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Abstract

Spatial transcriptomics technologies have been extensively applied in biological research, enabling the study of transcriptome while
preserving the spatial context of tissues. Paired with spatial transcriptomics data, platforms often provide histology and (or) chromatin
images, which capture cellular morphology and chromatin organization. Additionally, single-cell RNA sequencing (scRNA-seq) data
from matching tissues often accompany spatial data, offering a transcriptome-wide gene expression profile of individual cells.
Integrating such additional data from other modalities can effectively enhance spatial transcriptomics data, and, conversely, spatial
transcriptomics data can supplement scRNA-seq with spatial information. Moreover, the rapid development of spatial multi-omics
technology has spurred the demand for the integration of spatial multi-omics data to present a more detailed molecular landscape
within tissues. Numerous deep learning (DL) methods have been developed for integrating spatial transcriptomics with other modalities.
However, a comprehensive review of DL approaches for integrating spatial transcriptomics data with other modalities remains absent.
In this study, we systematically review the applications of DL in integrating spatial transcriptomics data with other modalities. We first
delineate the DL techniques applied in this integration and the key tasks involved. Next, we detail these methods and categorize them
based on integrated modality and key task. Furthermore, we summarize the integration strategies of these integration methods. Finally,
we discuss the challenges and future directions in integrating spatial transcriptomics with other modalities, aiming to facilitate the
development of robust computational methods that more comprehensively exploit multimodal information.
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Introduction
Cells within tissues are organized in specific patterns that are
crucial for their function. This organization varies significantly
depending on the tissue type and its role in the body. Therefore,
preserving spatial context is essential for studying tissue archi-
tecture and cellular interactions. A key advancement in under-
standing these complex biological systems has been the advent
of spatial transcriptomics, which reveals spatial patterns of gene
expression. By providing insights into the spatial organization of
gene activity, spatial transcriptomics has significantly enhanced
our knowledge of tissue function and disease processes [1–4].
Spatial transcriptomics technologies are primarily classified into
two categories: image-based and sequencing-based [5]. Early-
stage image-based technologies, such as MERFISH [6], STARmap
[7], and seqFISH+ [8], offer single-cell resolution but are gener-
ally limited to a few hundred genes, which may not fully cap-
ture the transcriptome’s complexity. Nevertheless, recent com-
mercial image-based platforms, including CosMx (NanoString),
MERSCOPE (Vizgen), and Xenium In Situ (10x Genomics), enable
measurement of the expression levels of hundreds to thousands
of genes at a subcellular level. Conversely, 10x Visium [9], a popu-
lar sequencing-based technology, quantifies transcriptome-wide
gene expression levels within ∼55 μm spots that often contain
multiple cells. More recent sequencing-based technologies, like

Stereo-seq [10] and Seq-Scope [11], offer a subcellular spatial
resolution of <1 μm but suffer from high dropout events.

Moreover, platforms that provide spatial transcriptomics data
often include paired high-resolution image data, such as histology
and chromatin images, which complement cellular morphology
and chromatin organization information [7, 9, 12, 13]. Single-
cell RNA sequencing (scRNA-seq) profiles the whole transcrip-
tome at the single-cell level despite lacking spatial information
[14]. These additional data can serve as valuable resources to
enhance the utility of spatial transcriptomics data. For example,
integrating histology images can improve the resolution of spatial
transcriptomics data and accurately identify spatial domains [12].
Furthermore, integrating scRNA-seq data enables missing gene
imputation and cell deconvolution for spatial transcriptomics
data [15, 16]. In turn, spatial transcriptomics data aid in spa-
tial location reconstruction for scRNA-seq data [15, 16]. As spa-
tial multi-omics technologies advance, integrating spatial multi-
omics data is essential to reveal refined tissue architecture and
facilitate downstream analysis.

However, integrating multimodal data presents significant
computational challenges due to their inherent complexity and
variability [17]. Spatial transcriptomics data and scRNA-seq
data, typically represented as gene-by-cell matrices, still have a
domain gap (Fig. 1A and C). Besides, spatial transcriptomics data
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Figure 1. Spatial transcriptomics data, histology images, scRNA-seq data, and prevalent tasks in integrating spatial transcriptomics data with other
modalities. (A) Spatial transcriptomics provides gene expression patterns along with corresponding spatial locations, with gray squares indicating
unmeasured genes. (B) Histology images, paired with spatial transcriptomics data, capture cellular morphology and tissue architecture. (C) scRNA-
seq technologies measure gene expression levels of individual cells, though spatial information is lost during tissue dissociation. (D) Chromatin images,
paired with spatial transcriptomics data, reveal nuclear morphology and chromatin organization of individual cells. Reproduced with permission from
Nature Communications under the Creative Commons Attribution 4.0 International License [67]. (E) Spatial epigenomics/proteomics data, paired with
spatial transcriptomics data, offer chromatin accessibility and protein abundance information, with gray squares indicating unmeasured features. (F)
Spatial domain identification involves identifying regions of a tissue sample with coherent gene expression and histology. (G) Cell deconvolution infers
cell-type composition of spots. (H) Missing gene imputation predicts unmeasured gene expression levels. The blue-green squares with gray dashed
lines refer to the imputed gene expression levels in spatial transcriptomics data. (I) Spatial location reconstruction predicts spatial locations of cells in
scRNA-seq data. (J) Joint biomarker identification aims to identify multimodal biological markers. The light-yellow squares with gray dashed lines refer
to the predicted spatial location of cells in scRNA-seq data. Solid arrows denote indispensable modalities for the task, while dashed arrows represent
optional modalities.

include unique spatial information. Histology and chromatin
images, which are essentially 2D arrays of pixel values, exhibit
high heterogeneity compared to sequencing data (Fig. 1B and D).
Furthermore, in spatial multi-omics data, the distribution
disparities among different modalities are considerable, and
the number of features across these modalities is imbalanced
(Fig. 1E). Therefore, sophisticated computational methods are
critical to fully exploit the potential of these multimodal data.

In this context, deep learning (DL) has emerged as a transfor-
mative approach in computational biology, characterized by its
ability to process and analyze complex, high-dimensional data
through multilayered neural networks [18, 19]. Its robust capa-
bilities make DL adapted for integrating spatial transcriptomics
data with other modalities, tackling the inherent complexity of
these datasets. Compared to conventional statistical methods,
DL excels in extracting meaningful features from sequencing
data and images and is more versatile in integrating spatial
transcriptomics with other modalities, especially heterogeneous
data like histology and chromatin images. The recent emergence
of various DL methods for spatial transcriptomics integration
demonstrates its effectiveness. However, a comprehensive review
of DL approaches for integrating spatial transcriptomics data with
other modalities is lacking, and existing reviews do not cover the
latest developments in DL approaches.

