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Memory ability and retention performance relate
differentially to sleep depth and spindle type

Fereshteh Dehnavi,1,5 Ping Chai Koo-Poeggel,2,3 Maryam Ghorbani,1,4,5,* and Lisa Marshall2,3,6,*

SUMMARY

Temporal interactions between non-rapid eye movement (NREM) sleep rhythms especially the coupling
between cortical slow oscillations (SO, �1 Hz) and thalamic spindles (�12 Hz) have been proposed to
contribute to multi-regional interactions crucial for memory processing and cognitive ability. We investi-
gated relationships between NREM sleep depth, sleep spindles and SO-spindle coupling regarding mem-
ory ability and memory consolidation in healthy humans. Findings underscore the functional relevance of
spindle dynamics (slow versus fast), SO-phase, andmost importantly NREM sleep depth for cognitive pro-
cessing. Cross-frequency coupling analyses demonstrated stronger precise temporal coordination of slow
spindles to SO down-state in N2 for subjects with higher general memory ability. A GLM model under-
scored this relationship, and furthermore that fast spindle properties were predictive of overnight mem-
ory consolidation. Our results suggest cognitive fingerprints dependent on conjoint fine-tuned SO-spindle
temporal coupling, spindle properties, and brain sleep state.

INTRODUCTION

Non-rapid eye movement (NREM) sleep is composed of many different shades. As sleep deepens, sleep spindles commence, density and

magnitude of sleep slow oscillations (SO) increase. With further deepening of NREM sleep density of thalamo-cortical spindles and also their

frequency tend to decrease.1–3 According to the concept of active systems consolidation, the reactivation during sleep of neural networks

active during preceding learning facilitates information transfer between and within brain structures.4 The electrophysiological activity poten-

tially mediating cellular and molecular changes for memory storage appear to be reflected in the coalescence of sleep slow oscillations, tha-

lamo-cortical sleep spindles and/or hippocampal sharp-wave ripples.5–8 In the EEG such inter-regional interaction is well assessed by SO-

spindle coupling. At least two types of fast oscillatory events are distinguished, fast and slow sleep spindles.5,9–13 Aside from frequency,

neurophysiological distinctions between these spindle types are indicated by their EEG topography, pharmacological dependence, and cur-

rent source density distributions.5,9,14–19 Notably, spindle frequency bands often differ between research groups, e.g., as a function of detec-

tion method,9,20 and debatable intracortical (laminar) distribution.21,22 In EEG andMEG fast spindles couple to the depolarizing SO Up state

or down-to-up state transition, and slow spindles couple to the SO Up-to-down state, revealing stable individual differences across

nights.11,12,23

Interestingly, despite indications for multiple evidence pointing toward qualitatively differential kinds of processing during light and deep

NREM sleep,12,24–30 only recently are the spindle types at different NREM sleep depths or in relation to SO occurrence31,32 investigated

together with functional correlates of sleep spindles.20,31–37

Sleep spindle parameters and topographic distribution have been investigated as correlates of pre-sleep task learning e.g.,38,39 memory

retention and reactivation processes during the sleep period reviewed in.5,40,41 The latter has received strong support by the upsurge of tar-

geted memory reactivation and related studies,42–44 although not uncontroversial.45 These relationships of spindles to experience-depen-

dent activity is confounded by inter-individual differences, most notably by measures of general mental ability,26,34,46,47 but also sex and

age.18,20,48–50

The aim of the present article is to firstly disclose differences, dependent upon pre-sleep learning, on individually determined slow and fast

spindle properties (spindle density, power and coupling to the slow oscillation) separately during N2 and N3 sleep. For this we compared

spindle properties after subjects conducted a battery of declarative and procedural learning tasks versus a non-learning control session.

On this basis, we secondly, investigate whether the trait-like general memory quotient of the subjects is associated with any of the above

spindle properties. Previously the general memory quotient of these subjects correlated with the efficacy of non-invasive brain stimulation
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on overnight consolidation of a declarative task.34 We include a general linear model to investigate the predictive value of spindle and

coupling parameters for the assessedmemory quotient. Our long-term aspiration is to determine (spindle) parameters relevant for predicting

the efficacy of non-invasive brain stimulation on memory retention.

RESULTS

Slow oscillations spindle coupling strength changes differentially for slow and fast spindles with non-rapid eye movement

sleep depth

Results of the within-subject repeated measures (rm) ANOVA for SO-slow and SO-fast spindle coupling strength with the factors Stage and

Topography are given in Tables S1–S4. SO-slow spindle coupling strength was significantly stronger in N2 than N3 in both Task and No-Task

conditions (Figure 1; Tables S1 and S2), with absence of a main Topography effect in the Task condition. In contrast to SO-slow spindle

coupling, SO-fast spindle coupling strength was stronger in N3 than N2 with this effect widely distributed across frontal to posterior locations

also in both conditions (Figure 1; Tables S3 and S4).

