Translation consumes around 25% of
cellular ATP in lymphocytes and requires charged amino acids as
building blocks for protein synthesis (141), thus providing
mTORC1 with the responsibility of sensing amino acid
availability to keep translation in check.

Amino acids promote the Rag GTPases to recruit mTORC1
to the lysosomal membrane and bring mTORC1 in close
proximity to the small GTPase Rheb (142). GTP-bound Rheb
then activates mTORC1 (143). The many functions of mTORC1
include downstream targets involved in protein synthesis (e.g. S6
ribosomal protein) and lipid synthesis (144). Loss of the mTOR
catalytic subunit in T cells and Treg-specific loss increases FoxP3
induction, in part mediated by the mTORC2 complex. However,
mTOR catalytic activity and mTORC1 are indispensable for
suppression by regulating transcripts involved in mitochondrial
oxidative and lipid metabolism (28, 145–148). Foxp3-specific
ablation of upstream mTORC1 activators, RagA/B and Rheb,
severely impair Treg suppressive function leading not only to
uncontrolled systemic inflammation, but also enhanced anti-
tumor immunity (147–149). Interestingly, activation of human
Tregs has identified an oscillatory role for mTORC1 activity in
controlling metabolic plasticity (150).

Amino acids are essential for T cell proliferation and Tregs are
no exception. While glutamine and serine metabolic pathways are
critical to T effector cells, they seem to reduce Treg differentiation
and activity. Tregs rely on BCAA and arginine metabolism
potentially as means to support the TCA cycle for OXPHOS. The
activation of the amino acid sensor, mTORC1, is essential for the
suppressive fitness of Tregs. These data collectively suggest that
amino acid metabolism and sensing are key regulators of Treg
homeostasis, lineage polarization, and function.
THE GUT AND MICROBIOME
METABOLITE BY-PRODUCTS

The colon is an extraordinary organ of the mammalian body, as
it holds a large mass of bacterial species. It has been documented
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that 10-20% of faecal weight is contributed by bacteria and >90%
are obligate anaerobes (151). Most importantly, these anaerobic
bacteria further metabolize unabsorbed peptides, fats and
oligosaccharides, reaching a metabolic activity equivalent to
that of the liver (152, 153) (Figure 4). The by-products of
anaerobic fermentation in the gut are organic amines from
peptides, ammonia from peptides and nitrogen-based
metabolites, and SCFAs (i.e. acetate, butyrate, and propionate)
from dietary fibre (153). SCFAs are water soluble and allow for
easy absorption. It has been observed since the 1970’s that germ-
free mice suffer from chronic diarrhoea, which could be
remedied by providing SCFAs, suggesting that bacterial SCFAs
are responsible for maintaining colonic homeostasis (154)

Tregs are a key modulator of colonic homeostasis with
luminal concentrations of SCFAs positively correlating with
colonic Treg frequencies (155) (Figure 4). Germ-free mice
have reduced colonic Tregs that can be rescued by butyrate
supplementation, suggesting that bacterial fermentation of
dietary fibre into SCFAs helps maintain colonic Treg pools
(156). Butyrate, and to a lesser extent propionate, can induce
Tregs in a TGFb-dependent manner in vitro and in models of T-
cell-induced colitis (155, 156). Since SCFAs are water soluble,
Treg accumulation in other organs can also occur, providing
beneficial outcomes in experimental models of type I diabetes
and kidney allograft transplantation (157, 158).

SCFAs can act in two ways to promote Treg accumulation: G
protein-coupled receptor (GPCR) and histone deacetylases
(HDAC) (Figure 4). Loss of the free fatty acid receptor, FFA2,
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obliterates any Treg-inducing effect of SCFAs in the colon and in
allograft transplantation, suggesting that signalling through the
GPCR regulates FoxP3 induction (156, 157). Butyrate treatment
also increases histone H3 acetylation on the promoter of the
FoxP3 locus by inhibiting class I and class II HDACs (155, 159,
160). These two mechanisms employed by SCFAs are perhaps
linked, but this has yet to be investigated.

Another abundant dietary nutrient catabolized by the gut and
microbiome is tryptophan, an aromatic amino acid with an
indole side chain. Tryptophan can be broken down by both the
host and commensal bacteria in the gut. Host degradation of
tryptophan is used as a precursor to serotonins and niacin
(vitamin B3) biosynthesis (161). A few commensal bacterial
species in the gut, such as Escherichia coli, metabolize
tryptophan and release indoles and indole-derivatives into
circulation (162) (Figure 4). Dietary administration of indoles,
such as 2-(1H-Indol-3-ylcarbonyl)-4-thiazolecarboxylic acid
methyl ester (ITE), protect against experimental models of
colitis, EAE, and type I diabetes (159, 163–166). Indoles and
their derivatives were found to activate the Aryl hydrocarbon
receptor (AhR). AhR is a ligand-activated transcription factor
with a promiscuous binding site recognizing synthetic and
natural ligands (167, 168). Indole-derived ligands enhance
TGFb-induced Treg differentiation and increase IL10
production in activated T cells in vitro (163, 169) (Figure 4).
Dietary indole supplementation promotes Treg frequencies in
mice by directly activating AhR or by modifying the microbiota
towards butyrate-producing species (170, 171). However,
FIGURE 4 | The gut and microbiome by-products in regulating Tregs. The colon is a metabolically active site, with many unabsorbed nutrients, such as amino acids
and fats. These nutrients are metabolized by the gut commensal bacteria. Unabsorbed fatty acids can be converted to short chain fatty acids (SCFAs), butyrate and
propionate, that are released and enter the lamina propria. In the colonic lamina propria, SCFAs can induce the differentiation of naïve T cells into iTregs through the
G protein-coupled receptor (GPCR), free fatty acid receptor 2 (FFA2), or through its inhibitory action on histone deacetylases (HDACs). Tryptophan (TRP) is also
catabolized by gut symbionts into indoles or can be catabolized by dendritic cells (DC) into kynurenine (KYN) by indoleamine-pyrrole 2,3-dioxygenase 1 (IDO), both of
metabolites activate AhR.
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it should be noted that not all protective qualities of
indoles act through enhancing Treg activity in models of
autoimmunity (165).