In this study, we identify 22 DL methods for spatial tran-
scriptomics integration with other modalities, including histology
images, scRNA-seq, chromatin images, and other spatial omics
data. We classify these methods based on integrated modality
and key tasks while summarizing their respective integration
strategies. Our review begins with an overview of DL techniques in

the context of spatial transcriptomics data integration, followed
by an introduction to the prevalent key tasks in this domain.
Subsequently, we elaborate on the DL methods tailored for spatial
transcriptomics data integration. The manuscript concludes with
a discussion of the prevailing challenges and future directions.

Overview of DL techniques in spatial
transcriptomics data integration with other
modalities
A range of DL techniques are employed for integrating spatial
transcriptomics data with other modalities.

Convolutional neural networks (CNNs) and graph neural
networks (GNNs) are specialized architectures for image and
graph data, respectively. CNNs use convolutional and pooling
layers alongside nonlinear activations to efficiently capture local
patterns and construct complex representations. This design
reduces the parameter count compared to fully connected neural
networks, mitigating the risk of overfitting. CNNs are frequently
used for feature extraction from histology and chromatin images.
Moreover, spatial transcriptomics data, which can be considered
as images with hundreds to thousands of channels, can be
processed by CNNs potentially. GNNs iteratively update node
representations by aggregating information from adjacent nodes,
encapsulating both local and global contexts. Recent advance-
ments in GNNs, such as graph convolutional networks (GCNs)
and graph attention networks (GATs), have been widely applied
to integrate gene expression data with spatial and histology
information.

Unsupervised DL techniques for spatial transcriptomics
data integration with other modalities encompass contrastive,
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generative, and adversarial approaches. Contrastive learning
utilizes the concept of similarity, training models to bring closer
the representations of similar samples while pushing apart
those of dissimilar ones. This promotes the model to learn
common features among similar samples. Generative models,
including autoencoders (AEs) and variational autoencoders
(VAEs), are trained using a reconstruction loss. An AE comprises
an encoder that maps input to a latent space and a decoder
that reconstructs the input, facilitating the learning of latent
representations from gene expression data and images. VAEs
extend AEs by introducing probabilistic encodings, ensuring that
the latent representations closely resemble the prior distribution.
Compared to AEs, VAEs excel in both feature extraction and data
generation, such as imputing missing gene expression levels.
Adversarial learning employs a discriminator to differentiate
latent representations across modalities and trains the encoders
to fool the discriminator. Through this adversarial process,
the encoders map modalities (e.g. scRNA-seq data and spatial
transcriptomics data) to a shared latent space, extracting
underlying features common to multiple modalities.

Additionally, attention mechanisms have been developed to
enable models to weigh the importance of each part of the input
data, regardless of their distance. This allows models to capture
long-range dependencies more effectively and improve model
interpretability. For example, when integrating representations
from multiple modalities, an attention layer can dynamically
assign weights based on the specific input data, avoiding the need
to set a fixed hyperparameter rigidly. Multihead attention further
refines this approach by employing multiple sets of attention
weight. The Transformer [20] architecture harnesses these mech-
anisms within its structure, achieving unprecedented success in
natural language processing and computer vision [21, 22] and
serving as a powerful choice for processing gene expression and
image data.

Prevalent tasks in integrating spatial
transcriptomics data with other modalities
In this review, we examine 9 DL methods for integrating spatial
transcriptomics data with histology images, 10 methods with
scRNA-seq data, 1 method with chromatin images, and 2 methods
for spatial multi-omics integration. These methods are further
categorized based on key task and integration strategy. Table 1
summarizes current DL methods for spatial transcriptomics
integration with other modalities. Supplementary Table S1
provides descriptions of datasets applied to these DL methods.
Supplementary Table S2 presents prevalent metrics utilized for
benchmarking. Before delving into these methods, we introduce
prevalent tasks in integrating spatial transcriptomics data with
other modalities, including spatial domain identification, cell
deconvolution, missing gene imputation, and spatial location
reconstruction. Figure 1 illustrates multiple data modalities and
these tasks.

‘Spatial domain identification’ is a critical step in spatial tran-
scriptomics data analysis (Fig. 1F). It aims to identify regions of a
tissue sample with coherent gene expression and histology. Tra-
ditional clustering methods rely exclusively on gene expression
data, overlooking the inherent spatial relationships between cells.
Recent methods leverage additional information, such as spatial
coordinates and histology images, to more accurately identify
spatial domains.

Many spatial transcriptomics technologies capture gene
expression from multiple cells within a single spot, rather
than at single-cell resolution [5]. ‘Cell deconvolution’ refers to
inferring the proportions of different cell types present in each

spatial location (Fig. 1G). Approaches for cell deconvolution can
be divided into two classes: reference-based and reference-
free. Reference-based methods use scRNA-seq data, which
undergo clustering and differential expression analysis for cell
type composition prediction. Reference-free methods utilize
techniques like latent Dirichlet allocation [23] and archetypal
analysis [24] to infer transcriptional patterns for each cell state.

‘Missing gene imputation’ in spatial transcriptomics predicts
the expression levels of unmeasured genes in spatial transcrip-
tomics data (Fig. 1H), primarily applied to image-based spatial
transcriptomics technologies [5]. This approach addresses the
limitations of these technologies, which offer superior spatial res-
olution but typically measure only hundreds of preselected genes
due to indexing scheme constraints. By leveraging complemen-
tary scRNA-seq data, missing gene imputation can enhance spa-
tial transcriptomics data with transcriptome-wide information.

‘Spatial location reconstruction’ integrates scRNA-seq data
with spatial transcriptomics data, assigning single-cell gene
expression profiles to precise spatial coordinates within a tissue
sample (Fig. 1I). This allows for the identification of spatially
variable cell subpopulations and the investigation of cell–cell
interactions in their spatial context.

Biomarkers, encompassing genes, proteins, and morphological
features, function as measurable indicators of biological states
or conditions. ‘Joint biomarker identification’ integrates multiple
data modalities to identify multimodal biological markers (Fig. 1J).
Such biomarkers provide a comprehensive understanding of dis-
ease mechanisms and progression, offering a more robust and
reliable perspective.