Mean fast and slow spindle power, revealed the characteristic topographical distribution for No Task, with higher mean in fronto-central

power for slow spindles, and higher centro-parietal power for fast spindles (Tables S2, S4, and Figure S1). Comparisons of NREM sleep depth

revealed over the frontal region significantly lower slow spindle power in N2 than N3 (FP1, FPz, FP2, F7 and Fz, p = 0.034, cluster-based per-

mutation). Slow spindle density was similarly significantly lower in N2 than N3 over frontal regions (for FP1, FPz, FP2, F7, Fz and F8, p = 0.014,

cluster-based permutation test) while it was significantly higher in N2 than N3 over parietal regions (for P3, Pz and P4, p = 0.044, cluster-based

permutation test). Expectedly, fast spindle power and density were significantly larger in N2 thanN3 at all electrodes (p < 0.001, cluster-based

permutation test; Figure S1). Amount of time spent in the NREM sleep stages N2 and N3 did not differ significantly (Table S5).

In addition to the differences in coupling strength, we checked for differences in coupling phase between N2 and N3 sleep depths. SO-

slow spindle coupling phases were significantly closer to 180 � (SO negative half-wave peak, i.e., SO trough) in N2 than N3, over all electrodes

in both conditions (Figures 2A–2C, cluster-based permutation test, p = 0.001 and p= 0.003 forNo Task and Task conditions, respectively). Fast

Figure 1. SO spindle coupling strength changes differentially for slow and fast spindles with NREM sleep depth

(A) Slow (Left) and fast (Right) spindle wavelet power locked to SO negative half-wave peak (t = 0 s) for Fz and Cz, respectively in N2 and N3 averaged across all

subjects.

(B) Topographical distribution of the difference in SO-spindle coupling strength between N2 andN3 for slow (Top) and fast (Bottom) spindles in both theNo Task

and Task conditions for all subjects (n = 24 and 25 for SO-slow and fast spindle coupling, respectively). Electrodes belonging to the cluster with a significant

difference between N2 and N3 (nonparametric cluster-permutation statistics, slow spindle: p < 0.001 and p = 0.003 for No Task and Task conditions,

respectively, fast spindle: p < 0.001 and p < 0.001 for No Task and Task conditions, respectively) are indicated by white dots (p < 0.05). For p > 0.1, black

dots (paired t-tests).
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spindles at centro-parietal electrodes coupled significantly closer to the SO positive peak (0�) also in N2 than in N3, in both conditions

(Figures 2D–2F, cluster-based permutation test, p = 0.004 and p = 0.003 for No-Task and Task conditions, respectively).

Slow oscillations-slow spindle coupling in N2 is stronger for subjects with higher memory quotient in the task condition

We next conducted a repeated measures ANCOVA for spindle properties with Stage and Topography as two within-subject factors and

memory quotient (MQ) as a covariate to investigate their association with MQ. The ANCOVA for SO-slow spindle coupling strength revealed

a significant interaction of Stage with MQ (F (1,22) = 4.31; p = 0.049), yet only in the Task condition. To better understand this interaction, we

calculated correlation between MQ and SO-slow spindle coupling strength in N2 and N3. SO-slow spindle coupling strength was positively

correlatedwithMQ inN2 for Task condition at FP1, FPz, F7, Fz,F8, C3, Cz, C4, P3 and P4 electrodes (cluster-based permutation test, p = 0.008;

Figure 3). Subjects with higher MQ revealed stronger SO-slow spindle coupling strength. There was no significant correlation between MQ

and SO-slow spindle coupling strength in N3.

Figure 2. Differences in SO-spindle coupling between N2 and N3 sleep depths

(A) Top: EEG (black) and slow spindle power filtered in 0.5–1.25 Hz time-locked to negative half-wave peak (t = 0 s) of one exemplary SO event in N2 (blue) andN3

(red) for Task condition, for Fz. Middle: the phases of both signals obtained using the Hilbert transform showing a phase shift of 147.02� and 114.96� for N2 andN3

respectively. Bottom: Distribution of the phase shifts (SI angles) for all SO events for one exemplary subject. The solid line shows the mean SO-spindle coupling

phase. The phase shifts corresponding to the exemplary SO events shown above were marked by circles.

(B) Distributions of mean SO-slow spindle coupling phases in N2 (Left) and N3 (Right) in No Task (Top) and Task (Bottom) conditions for Fz electrode for all

subjects. Mean G SEM across all subjects of SO-slow spindle coupling phases at Fz in N2 and N3 in the No Task and Task conditions: No Task, N2, phase =

139.81 G 6.68�; N3, 113.62 G 8.62�; Task, N2, phase = 137.02 G 7.31�, N3: 97.54 G 10.45�.
(C) Topographical distribution of SO-slow spindle coupling phase difference between N2 and N3 in No Task (Left) and Task (Right) conditions for all subjects.