The intestinal tissue also contributes to ligand activation of
AhR through the degradation of tryptophan to NAD by the
kynurenine pathway (167). The by-products of this pathway (e.g.
kynurenine) activate AhR (167) (Figure 3). Other sources of
kynurenine are gut-specific CD11c+CD103+ DCs expressing
IDO (Figure 4). This DC subset enhances Treg differentiation
as a means to mediate host-microbe homeostasis in the gut (172).
Overall, tryptophan metabolism either through host or microbial
breakdown can have a profound impact on Treg homeostasis
and differentiation in the host.
CONCLUSION

Nutrient availability and the production of various intracellular
metabolites can shape Treg cell fate and function (Table 1). The
key metabolic cues governing Tregs are driven by mitochondrial
oxidative metabolism, mainly the TCA cycle and FAO, along
with support from glycolytic intermediates. However, in the
process of trafficking within the host and reaching new tissue
sites, Tregs quickly adapt to new carbon sources and oxygen
levels through metabolic rewiring in accordance with the
microenvironment. While tissue resident Tregs have been
identified in nearly every organ, the type of metabolism that is
Frontiers in Immunology | www.frontiersin.org 10
required for them to survive in these environments is only
starting to be understood.

In recent years, the democratisation of single cell RNA
sequencing has led to numerous studies aiming to understand
the transcriptome of Tregs and their potential metabolic
landscape (173, 174). However, cellular metabolism is per
definition a dynamic process that cannot be fully encapsulated
by transcriptomics. In fact, further proteomic studies of Tregs
would greatly benefit the field of Treg immunometabolism (175).
While 2-NBDG, a fluorescent analogue of 2-DG, has helped in
the field of immunometabolism and tissue Tregs to measure
glucose uptake, a recent study has suggested it as an unreliable
tool as it retains intracellular transport in the presence of
multiple GLUT inhibitors (176). The most promising
technology available to help disentangle the complex metabolic
interface between Tregs and tissues is mass spectrometry
imaging. Techniques such as MALDI or DESI-MSI in
combination with classical immunohistochemistry confers a
spatial-temporal resolution which would provide a more
accurate picture of Treg metabolism within tissues (177).

On a final note, our understanding of Treg metabolism has
mainly been a blend of findings from both mice and humans.
However, it is important to underscore that human Tregs are
distinct from their mouse counterparts both metabolically and
phenotypically (178, 179). For example, one metabolic difference
is that ex-vivo human Tregs are glycolytic in nature, while ex-vivo
mouse Tregs are not (35, 178). A feature that may explain some
TABLE 1 | Metabolites in shaping Treg biology. Tregs are sensitive to various metabolites. The presence of certain metabolites can increase Treg differentiation and
suppressive function. However, in some cases, as with 2-hydroxyglutarate, limit Treg differentiation.

Metabolite Pathway Effect on Tregs

Glucose Glycolysis and branching pathways ↑Treg differentiation
↑Proliferation

Acetyl-CoA increase Oxidative metabolism ↑Treg differentiation
Fatty acids FAO ↑Treg differentiation
UDP-GlcNAC Hexosamine pathway ↑Treg Differentiation

↑FoxP3 stabilization
↑Suppressive Activity

W3 fatty acids Polyunsaturated Fatty Acids (PUFAs) ↑Treg differentiation
Retinoic acid Vitamin A metabolism ↑Treg differentiation

↑FoxP3 stabilization
↑Suppressive activity

Folic acid Vitamin B9 metabolism ↑Treg maintenance
Vit B Dietary vitamins ↑Treg differentiation
Vit C Dietary vitamins ↑Treg differentiation
Lactate Tricarboxylic acid cycle ↑Treg function
Glutamine restriction Tricarboxylic acid cycle

Amino acids
↑Treg differentiation
↑Suppressive activity

2-Hydroxyglutarate Epigenetics ↑Foxp3 silencing
↓Treg differentiation

Citrulline Urea cycle ↑Treg differentiation
Serine One carbon metabolism Treg maintenance
Isoleucine restriction Branched chain amino acids ↓Treg maintenance

↓Suppressive activity
Kynurenine Tryptophan metabolism ↑Treg differentiation
Butyrate, propionate, acetate
(Microbiome derived)

Short chain fatty acids from anaerobic fermentation ↑Treg differentiation
↑Suppressive activity

Indole derivatives
(microbiome derived)

Tryptophan metabolism ↑Treg differentiation
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of the metabolic differences between human and mouse Tregs
could lie in the functional heterogeneity of circulating human
Tregs – an aspect that is absent in mice (179). While mouse
FoxP3+ Tregs show functional homogeneity, human FOXP3+

Tregs are a pool of Tregs with various phenotypes and different
levels of suppressive activity (180). These phenotypic differences
will inevitably complicate the understanding of the metabolic
landscape of human Tregs and underline a limitation of mouse-
to-human Treg metabolism translation.

The nutrient environment in each tissue – be it mouse or human-
is a complex formula, yet Tregs find ways to metabolically adapt to
these new environments. By understanding these nodes of adaptation,
new therapies can emerge to either promote their function in
autoimmunity or limit their efficacy in cancer.
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