Spatial transcriptomics data integration with
histology images
Histology images, such as those obtained through hematoxylin
and eosin (H&E) staining, are often provided by sequencing-based
platforms [12, 13]. These images offer high-resolution insights
into cellular morphology, capturing critical details about cell size,
shape, and arrangement, despite inherent noise. Integrating his-
tology images is motivated by the premise that spots with similar
histology characteristics are more likely to belong to the same
spatial domain and are more likely to share similar cell com-
positions. The primary objective of most integration methods
is to harness the detailed cellular morphology captured in his-
tology images to facilitate spatial transcriptomics data analysis.
Additionally, some methods leverage the superior resolution of
histology images to improve the resolution of spatial transcrip-
tomics data.

Spatial domain identification
Most studies integrating spatial transcriptomics data with histol-
ogy images aim to enhance spatial domain identification. Tools
such as SpaCell [25], stMVC [26], DeepST [27], ConGI [28], and
TransformerST [29] are designed to learn a joint latent represen-
tation, thereby improving domain segmentation, while SpaGCN
[30] incorporates clustering within its training process to directly
identify spatial domains. To evaluate the efficacy of these meth-
ods, researchers often rely on established datasets. Although dif-
ferent studies use varying datasets to assess their methodologies,
the human dorsolateral prefrontal cortex dataset [31], which is
manually annotated, has emerged as a popular benchmark for
evaluating spatial domain identification methods. This dataset
provides a reliable reference point for assessing the accuracy
of algorithms. In terms of performance metrics, the adjusted
Rand index (ARI), normalized mutual information, and homo-
geneity (HOM) are frequently utilized to provide insights into how

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae719#supplementary-data
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Table 1. Deep learning methods for integrating spatial transcriptomics data with other modalities.

Integrated modality Year Tool Model Integration
strategy

Key task

Integrating spatial
transcriptomics with
histology images

2019 SpaCell [25] CNN + AE Link-based Spatial domain
identification

2021 SpaGCN [30] GCN Graph-based Spatial domain
identification

2022 stMVC [26] CNN + GAE Sum-based &
Graph-based

Spatial domain
identification

DeepST [27] GVAE Graph-based Spatial domain
identification

2023 ConGI [28] Contrastive
learning

Sum-based &
Fusion-based

Spatial domain
identification

TESLA [40] CNN Link-based Spatial domain
identification

stLearn [34] CNN Graph-based Spatial domain
identification

2024 TransformerST
[29]

Transformer Link-based Spatial domain
identification

Starfysh [24] VAE Sum-based Cell deconvolution
Integrating spatial
transcriptomics with
scRNA-seq

2019 gimVI [54] VAE Fusion-based Missing gene
imputation

2021 DSTG [48] GCN Graph-based Cell deconvolution
stPlus [57] AE Fusion-based Missing gene

imputation
2022 CellDART [51] ADDA Fusion-based Cell deconvolution

DestVI [44] VAE Fusion-based Cell deconvolution
SD2 [49] GCN Graph-based Cell deconvolution

2023 GraphST [53] Contrastive
learning +
GAE + AE

Fusion-based Cell deconvolution

GTAD [50] GAT Graph-based Cell deconvolution
2024 STEM [61] AE Fusion-based Spatial location

reconstruction
ENVI [60] VAE Fusion-based Missing gene

imputation
Integrating spatial
transcriptomics with
chromatin images

2022 STACI [67] GVAE+VAE Fusion-based Joint biomarker
identification

Spatial multi-omics
integration

2024 SpatialGlue [68] GAE Sum-based Spatial domain
identification

PRAGA [69] GAE Link-based Spatial domain
identification

well the clustering results align with the true spatial domains
(Supplementary Table S2).

SpaCell [25] is the first study to combine histology images and
gene expression data for cell clustering. It independently normal-
izes histology images and gene expression data, segments the
images into 299 × 299 pixel tiles, each containing a single spot, and
employs a pretrained ResNet50 [32] model to extract tile embed-
dings. These embeddings and the corresponding gene expression
data are fed into two AEs, and their latent representations are
concatenated for K-means or Louvain clustering [33]. Additionally,
SpaCell uses a two-layer Deep Neural Network (DNN) to predict
the disease stage of spots based on their image embeddings and
gene expression data. Despite its promising performance, SpaCell
learns latent representations without incorporating spatial infor-
mation.

Inspired by SpaCell, Pham et al. [34] developed stLearn to
incorporate gene expression data, spatial and histology informa-
tion for normalization. A pretrained ResNet50 network extracts
features from histology images to compute histological similarity.

For each spot Si, the model identifies the three neighboring spots
with highest weights for normalization. The weighting matrix is
calculated as follows:

Wi,j = GDi,j· MDi,j∑n
j=1

(
GDi,j· MDi,j

) , (1)

where GDi,j and MDi,j represent gene expression correlation and
histology similarity between spot Si and Sj, respectively, and n
denotes the number of selected spots. stLearn normalizes gene
expression data as follows:

GE′
i = 1

2
GEi + 1

2

⎧⎨⎩
n∑

j=1

(
Wi,j· GEj

) |Sj

⎫⎬⎭ , (2)

where Sj denotes the selected spots for normalization. GE′i rep-
resents normalized gene expression of spot Si, while GEi and GEj

represent raw gene expression of spots Si and Sj. Next, stLearn

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae719#supplementary-data
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identifies broad clusters at a global level using normalized data,
followed by a refinement phase that enables subclustering based
on spatial segregation within tissue sections. In addition, stLearn
includes two other modules for spatio-temporal cell trajecto-
ries reconstruction and cell–cell interaction analysis. However,
both SpaCell and stLearn employ a pretrained ResNet50 net-
work trained on a dataset of nonhistology images, which may
not fully capture significant patterns from histology images. An
independent benchmarking study [35] shows that the old version
of stLearn has generally surpassed SpaCell.

In contrast, SpaGCN [30] converts spatial transcriptomics data
into a graph-structured format and utilizes the GCN to inte-
grate gene expression, histology images, and spatial information.
SpaGCN employs PCA for dimension reduction of gene expression
data after normalization with the top 50 principal components
serving as node embeddings. The edge weight between any two
spots is calculated using the Euclidean distance, which incorpo-
rates the spatial coordinates and an additional third dimension,
z, derived from the the mean color value for the red, green, and
blue (RGB) channels in the histology image. The GCN takes the
graph as input and outputs aggregated representations, upon
which the Louvain method is applied for clustering. The param-
eters of the GCN are optimized with the iterative refinement
of clusters. Furthermore, SpaGCN employs the Wilcoxon rank-
sum test to identify spatially variable genes (SVGs). If no SVG is
identified, SpaGCN uses a set of genes to formulate a meta gene
significantly highly expressed within a specific spatial domain.
Although spaGCN outperforms the older version of stLearn, a
recent benchmarking study [36] indicates that the latest ver-
sion of stLearn exhibits slightly better clustering accuracy than
spaGCN.