Significant clusters were identified over all electrodes for both No Task and Task conditions (cluster-based permutation test, slow spindle: p = 0.001 and p = 0.003

for No Task and Task respectively). p < 0.05, white electrodes, p > 0.1, black electrodes for comparisons between N2 and N3 (circular m-test).

(D) Same as (A) for SO-fast spindle coupling for Cz. Phase shifts of �11.62� and �35.23� for N2 (cyan) and N3 (magenta) respectively.

(E) Same as (B) for SO-fast spindle coupling phases for the Cz electrode. MeanG SEM across all subjects of SO-fast spindle coupling phases at Cz in N2 andN3 in

the No Task and Task conditions: No Task, N2, phase = �4.62 G 4.68�, N3: �34.42 G 2.73�; Task, N2, phase = �7.67 G 5.94�, N3, -36.97 G 3.23�).
(F) Same as (C) for the SO-fast spindle coupling phase difference. Significant clusters were identified over centro-parietal electrodes (F8, C3, Cz, C4, P3, Pz and P4)

for both No Task and Task conditions (cluster-based permutation test, p = 0.004, p = 0.003 for No Task and Task respectively).
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Slow spindle density only tended to negatively correlate with MQ in N2 only for No Task over frontal electrodes (p = 0.052, cluster-based

permutation test, F (11,242) = 4.18, p = 0.053 for MQ 3 Topography interaction, repeated measures ANCOVA). There were no significant

effects of MQ or its interactions on slow spindle power nor on fast spindle measures (p > 0.1).

We anticipated that there may also be relationship between SO-slow spindle coupling phase, especially in N2 and MQ. However, as re-

vealed in Figure 4, there was only a tendency of MQ to correlate with SO-slow spindle coupling phase, with highMQ subjects coupling closer

to the SO trough (180�) over center-left frontal electrodes only in N3 for the Task condition (Figure 4C, cluster-based permutation test, p =

0.073 for Fp1, Fpz and F7). SO-fast spindle coupling measures also failed to correlate significantly with MQ.

Correlations of overnight retention with spindle properties

We explored first the correlation between spindle power and density for all subjects, yet separately for N2 and N3, and overnight retention

(in the Task condition; Figure S2). The FPA task retention performance correlated positively with fast spindle density in N2 over wide

spread prefrontal to parietal regions (FP1, FPz, FP2, Fz, C3, Cz, C4 and Pz, cluster-based permutation test, p = 0.013, Figures 5A

and 5B). Interestingly in N3, FPA and 2DL retention performance correlated negatively with fast spindle power over clusters at FP1,

FPz, F7, Fz, F8, C3,Cz, C4, Pz for FPA task and at a cluster including more parietal regions for 2DL the task (FP1, FPz, FP2, F7, Fz, F8,

C3, Cz, C4, P3, Pz, P4 cluster-based permutation test, FPA: p = 0.028, 2DL: p = 0.011, Figures 5C and 5D). Retention performance on

the declarative memory tasks did not correlate with either of these slow spindle measures and performance on the procedural memory

tasks only tended to correlate with a few spindle measures (p > 0.06): MT error only tended to negatively correlate with both fast and

slow spindle power in N2 and N3 (cluster-based permutation test, fast spindle: p = 0.069, p = 0.06 for N2 and N3 respectively, slow spindle:

p = 0.076, p = 0.072 for N2 and N3 respectively). In addition, MT speed tended to positively correlate with slow spindle density in N2

(cluster-based permutation test, p = 0.06).

We next investigated the correlation between the SO-spindle coupling strength and memory retention for both slow and fast spindles,

separately for N2 and N3. At both sleep depths, MT error correlated negatively with SO-fast spindle coupling strength at frontal, extending

to central electrodes (see Figures 6A and 6D, cluster-based permutation test, p = 0.016, and p = 0.034 for N2 andN3 respectively). Moreover,

FST speed correlated positively with SO-fast spindle coupling strength only in N2 at fronto-central sites (see Figure 6A, cluster-based permu-

tation test, p = 0.035; Figure 6A). Electrodes for the correlation diagrams in Figure 6B and 6D were selected on theoretical grounds, over

regions where enhanced neural activity could be expected: contralateral to the performing hand (C4) for accuracy and speed and associated

with performancemonitoring (F7) for error. Retention performance of the declarativememory tasks did not correlate significantly with SO-fast

spindle coupling strength nor did any correlation exist between SO-slow spindle coupling strength and memory retention of either declar-

ative or procedural memory tasks (p > 0.06).

Figure 3. SO-slow spindle coupling is stronger for subjects with higher general memory quotient (MQ) in N2 in the Task condition

(A) Scatterplots for Spearman correlation between SO-slow spindle coupling strength and MQ for the Task condition in N2.