Zuo et al. [26] pointed out SpaGCN’s inability to utilize the tex-
tural features of spots. They introduced stMVC, semisupervised
graph attention autoencoders that learn robust representations
of spatial transcriptomics data and histology images. stMVC
initializes histology images via a ResNet50 model [32], which is
trained by SimCLR framework [37] and outperforms the ResNet50
model pretrained by the ImageNet, which is used in SpaCell and
stLearn. The model constructs two graphs: one representing his-
tological similarity and the other representing spatial proximity
between spots. The model utilizes an AE to compress the gene
count matrix, encapsulating nonlinear gene relationships. The
compressed gene count matrix is used for the feature matrix
of the graphs. Graph attention autoencoders (GATEs) are used
to learn representations of nodes. Considering the quality of the
information in different views may be different, an attention layer
is followed for representation weights assignment. The weighted
sum of the two representations is applied for spot classification
with manual region segmentation serving as a reference, enabling
representations learned by GATEs under weak supervision
simultaneously. Finally, the robust representations are used
for spot clustering by the “FindNeighbors” and “FindClusters”
function with default parameters from the Seurat package [38].
stMVC’s flexible framework supports the addition of various
omics data, enabling the integration of spatial multi-omics data
with histology images. Using average silhouette width (ASW) as
the metric (Supplementary Table S2), stMVC shows improved
clustering accuracy over the previous version of stLearn, although
its relative performance compared to other spatial domain
identification methods integrating histology information remains
unclear.

Similar to stLearn, DeepST [27] conducts data augmentation
on gene expression data to integrate histology information as

follows:

G̃Ei = GEi +
∑n

j=1 GEj· MSij· GCij

n
, (3)

where GEi and GEj are the raw gene expressions for spot Si

and n adjacent spots Sj, GCij is the gene expression correlation
between spot Si and spot Sj, and MSij is the morphological sim-
ilarity between spot Si and adjacent spot Sj. DeepST utilizes a
denoising autoencoder to effectively reduce the dimensionality
of gene expression data. It then constructs a spatial graph and
employs a graph variational autoencoder (GVAE) to learn the
graph embeddings. Besides, DeepST applies domain adversarial
neural networks to align embeddings from multiple batches or
different spatial transcriptomics technologies. The Leiden method
is applied for graph embedding clustering. Despite the advance-
ments of stLearn and DeepST, they both adhere to a fixed radius
for determining neighboring points during gene expression data
augmentation. A benchmarking study for GNN-based methods
reveal that DeepST’s clustering accuracy is typically higher than
SpaGCN’s, while DeepST requires more computational resources
since it comprises two deep neural networks.

Zeng et al. [28] indicated that SpaGCN only integrates histology
images prior to training, and image noise may result in inac-
curate spot relationships. They developed ConGI, which utilizes
contrastive learning to filter noise within histology images for
enhanced integration. ConGI augments image data and gene
expression data by adding noise. It employs two independent
encoders to extract features from gene expression and image
data separately, subsequently projecting the embeddings from
two modalities to a shared space. ConGI applies three contrastive
learning losses to pull representations of paired data closer and
push those of unpaired data apart: one for gene expression, one
for images, and one for cross-modality (images to gene expres-
sion). At the end, the image and gene expression representa-
tions are combined and used for spatial domain identification
by mclust [39]. ConGI outperforms SpaGCN in terms of ARI but
suffers from poor interpretability and neglects the spatial infor-
mation, potentially constraining its efficacy.

Hu et al. [40] proposed TESLA, a method utilizing the CNN for
domain segmentation. Developed by the same research group
behind the SpaGCN, TESLA employs the Canny edge detection
algorithm to identify tissue regions, which are then divided into
equal squares significantly smaller than the spots. Gene expres-
sion levels for these squares are imputed using the 10 nearest
measured spots based on the Euclidean distance metric, similar
to SpaGCN. TESLA constructs a meta gene from multiple marker
genes and creates a meta gene image where each pixel represents
the meta gene’s expression level. The grayscale histology image
and the meta gene image are then combined into a two-channel
image, which undergoes unsupervised segmentation via a CNN,
facilitating annotations from cell type to structure.

TransformerST [29] contains two advanced Transformer-based
models—a Vision Transformer and an adaptive Graph Trans-
former—and a cross-scale internal graph network. It demon-
strates remarkable efficiency in clustering and enhancing spatial
transcriptomics data at single-cell resolution. The Vision Trans-
former processes spot-centric image patches and employs its
decoder for gene expression prediction, compelling the encoder
to learn a joint latent representation of gene expression and
histology information. TransformerST then constructs a spatial
graph for spots, concatenating the latent image embeddings with
the gene expression matrix to form spot feature vectors. Con-
sequently, the adaptive Graph Transformer incorporates spatial

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae719#supplementary-data
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information into the feature vectors, generating graph embed-
dings for spatial domain identification. Finally, the cross-scale
internal graph network infers gene expression embeddings for
each sliding-window histology image patch by initializing the
patches through the Vision Transformer’s encoder. Unlike meth-
ods that directly use image similarity to estimate gene expression,
this model introduces learnable weights for each neighboring
node. This allows for a more nuanced estimation of gene expres-
sion for sliding-window patches. Furthermore, besides achieving
super-resolution clustering, TransformerST demonstrates supe-
rior clustering accuracy compared to SpaGCN, DeepST, and the
latest version of stLearn.

Cell deconvolution
Similar to methods integrating histology images for spatial
domain identification, the sole reference-free DL method for
cell deconvolution also seeks to derive a robust joint latent
representation of gene expression data and histology images for
each spot.