(B) Topographical distribution of the Spearman correlation between SO-slow spindle coupling strength and MQ. Electrodes belonging to the cluster (FP1, FPz,

F7, Fz, F8, C3, Cz, C4, P3 and P4) revealing a significant correlation for Task in N2 (cluster-based permutation test, p = 0.008) are indicated by white (p < 0.05) and

gray (0.05 < p < 0.1) dots. p > 0.1, black dots.
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Overall, our results indicated that while the SO-slow spindle coupling was associated with the general memory quotient, fast spindle po-

wer, density and SO-fast spindle coupling strength were correlated with overnight memory consolidation.

Predictive value of spindle properties

Our final set of analyses investigated the predictive capacity of fast and slow spindle properties during eachNREM sleep stage, N2 andN3, as

well as subjects’ sex and age for both general memory ability and memory consolidation. Based on the frequently observed topographical

gradient in spindle properties between fronto-central and parietal regions we focused only on fronto-central electrode locations (FP1, FPz,

FP2, F7, Fz, F8, C3, Cz, C4) as multiple predictors in the generalized linear models (GLM) for MQ score and memory consolidation of the

different tasks. In addition, slow oscillations possess maximal amplitude distributions at anterior locations. Analyses were conducted sepa-

rately for N2 and N3.

Slow spindle properties are predictive of memory quotient

Figure 7A reveals the performance of the general linear model (GLM), regarding the relationship to MQ. The predictive error for the testing

data of MQ (different from the training data; see STAR methods for details) was significantly lower when slow spindle properties (coupling,

power and density) in N2 of the Task condition were used as regressors (main effects of Condition: F(1,275) = 38.81, p < 0.001; Stage:

F(1,275) = 4.23, p = 0.039; and interaction Condition X Stage: F(1,275) = 17.98, p < 0.001). Table 1 reveals the GLM-derived coefficients for

the slow spindle properties computed separately for the two conditions and stages. Notably, here only SO-slow spindle coupling strength

and slow spindle density of the Task condition in N2 were associated with MQ. Our data did not provide any effect for fast spindle properties

on MQ using the GLM model (Table S6).

Figure 4. SO-slow spindle coupling phase for higher MQ subjects is closer to the SO trough in N3 in the Task condition

(A) Slow spindle wavelet power (obtained from TFR) time-locked to the SO negative half-wave peak (SO trough) for one exemplary low (LMQ, blue line, MQ= 99)

and one exemplary high MQ subject (HMQ, red line, MQ = 135) for F7. The SO-slow spindle coupling phase is 49.26� (n = 992 SOs) and�173.60� (n = 1050 SOs)

for the low and the high MQ subjects, respectively, resulting in a phase difference (lowMQ – highMQ) of�137.14�. This negative phase difference indicates that

the slow spindle power of high MQ subject leads the one of the low MQ subjects.).

(B) Circular-linear correlation diagrams between SO-slow spindle coupling phase and MQ for all electrodes. To further visualize nonlinear circular-linear

relationship for the significant correlations a quadratic fit is shown by black solid curve. Red and blue dotes correspond to the same subjects shown in (A).

(C) Topographical distribution of circular-linear correlation between SO-slow spindle coupling phase and MQ in Task condition for N3. A cluster was identified

over the frontal region (FP1, FPz and F7) after the Task but did not reach significance (p = 0.073, nonparametric cluster-permutation statistics).
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Fast spindle density and power are predictive for memory consolidation

We next applied the GLM to quantify any contribution of fronto-central spindle properties in predicting retention on the declarative memory

tasks. The GLM with sex, age, mean SO-spindle coupling strength, spindle power, and density of FP1, FPz, FP2, F7, Fz, F8, C3, Cz, C4 as the

predictor variables and retention as a response variable revealed a significant effect of fast spindle density in N2 for FPA retention (Figure 7B).

Comparison of the GLM coefficients corresponding to fast spindle density in stages N2 and N3 among different tasks revealed that the co-

efficient estimate was significantly larger, for the FPA task, in N2 than N3 (Figure 7B; Stage: F(1,275) = 1024, p < 0.001; Task: F(2,550) = 3676,

p < 0.001; Stage X Task: F(2,550) = 1806, p < 0.001).

GLM-derived beta coefficients for fast spindle power in stages N2 and N3 revealed above chance effects for FPA in N2 and 2DL in N3

(Figure 7B). In both cases decreased fast spindle power was associated with increased retention (Stage: F(1,275) = 182.9, p < 0.001; Task:

F(2,550) = 7175, p < 0.001; Stage X Task: F(2,550) = 2310, p < 0.001). We found no significant effect of slow spindle properties for retention

performance on the declarative memory tasks (Table S7).

For the prediction of the retention on procedural memory tasks, the GLM revealed a significant effect of fast spindle power in N2

and N3 for MT speed, and a significant effect of fast spindle power and density in N3 for MT error and speed respectively (Table S8).

Age was also predictive of MT error and speed. An increase in age was associated with increased MT errors and decreased MT

speed.

We found a significant effect of slow spindle power only for MT speed in N2 using the GLM model (Table S9).

Figure 5. Differential correlations of overnight retention with N2 and N3 for fast spindle activity

(A) Topographical distribution of the coefficients r for correlations between the retention on the WPA (Left), FPA (Middle) and 2DL (Right) tasks and fast spindle

density in N2. A significant cluster was identified over FP1, FPz, FP2, Fz, C3, Cz, C4 and Pz for the FPA task only (cluster-based permutation test, p = 0.013).

(B) Correlation diagrams for Cz between the retention of the WPA (Left), FPA (Middle) and 2DL (Right) tasks and fast spindle density in N2.

(C) Same as (A) but for fast spindle power in N3. Significant clusters were identified over FP1, FPz, F7, Fz, F8, C3,Cz, C4, Pz electrodes for FPA task and over FP1,

FPz, FP2, F7,Fz, F8, C3, Cz, C4, P3, Pz and P4 electrodes for 2DL task (cluster-based permutation test, FPA: p = 0.028, 2DL: p = 0.011).

(D) Same as (B) but for fast spindle power inN3. For dots in A andC: p < 0.05, white electrodes; 0.05 < p< 0.1, gray electrodes; p > 0.1, black electrodes (Spearman

correlation). For filled circles in B and D, each circle represents a subject. WPA, word paired associate task, FPA, figural paired associate task, 2DL, 2D-object

location task.
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Taken together, the present results underscore and extend our above findings by showing that following a declarative memory task,

conjoint slow spindle properties in N2 were predictive for subjects’ MQ. On the other hand, fast spindle density and power were associated

with overnight memory retention.

DISCUSSION

Recently, interest in the differential physiological differences between depths of NREM sleep, especially of N2 and N3,12,28,51,52 and the

spatiotemporal dynamics of SOs and between SOs and spindles23,30,31 have increased. The present data compliment and extend these find-

ings by looking into spindle properties of N2 and N3 sleep relating to general memory ability and memory consolidation. Specifically, our

main and novel finding reveals the predictive value of combined slow spindle properties in post–task N2 sleep for subjects’ MQ.Or vice versa,

that the MQmeasure of general memory ability of a subject is best reflected by conjoint slow spindle properties (SO-spindle, coupling, den-

sity, power) in N2 sleep and after conducting a battery of memory tasks. Our findings provide, for our set-up, the functional relevance of slow

spindles (�9–12 Hz). In the meta-analyses by Ujma47 in which overall assessment did not permit to distinguish between depth of NREM sleep

or type of mental ability, slow spindle amplitude and moderately density were associated with general cognitive ability. The authors also

found an association for fast spindle amplitude, which was however not found here. Our results emphasizing the relevance of spindles in

N2 sleep are in line with previous reports showing a tendency of slow spindles in N2 to be positively related to other trait-like measures,

such as the working memory subdomain of fluid intelligence (ADRA) and a strong tendency of N2 spindles to be increased in subjects per-

forming good on theWechlser Memory Scale-revised or a similar intelligence test.36,46,53 AlthoughMQ does not equate with these IQ scores

its subtests rely partly on overlapping capacities and functional networks.46 The relevance of NREM sleep depth is interesting in lieu of the

Figure 6. Association between SO-fast spindle coupling strength and procedural memory retention

(A) Topographical distribution of the correlation coefficients r between the measures of retention performance on the procedural memory tasks and SO-fast

spindle coupling strength in N2. Significant clusters were identified for FST speed over FP1, F7, C3, Cz, C4 and for MT error over FP1, FPz, FP2, F7, Fz, C3,

C4 (cluster-based permutation test for MT error: p = 0.016; FST speed: p = 0.035). There was only a tendency of FST accuracy to correlate with SO-fast

spindle coupling strength over F7, C3, Cz, C4 (cluster-based permutation test, p = 0.078).

(B) Corresponding correlation diagrams between retention performance and SO-fast spindle coupling strength in N2 for C4 (for FST accuracy, FST speed andMT

speed), and F7 (MT error).

(C and D) Same as (A) and (B) respectively but for SO-fast spindle coupling strength in N3. A significant cluster was identified only for retention for MT error over

FP1, FPz, FP3, F7, Fz, F8 (cluster-based permutation test, p = 0.034). p < 0.05, white electrodes; 0.05 < p < 0.1, gray electrodes; p > 0.1, black electrodes.
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differential network dynamics described by others. For instance, EEG and fMRI studies indicate that degree of brain functional connectivity

decreases from light to deepNREM sleep25,54 andN2 is characterized bymore stable cortical-subcortical networks than N3.30 Activity reflect-

ing trait-like properties as MQ could be presumed to arise more likely from a network of greater stability.

Notably, within N2 prediction accuracy of compound slow spindle properties for MQwas higher for the Task than No Task condition. This

distinction reflects an interaction between a mental ability score and learning induced activity, as previously observed.46 Those authors

concluded from relationships between sleep spindles in N2 and tests that spindles reflect important aspects of efficient cortical-subcortical

connectivity and are thus linked to general cognitive-as well asmemory-related abilities. SO-spindle coupling was notmeasured in that study.