Among the methods for cell deconvolution of spatial transcrip-
tomics data, only a few are reference-free. Though they enable cell
deconvolution without scRNA-seq data, He et al. [24] noted that
previous reference-free methods fall short in refined cell state
inference, scalability, multislice analysis capability, and utiliza-
tion of histological image information. Inspired by the applica-
tion of deep generative models in single-cell omics, they devel-
oped Starfysh, a VAE designed for cell deconvolution in spatial
transcriptomics data without scRNA-seq as a reference. If avail-
able, the model can be enhanced by integrating paired histology
images. It first determines the number of cell states and their
marker genes through archetypal analysis [41]. Starfysh inte-
grates multiple samples by identifying and updating gene mark-
ers based on sample-specific anchors, aggregating these mark-
ers across all samples. The model learns latent representations
denoted as uk for each cell state k via a neural network. The model
uses a Dirichlet distribution to model ck, the proportion of cell
state k. View-specific encoders, θ1 and θ2, map spatial transcrip-
tomics data and histology images to latent space, conforming to
distributions Normal

(
μ1, σ 2

1

)
and Normal

(
μ2, σ 2

2

)
, respectively. The

posterior distribution qθ

(
z|c, x, y

)
is parameterized as follows:

qθ

(
z|c, x, y

) = μ1/σ1
2 + μ2/σ2

2

1/σ1
2 + 1/σ2

2
, (4)

where z represents the joint latent variables of gene expres-
sion data x and histology images y. The posterior distribution is
constrained to approximate the prior distribution p (z|c, u; σ) as
follows:

p (z|c, u; σ) = Normal

(∑
k

ckuk,
∑

k

ckσk

)
, (5)

where σk represents cell state-specific heterogeneity. The
posterior c is parameterized by a neural network, while the
prior c is determined by A, the enrichment score of the marker
genes for cell states. View-specific decoders then reconstruct
the original gene expression data and histology images from
the latent variables z. Consequently, Starfysh disentangles
spots across slices within the latent space and reconstructs
cell type–specific gene expression levels to reveal cell states. It
outperforms previous reference-free methods, including CARD
[42], BayesTME [43], and STdeconvolve [23], in deconvolving
both major and finer cell types. Additionally, it demonstrates
comparable performance to state-of-the-art reference-based

methods such as DestVI [44], Cell2location [45], Tangram [46],
and BayesPrism [47] across Jensen–Shannon divergence (JSD) and
root-mean-squared error (RMSE) metrics in both simulated and
real datasets (Supplementary Table S2).

Spatial transcriptomics data integration with
scRNA-seq data
scRNA-seq technologies enable the profiling of transcriptome-
wide gene expression at the individual cell level, although spa-
tial information is lost during tissue dissociation [14]. Assuming
that the biological processes captured by scRNA-seq and spatial
transcriptomics are fundamentally the same, the integration of
spatial transcriptomics data and scRNA-seq can combine the
strengths of both technologies. For low-resolution, sequencing-
based spatial transcriptomics data, scRNA-seq data serve as a
reference for cell deconvolution. For image-based transcriptomics
data with limited gene measurement, scRNA-seq data assist in
missing gene imputation. Conversely, for scRNA-seq data lacking
spatial information, spatial transcriptomics data facilitate the
spatial location reconstruction of individual cells.

Cell deconvolution
Methods for cell deconvolution assume that each spot in spatial
transcriptomics data represents a mixture of multiple cell types.
Therefore, some DL methods integrating scRNA-seq data for cell
deconvolution generate pseudo-spots, which are mixtures of cells
from scRNA-seq data. These pseudo-spots simulate complex cel-
lular mixtures in real spatial transcriptomics data and serve as
the ground truth for model training.

DSTG [48], SD2 [49], and GTAD [50] all employ the GNN to inte-
grate spatial transcriptomics data with scRNA-seq data for cell
deconvolution. In preprocessing, DSTG and GTAD select highly
variable genes, as is common in spatial transcriptomics integra-
tion methods. Conversely, SD2 selects genes with a significantly
high dropout rate. For graph construction, DSTG and SD2 use
the k-nearest neighbors (k-NN) method, whereas GTAD adopts a
random projection forest, which obviates the need to determine
a neighborhood size. Ultimately, GNN is applied to learn spot
embeddings and predict the cell composition of pseudo-spots.
Specifically, DSTG and SD2 utilize the GCN, and GTAD employs
the GAT to capture the correlations between pseudo-spots and
real spots more effectively. However, these methods do not model
the distribution discrepancy between pseudo-spots and real spots,
which may diminish the deconvolution performance.

CellDART [51] considers the discrepancy and employs adversar-
ial discriminative domain adaptation (ADDA) [52] to transfer the
ability of cell composition prediction from pseudo-spots to real
spots. It first trains a feature extractor and predictor to predict
cell composition within pseudo-spots. Subsequently, real spots
are fed to the feature extractor, and a discriminator is applied
to map embeddings of pseudo-spots and real spots to a shared
latent space. This adaptation enhances the model’s performance
in inferring cell composition for spatial transcriptomics data.
Nevertheless, cell deconvolution methods based on pseudo-spots
fail to infer the specific cell state for cells within spots.

Lopez et al. [44] observed that conventional methods, which
treat cell type as a categorical variable, exhibit declining per-
formance as the cell clustering resolution increases, due to the
neglect of differences in similarity between cell types. To address
this issue, they developed DestVI, a model that utilizes continuous
latent embeddings to characterize cell types. DestVI assumes that
cell states within a spot are similar for a specific cell type, thereby
simplifying the task. A conditional VAE is employed to infer cell

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae719#supplementary-data
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type composition for each spot and the latent embedding of each
cell type, representing the cell state. Furthermore, the decoder can
reconstruct cell-type-specific gene expression for each spot, facil-
itating downstream analysis. An independent benchmark system-
atically assessed DestVI, DSTG, and SD2 for cell deconvolution. It
reveals that DestVI exhibits the most robust performance with
both simulated and real-world datasets, achieving the highest
Pearson correlation coefficient (PCC) and the lowest RMSE and JSD
among these three methods (Supplementary Table S2). However,
DestVI tends to yield average cell-type proportions in the Slide-
seqV2 and stereo-seq datasets, resulting in suboptimal perfor-
mance.