The fact that in N2, SO-slow spindle coupling strength across broad topographical regions was the strongest positive predictor variable for

MQ (Figure 3, Table 1) agrees to the upheld functional connectivity in N2 as mentioned above. Interestingly, our data also reveal the novel

finding that slow spindle density was a significant, albeit negative predictor of MQ.

On the other hand, fast spindle density and power were related tomemory retention (Figure 5). In line with expectations reviewed in5,40 our

results on fast spindle density revealed a positive correlation with overnight retention (on the FPA task) in N2, the sleep stage in humans with

the highest fast spindle density.55 This agrees with observed stronger functional connectivity between subregions of the hippocampal forma-

tion and cortical regions in N2 over N3.56 Unexpectedly, in N3 we observed a negative correlation between fast spindle power and retention

for FPA and 2DL. We speculate this decrement to be linked in some way to a homeostatic network activity, since individual electrodes

revealing this negative correlation between retention and fast spindle power appear to overlay regions potentially more strongly involved

in these tasks (left frontal for the relatively demanding FPA, and centro-parietal for the spatial 2DL; Figure 5B). Such opposite correlations

between performance and spindle power in N2 and N3 sleep was previously reported for spindle activity during sleep after a task of memory

forgetting 58. A biological distinction between light as compared to deep NREM sleep which could open several windows for further inves-

tigation is the finding of increased regional cerebral protein synthesis in light as compared to deep NREM sleep in humans.58

We found that SO-fast spindle coupling strength was stronger in N3 than N2. Yet, fast spindles coupled to an earlier phase on the rising

phase of the SO Up state in N3 than N2 (in both conditions). How could the close relationship between increased retention performance and

fast spindle density in N2 on the one hand, yet stronger SO-fast spindle coupling, coupling to an earlier phase and negative correlation be-

tween fast spindle power and retention in N3, on the other hand, be reconciled? The occurrence of fast spindles at an earlier phase of SO up

Table 1. Results for the GLM with slow spindle properties as predictor variables for MQ

Slow spindle properties

N2 N2 N2 N2 N3 N3 N3 N3

No Task No Task Task Task No Task No Task Task Task

b p b p b p b p

Strength r 3.53 0.23 5.97 0.03 * �1.21 0.74 2.14 0.53

Power 0.69 0.82 �1.58 0.56 0.16 0.96 0.09 0.98

Density �4.88 0.13 �6.15 0.03 * �1.43 0.71 �1.8 0.61

Sex 5.15 0.09 5.08 0.07 5.42 0.11 5.62 0.11

Age 0.53 0.87 0.12 0.96 3.3 0.32 3.15 0.34

The coefficients and p values of the GLM model with slow spindle properties over FP1, FPz, FP2, F7, Fz, F8, C3, Cz, and C4 electrodes as well as sex and age as

predictor variables for MQ. GLM was separately conducted for each condition and stage, *p < 0.05.

Figure 7. Predictive properties of spindles: GLM performance

(A) Accuracy of theMQ prediction using the GLMmodel with all three slow spindle properties as regressors on test data indicates an enhanced prediction of MQ

when the slow spindle properties in N2 of the Task condition were used. Data are given as error of MQ prediction (meanG SEM) for the testing data averaged

across 276 training-testing iterations (*p < 0.05, rm ANOVA; ***p < 0.001, # 0.05 < p < 0.1, paired t-test).

(B) Comparison of the GLM-derived coefficients (mean G SEM) of fast spindle density (left) and power (right) for retention in the WPA, FPA and 2DL tasks. rm

ANOVA revealed a significant effect of both Stage (N2, N3), Task (WPA, FPA, 2DL) and interaction of Task X Stage for fast spindle density. rm ANOVA revealed a

significant effect of Task, Stage and interaction of Task X Stage for fast spindle power, cp. text. (***p < 0.001, paired t-test; **p < 0.01, *p < 0.05, # 0.05 < p < 0.1,

n.s. p > 0.1, one sample t-test). WPA, word paired associate task, FPA, figural paired associate task, 2DL, 2D-object location task.
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state in old adults compared to the coupling of fast spindles around SOpeak in young adults was suggested to be associatedwith age-related

impairments in overnight memory retention.59 Coupling at the unfavorable phase was interpreted as decreased precision in coordinated

spindle-related and hippocampal activity. Indeed, using intracranial electrodes in patients Jiang et al. discovered more frequent coupling

of neocortical graphoelements to hippocampal SPWR in N2 than in N3, despite increased SPWR density in N3.60 Thus, functional distinctions

we find between N2 and N3 may be related differences in SO-SPWR coupling.

The function of SO is still a matter of debate. Aside from the concept of SO grouping thalamic-cortical activity and hippocampal activity to

serve memory reactivation and memory consolidation, large slow waves of deep NREM sleep have been associated with synaptic down-

scaling.61 Thus, our data may be taken to suggest that fast spindles of deep NREM sleep serve together with slow waves a different function

than during N2 spindles. It is to note, here, however, that overnight retention performance in our study was weakly expressed, reaching sig-

nificance only for high MQ subjects on the FPA task. Furthermore, since subjects learned on three declarative memory tasks, processing

related to spindle activity is putatively a response to multiple processing functions. Yet, our results underscore that differential processing

at different NREM sleep depths occurs and encourage future studies investigating effects of learning on sleep to discriminate between ac-

tivity in N2 and deep NREM sleep. This is especially important since questions as to the consistent benefit of sleep for memory consolidation

have led to more fine-grained psychological concepts.7,32,62

A growing number of studies report in detail at the electrophysiological level on spindle properties differing between in N2 andN3 such as

in their occurrence 61, timing relative to other sleep oscillations or events,13 or on differences in their topographical distribution.28,63 Similar

dependencies of spindles within N2 and N3 on other neural activity, e.g., global vs. local SOs23,30,31,51 and their potential molecular role64 are

also found. A number of studies have also reported predictive features of neural oscillations in sleep for memory,32,33,37,49,65,66 and mental

ability scores.20,48 Yet studies conjointly assessing memory consolidation and NREM sleep depth as presented here are seldom.31,52,57,67

Our results are unique in that they reveal the relationship of fast spindle activity to retention depends on task type and sleep depth.We recom-

mend striving toward more and challenging attempts to distinguish putative differential contributions of NREM sleep sub-states to cognitive

processing.

The distinctions described by us and others in brain states and neural oscillations can result from multifaceted sources including but not

limited to dynamic shifts in the contributions of more hippocampal and thalamic nuclei.68–70 Yet, such investigations on underlying mecha-

nisms are challenging: For instance, in rodents with well pronounced hippocampal activity NREM sleep depths are less distinct than in hu-

mans; on the other hand, humans revealed an unclear degree of systematic hippocampal coupling to cortical oscillations.60,71,72 Regarding

the thalamic contributions, despite successful findings73 far-field electrophysiological thalamic measurements are technically hampered by

the non-laminar structure and electrical closed-field properties.74

Studies involving non-invasive brain stimulation during sleep aimed to improve memory consolidation in humans typically targeted entire

NREM sleep (e.g.,.75–78 We have previously shown that the SO-transcranial direct current stimulation efficacy depends on both general mem-

ory quotient34 as well as the baseline sleep.35 The results of the current study further suggest that the stimulation efficacy can also depend on

the sleep stage in which the stimulation is applied.

In summary discrepancies between N2 and N3 of NREM sleep in electrophysiology or a behavioral measure have been previously re-

ported.12,26,28–30,57,60 The novelty of the present work is the conjoint view of slow and fast spindle measures during these two NREM sleep

depths, their relationship tomemory consolidation and trait-like parameter, and in addition, howprevious learning effects these relationships.

We find post-task SO-slow spindle coupling in N2was a positive predictor for subjects’memory quotient, whereas SO-fast spindle coupling in

N2 correlated positively with procedural retention performance. Functional correlates of spindle density differed between brain states, with

slow spindle density in N2 presenting a negative predictor for MQ, and fast spindle density in N2 correlating withmemory retention. Our data

in N2 replicated the positive correlation between fast spindle density andmemory retention, yet we also found in N3 a negative correlation of

retention with fast spindle power.

We believe our findings very important in lieu of the widespread concept to improve the memory function of sleep by modulating sleep

rhythms in particular sleep spindles, since our findings indicate the relevance of NREM sleep sub-states. Comparisons between intracranial

local field, and global vs. local scalp EEG activity are particularly relevant at themechanistic level. We encourage future research on sleep and

memory to always distinguish the different spindle types and relationships to cognitive parameters, whereby spindle frequency ranges should

be data-driven. Moreover, the predictive properties of trait-like measures for post-task brain oscillations require increased consideration in

experimental designs. In the long term the sleep community would benefit greatly from increased systematic investigations, and coordination

between laboratories employing scalp and intracranial recordings as well as analyses of molecular measure of neuroplasticity.