Unlike previous methods, GraphST [53] aims to learn a map-
ping matrix to project scRNA-seq data onto spatial transcrip-
tomics for cell deconvolution through three modules. Module 1
employs a GAE with augmentation-based self-supervised con-
trastive learning to learn spot embeddings. Specifically, it con-
structs a neighborhood graph for spots and then randomly shuf-
fles gene expression vectors across spots to generate a corrupted
neighborhood graph. During model training, the spot embed-
dings are pulled closer to their neighborhood’s embeddings in the
real neighborhood graph and pushed away from their neighbor’s
embeddings in the corrupted neighborhood graph. This approach
ensures that the spot embeddings effectively capture the local
spatial context Module 2 aligns multiple slices and constructs
a shared graph, enabling joint analysis of multiple tissue slices.
Module 3 utilizes an AE to acquire cell embeddings from scRNA-
seq data, reducing noise from sequencing technology. It then
learns a mapping matrix denoting the probability of cells being
projected onto each spot of the spatial transcriptomics data.
In addition to the reconstruction loss, it employs contrastive
learning to minimize differences in cell composition between
adjacent spots, thereby capturing spatial information. Similar to
generative models for cell deconvolution, such as DestVI, GraphST
can reconstruct cell-type-specific gene expression to reveal cell
states within spots. However, the neural networks for deriving
cell and spot embeddings are trained independently, potentially
leading to distribution discrepancies between these embeddings,
which could impair the performance of cell deconvolution.

Missing gene imputation
Lopez et al. [54], from the same lab that developed DestVI,
observed that previous methods embed sequencing data via
linear model, which fail to capture nonlinear gene relationships.
Moreover, these methods tend to overlay samples that do not
exhibit substantial biological resemblance, as the alignment
is conducted in an ad hoc manner. To address these issues,
they extended scVI [55] to develop gimVI, a VAE augmented
with an auxiliary binary neuron. Spatial transcriptomics data
and scRNA-seq are fed to distinct nonlinear encoders with a
shared final layer, followed by a shared nonlinear decoder for
reconstruction. Both the encoder and decoder are conditioned
on an auxiliary binary neuron within, which acts as a modality
indicator. To align representations from two modalities, the model
incorporates H-divergence between the two latent spaces to
the loss function. gimVI accounts for biases inherent to diverse
sequencing technologies by adopting conditional distributions
specific to each method: Poisson for smFISH [56], negative
binomial (NB) for STARmap [7], and either zero-inflated negative
binomial (ZINB) or NB for scRNA-seq data. Gene imputation
is performed by designating the modality indicator to scRNA-
seq for representations derived from spatial transcriptomics
data.

stPlus [57] employs a tailored loss function to efficiently
generate embeddings for spatial transcriptomics and scRNA-
seq data through an AE. Genes only measured by scRNA-seq
are masked. The AE aims to learn meaningful embeddings by
minimizing the reconstruction loss for spatial transcriptomics
data and the masked value prediction error for masked scRNA-
seq data. stPlus highlights the function designed to assess
prediction error, which considers the dropout events in scRNA-
seq and penalizes the prediction error of scRNA-seq data with
high sparsity. To predict the expression of unmeasured genes in
spots, stPlus employs the 50 nearest scRNA-seq cells for spot
gene imputation, using a weighted k-NN method based on the
distance between their embeddings. Spatial transcriptomics data
imputed by stPlus demonstrate better clustering accuracy than
those imputed by gimVI, indicating that stPlus identifies cell
populations more effectively. However, compared to generative
models, directly using scRNA-seq data to impute missing genes in
spatial transcriptomics data may introduce technical bias. Indeed,
independent benchmarks [58, 59] highlight gimVI’s superior
predictive capabilities to stPlus. For example, when assessing the
average accuracy score (AS) across multiple datasets, gimVI’s AS
is 0.84, while stPlus’s AS is 0.31 (Supplementary Table S2).

ENVI [60] postulates that a spot’s microenvironment correlates
with its gene expression. The model innovatively incorporates
spatial context for gene imputation via a conditional VAE, where
an auxiliary binary neuron specifies the input modality for both
the encoder and decoder. This study introduces the Covariance
Environment (COVET) matrix, which effectively integrates cellular
gene expression with their microenvironment. ENVI employs a
shared encoder to map spatial transcriptomics data and scRNA-
seq data into a common latent space. During training, an expres-
sion decoder reconstructs expression profiles, while an environ-
ment decoder predicts the COVET matrices from spatial tran-
scriptomics embeddings, thereby incorporating spatial context
into the embeddings. In this way, the expression decoder can
impute unmeasured genes for spatial data, and the environment
decoder can reconstruct the spatial context of scRNA-seq data.
The effectiveness of ENVI is benchmarked using the PCC and
the multiscale spectral similarity index, a spatially aware metrics
developed by the authors (Supplementary Table S2). Both metrics
demonstrate ENVI’s superior performance over gimVI in gene
imputation.

Spatial location reconstruction
Hao et al. [61] developed STEM, an AE designed to predict a
mapping matrix from scRNA-seq to spatial transcriptomics. This
model leverages the biological assumption that gene expression
profiles contain rich spatial information, which can be used to
infer cellular localization and spatial relationships. STEM uti-
lizes a shared encoder to learn embeddings from both spatial
transcriptomics data and scRNA-seq data. The spatial adjacency
matrix of spatial transcriptomics data is reconstructed via two
methods: first, through the inner product of spatial transcrip-
tomics embeddings, and second, by generating scRNA-seq to spa-
tial transcriptomics and spatial transcriptomics to scRNA-seq
mapping matrices through the inner product of single-cell and
spatial transcriptomics embeddings. The model is trained using
two reconstruction losses, combined with a maximum mean
discrepancy loss to minimize the mean distance between spa-
tial transcriptomics and single-cell embeddings. After prediction,
the integrated gradient [62] is applied for model interpretation
to identify spatially dominant genes. STEM significantly outper-
forms CellTrek [63], scSpace [64], Seurat [38], SpaOTsc [65], and

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae719#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae719#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae719#supplementary-data
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Tangram [46] in correctness of predicted cell-to-cell adjacency
and is the only method that effectively reconstructs the spatial
distribution of cells in simulated datasets.

Spatial transcriptomics data integration with
chromatin images
Several spatial transcriptomics technologies, such as STARmap
[7] and 10x Visium [9], provide spatial transcriptomics data and
paired chromatin images. These images capture the nuclear mor-
phology and chromatin organization of individual cells, which are
valuable for reflecting tissue development and disease progres-
sion [66]. However, few methods utilize these images as comple-
mentary information in spatial transcriptomics data analysis. To
our knowledge, there is only one study designed for the integra-
tion of spatial transcriptomics data and chromatin images.

Joint biomarker identification
STACI [67] comprises an overparameterized GVAE and a varia-
tional CNN autoencoder. Initially, it obtains latent representations
of spatial transcriptomics data via the GVAE. The overparame-
terized architecture, where the size of hidden layers exceeds the
dimensionality of the input feature space, is designed for batch
effect correction in spatial transcriptomics data. Next, the varia-
tional CNN autoencoder is employed to acquire representations
of chromatin images. In addition to the standard loss function
of the VAE, STACI minimizes the distance between the spatial
transcriptomic and image representation of each cell, thereby pro-
viding joint representations of both spatial transcriptomics and
chromatin images. These joint representations are then utilized
for downstream analysis, identifying combined morphometric
and molecular biomarkers of disease progression.

Spatial multi-omics integration
Spatial multi-omics is an advanced field that combines multiple
omics layers, such as genomics, transcriptomics, and proteomics,
along with spatial context to provide a comprehensive view of
the molecular landscape of tissues. However, integrating spatial
multi-omics is challenging due to the significant discrepancies
in distribution between different modalities and the imbalance
in the number of features they possess. For example, proteins
usually have only dozens to hundreds of features, while genes
number in the tens of thousands.

Spatial domain identification
Long et al. [68] developed SpatialGlue, the first integration tool
designed for spatial multi-omics data. It employs a GAE with
a dual-attention mechanism at two levels. Considering that the
spatial distribution of each cell type can be either discrete or con-
tinuous, SpatialGlue constructs two distinct graphs for features
and spatial information within each modality. It utilizes a shared
GCN in conjunction with an attention layer to integrate feature
modality and spatial information representations. Another atten-
tion layer is then used to combine representations from multiple
modalities. In addition to the conventional reconstruction loss,
the model also incorporates a correspondence loss to align rep-
resentations from various modalities.

Huang et al. [69] noted that SpatialGlue captures limited rela-
tions through the feature adjacency graphs constructed by K-
Nearest Neighbors (KNN). To address this, they develop PRAGA,
setting the adjacency matrix of the feature graphs as learnable
parameters. PRAGA calculates the weighted sum of the adjacency
matrices of both the feature graph and spatial graph, which
are used as the edge weights between spots. A GAE is applied

to learn the joint representation of modalities, while individ-
ual GCNs initially process distinct modalities. To avoid unstable
training caused by significant changes in the adjacency matrices,
the model adds an HOM loss to penalize changes between the
adjacency matrix before and after updates. PRAGA exhibits higher
clustering accuracy than SpatialGlue on identical benchmarking
datasets, demonstrating its effectiveness.

Integration strategies
Integration strategies are methods for integrating information
from various modalities. We identify four primary integration
strategies: link-based, sum-based, graph-based, and fusion-based.
Link-based and sum-based strategies are typically used to inte-
grate spatial transcriptomics data with paired histology images
or spatial omics data, while graph-based and fusion-based meth-
ods can combine spatial transcriptomics data with both images,
scRNA-seq data and spatial omics data. Besides the integrated
modality, the selection of integration strategy is also influenced by
the key task. For example, three DL methods integrating scRNA-
seq data for missing gene imputation all employ the fusion-based
strategy.

Link-based
The link-based strategy involves concatenating representations
of multiple modalities, which can occur in either data space or
latent space (Fig. 2A). For example, SpaCell outputs concatenated
histology and gene expression representations, while PRAGA fol-
lows this with an multilayer perceptron (MLP) for the final rep-
resentation. TESLA merges histology image with a meta-gene
image generated from spatial transcriptomics data to serve as
the input for a CNN. Similarly, TransformerST combines histology
representations with the gene expression matrix to characterize
spots.

Sum-based
The sum-based strategy integrates data representations from
various modalities by computing their weighted sum (Fig. 2B).
Weights can be assigned as hyperparameters, as seen in ConGI,
or learned within the neural network, as exemplified by stMVC,
Starfysh, and SpatialGlue.

Graph-based
The graph-based strategy constructs graphs using multimodal
information, often followed by a GNN-based model to learn node
representations. It can be divided into two classes: “nodes and
edges” and “dual nodes” (Fig. 2C). In the “nodes and edges” strategy,
one modality is used as nodes, while another modality is used
to calculate edge weight. stLearn, SpaGCN, stMVC, and DeepST
use this method to integrate spatial transcriptomics data with
histology images, where spots are nodes and histology images
contribute to edge weight calculations alongside spatial informa-
tion. In the “dual nodes” strategy, both modalities serve as nodes,
with edges representing the similarity between nodes. DSTG, SD2,
and GTAD adopt this strategy to merge spatial transcriptomics
data with scRNA-seq data, where each node represents a spatial
transcriptomics spot or a cell in scRNA-seq data, and edges reflect
gene expression similarity.

Fusion-based
The fusion-based strategy aims to map data from multiple modal-
ities to a joint latent space to capture common features (Fig. 2D).
This strategy employs two primary techniques: shared encoder
projection and representation alignment. gimVI, ConGI, DestVI,
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Figure 2. Integration strategies. (A) Link-based strategy: The representations of Modality 1 and Modality 2 are concatenated to form the final
representations. (B) Sum-based strategy: The weighted sum of the representation of Modality 1 and the representation of Modality 2 serves as the
final representation. (C) Graph-based strategy: In the “nodes and edges” subcategory (top), Modality 1 features nodes, while Modality 2 contributes to
edges. In the “dual nodes” subcategory (bottom), both Modality 1 and Modality 2 feature nodes with edges representing the similarity between nodes.
(D) Fusion-based strategy: Modality 1 and Modality 2 are mapped to a joint latent space.

and STACI use distinct encoders for each modality but align
representations in the latent space. In contrast, methods like
CellDART, STEM, stPlus, and ENVI adopt a shared encoder for
multiple modalities, with CellDART and STEM ensuring represen-
tation alignment in the latent space. Additionally, both gimVI and
ENVI are augmented with an auxiliary binary neuron. GraphST
does not use specific methods to align the two modalities’ rep-
resentations. However, it learns a matrix to map one modality to
another, assuming they share similar underlying features. Thus, it
is classified within this category. These diverse implementations
highlight the flexibility and effectiveness of the fusion-based
strategy in integrating multimodal data.

Challenges and future directions
Biological systems operate through intricate networks, where
various molecular components interact dynamically. While single
data modalities provide valuable insights, they often fail to
capture the comprehensive view necessary to fully understand
these interactions. Leveraging the strengths of multiple data
types allows researchers to achieve a more robust and nuanced
understanding of biological processes and disease mechanisms.

Despite the emergence of DL methods for integrating
spatial transcriptomics data with other modalities, several

challenges remain. Firstly, the majority of DL integration methods
are unavailable for multislice analysis of spatial transcriptomics
data. An increasing number of spatial studies generate data
from multiple slices to construct extensive spatial atlases, but
batch effects within slices hinder their joint analysis. As such,
it is imperative to develop tools equipped with batch effects
removal capabilities to achieve multislice analysis. To address this
need, STACI [67] employs an overparameterized autoencoder, and
DeepST [27] uses adversarial learning. However, both methods
do not account for spatial dependency between slices. GraphST
[53] uses the PASTE algorithm [70] to align slices and construct a
shared graph across multiple slices for batch correction via GNNs.
Nevertheless, the PASTE algorithm itself does not incorporate
histology information within slices.

The second challenge is the inherent noise within the data.
Histology and chromatin images not only capture morphological
features but also include extraneous information irrelevant to
specific tasks, such as spatial domain identification and cell
deconvolution. Integrating such images can potentially hamper
the overall performance of models. For example, independent
benchmarks [35, 36, 71] indicate that adding H&E staining
images does not consistently enhance SpaGCN’s performance.
Furthermore, dropouts and technical effects in spatial omics and
scRNA-seq data can confound biological variations. Hence, it
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Table 2. Independent benchmarking studies of methods for
specific tasks.

Benchmarking study Task

Cheng et al. [35] Spatial domain identification
Liu et al. [71] Spatial domain identification
Yuan et al. [36] Spatial domain identification
Li et al. [58] Cell deconvolution & missing

gene imputation
Yan and Sun [75] Cell deconvolution
Li et al. [76] Cell deconvolution
Sang-aram et al. [77] Cell deconvolution
Avsar and Pir [59] Missing gene imputation

is essential to filter out noise in multimodal integration via
advanced DL techniques.

Thirdly, the scalability of computational methods is increas-
ingly critical as spatial transcriptomics datasets grow in size. Early
computational methods were designed for datasets with no more
than 10 000 spots, as was the limit of spatial technology at the
time. Nevertheless, rapid advancements in spatial technologies
enable the simultaneous measurement of hundreds of thousands
of locations per section [72]. Consequently, existing methods may
struggle to maintain efficiency at such scales. To improve the
scalability of models, one potential solution is to employ effi-
cient neural network architectures that offer comparable or even
higher performance with fewer computations.

Another challenge is the lack of interpretability in DL methods.
For example, it is difficult to assess the contribution of spatial
transcriptomics data and histology images to their joint repre-
sentation obtained through graph-based or fusion-based strate-
gies. Moreover, most studies in this field overlook interpretability
analysis, which is essential for dissecting model decision-making
processes, refining models, and uncovering biological insights
[18]. For example, STEM [61] identifies spatially dominant genes
by interpreting how the model predicts cell locations from gene
expression data.

Moving forward, there remain new possibilities for the inte-
gration of spatial transcriptomics and other modalities. By com-
bining spatial transcriptomics data with histology images and
spatial omics data, researchers can improve cancer grading, sub-
typing, drug response predictions, and patient prognosis assess-
ments. These areas are active fields of research, whereas previous
studies were often limited to using unpaired multi-omics data
and (or) histology images due to technical limitations. Nowa-
days, an increasing number of datasets provide spatial omics
data paired with histology images. Integrating these data types
is expected to significantly advance the field. Moreover, most
research identifies spatial domains through transcriptomic het-
erogeneity. Alternatively, cell-type composition derived from cell
deconvolution promises refined domain segmentation, simplify-
ing the task. Recently, Ma et al. [73] have introduced the first
method to leverage cell type composition for spatial domains
detection via machine learning, assuming that spots within simi-
lar spatial domains share similar cell type composition. Therefore,
we anticipate the development of DL methods based on this
assumption for enhanced performance.

The rapid evolution of spatial technologies has created new
opportunities for the integration of multimodal data. For example,
emerging computational methods are specifically designed
for spatial multi-omics integration. Given the success and

versatility of DL in single-cell multi-omics data integration [74],
researchers might extend these approaches to spatial data, thus
driving forward the field of spatial multi-omics. Additionally, akin
to transcriptomic data, spatial Assay for Transposase-Accessible
Chromatin using sequencing (ATAC-seq) can be integrated with
scATAC-seq to complement their respective limitations, thereby
offering a more comprehensive landscape of spatial chromatin
accessibility.

As numerous DL integration methods have emerged, indepen-
dent benchmarks are crucial for unbiased and comprehensive
assessment. Table 2 presents recent benchmarking studies, which
suggest that DL approaches have not demonstrated a notable
advantage over non-DL methods in cell deconvolution and miss-
ing gene imputation. However, these studies have not evaluated
the latest DL integration methods developed in the past 2 years. In
addition, these benchmarks suffer from imbalanced data, as most
spatial transcriptomics data selected for benchmarks are from
normal tissues, potentially leading to bias in method evaluation.
Future benchmarks are expected to incorporate more spatial
transcriptomics datasets from diseased tissues and evaluate more
recent DL integration methods.

In conclusion, our review systematically explores advance-
ments in DL methods for integrating spatial transcriptomics
data with other modalities. This emerging field holds significant
promise for unlocking new biological insights and enhancing our
understanding of complex biological systems. Future algorithmic
development needs to not only focus on specific tasks but also
consider critical factors such as multislice analysis capabilities,
noise reduction, scalability, and interpretability. Moreover, devel-
oping computational methods for novel tasks and unexplored
data types integration remains an important area for further
research. We hope that the insights elucidated in this review offer
a critical reference point for forthcoming studies and advance the
field.

Key Points

• Additional data, including paired histology and chro-
matin images, as well as scRNA-seq data from match-
ing tissues, serve as valuable resources to enhance the
utility of spatial transcriptomics data.

• The integration strategy of deep learning methods in this
review can be divided into four categories: concatena-
tion, weighted-sum, graph-based, and joint embedding.

• Challenges in integrating spatial transcriptomics data
with other modalities include scalability, inconsistent
enhancement of spatial domain identification, and
interpretability.

• Future directions for integrating spatial transcriptomics
data with other modalities include possibilities such as
cancer grading, subtyping, drug response predictions,
patient prognosis assessments, and integration of unex-
plored data like scATAC-seq and spatial ATAC-seq.

• The datasets and prevalent evaluation metrics used
in these integration methods are provided in the
supplementary data.

Supplementary data
Supplementary data are available at Briefings in Bioinformatics
online.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae719#supplementary-data
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