Limitations of the study

Our study has several limitations. Firstly, for comparative reasons, our analyses were limited to a 150 min interval of sleep. Thus, precluding a

statement on the temporal evolution of spindle properties across sleep cycles. Thus, any overnight changes in spindle properties, e.g., fre-

quency or effects of progressive homeostatic regulation across nocturnal sleepwere not incorporated. Along these lines, our analyseswindow

did not continue into the longer N2 sleep periods of the second part of the night, potential not including all offline consolidation processes,

especially for procedural memory. Our analyses also did not distinguish between SOs coupled or uncoupled to spindles, nor on global vs.

local spindles, measures which may affect cognitive relevance.29–31 Secondly, although the test for MQ score assess a trait-like property un-

derlying networks are presumably not independent of those required for our (declarative)memory tasks. Thirdly, we used a battery of memory

tasks for comparative reasons, yet acquisition and offline consolidation may underlie interference, as thoroughly discussed in Koo et al.34
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Finally, subjects did not receive a no-feedback final trial before sleep, so that the numeric difference in performance between morning and

evening sessions cannot be solely attributed to offline consolidation.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Participants

The details of the data used in this study were reported previously.34 Briefly, 25 healthy subjects (female: 15, ranging from 19 to 26 years, mean

age: 22.4G 2.12 years) participated in this study. All 25 subjects were Caucasians aside from one of Asian descent. All participants provided

written informed consent signed prior to participation. The study was approved by the local ethics committee of the University of Lübeck,

Germany according to the Declaration of Helsinki.

METHOD DETAILS

Experimental design and procedure

After an adaptation night, subjects participated in a non-learning baseline session (No-Task condition) and a Task session in which a battery of

memory tasks was given prior to nocturnal sleep. The two sessions were separated by at least seven days with their order counterbalanced

across subjects (Figure S3).

General memory quotient

General memory quotient (MQ) was assessed from a standard German Learn and Memory Test battery.34 To obtain MQ raw scores of six

subtests of learning and recall of verbal and figural content within given time limits were transformed into weighted t-value points. MQ

was measured after the experimental nights, so as not to interfere with the actual memory tasks.

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithm

MATLAB 2017b MathWorks https://www.mathworks.com/products/

matlab.html, RRID: SCR_001622

EEGLAB 13_5_4b Delorme & Makeig84 https://sccn.ucsd.edu/eeglab/index.php,

RRID:SCR_007292

FieldTrip 20171231 Oostenveld et al.,85 http://www.fieldtriptoolbox.org,

RRID:SCR_004849

CircStat 2012a Berens86 https://philippberens.wordpress.com/code/

circstats/, RRID:SCR_016651

Others

DC amplifier SynAmps RT Compumedics Neuroscan, Charlotte, USA https://compumedicsneuroscan.com/

EASYcap EASYCAP GmbH, Herrsching, Germany https://www.easycap.de/
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Behavioral tasks

Memory performance was assessed by five previously employed tasks,34,35 three declarative (word paired-associate,WPA; figural paired-asso-

ciate, FPA; 2D-object location, 2DL) and twoproceduralmemory tasks (finger sequence tapping, FST;mirror tracing,MT). In short, the FPA task

involved subjects to learn 16 figural pairs (cue-target) that were composed of geometric or non-geometric lines. Each pair was presented for 5 s

on the computer monitor followed by a 1 s interstimulus interval. In immediate cued recognition subjects were prompted to indicate each

target figure (intermixedwith 7 other figures) upon the appearance of one cue figure. Feedbackwas given regardless of the subjects’ response.

There were no time constraints. Learning was repeated until a minimum of 10 correct answers (corresponding to 60%) during immediate cued

recognition were reached. The next morning, delayed cued recognition was conducted as immediate recall in the previous evening, but

without feedback. The WPA task consisted of 80 semantically related German word-pairs (cue-target), presented in two lists of 40 pairs

each. The first and last three word-pairs of each list served as dummies. Sequential presentation occurred via monitor for 4 s per word pair,

with 1s interstimulus interval. Immediate cued free recall of all 80 words was performed after learning, and delayed recall in the morning.

For the 2D-object location task (2DL),79 subjects were required to learn the location of 15 pairs of picture cards presented in a 5 3 6 matrix

on the monitor. A 60% learning criterium was used. If subjects failed to reach the criterion, a new learning trial with a different order of objects

was initiated. At immediate and delayed recall subjects were required to indicate the position of the target picture on presentation of the cue.

For the FST subjects or subjects were to type on a keyboard as quickly and accurately as possible with their non-dominant left hand a

sequence of five elements (numbers from1 to 4, e.g., 4-1-3-2-4) presented on themonitor. In theMT task subjects traced as fast and accurately

as possible meaningless line-drawn figure. Only a mirror image of their hand movements and the figure were visible.

For each task, performances immediately after the learning period (prior to nocturnal sleep) and after nocturnal sleep are termed

‘Learning’ and ‘Recall’ performance, respectively. Retention was calculated as 100*(Recall performance - Learning performance)/Learning

performance.

QUANTIFICATION AND STATISTICAL ANALYSIS

EEG spectral analysis and spindle peak detection

EEG were recorded from Fp1, Fpz, Fp2, F7, Fz, F8, C3, Cz, C4, P3, Pz, P4, A1 and A2 referenced to the nose (international 10:20 system) with

a DC amplifier SynAmps RT (Compumedics Neuroscan, Charlotte, USA, sampling rate of 500 Hz, with a low-pass filter set at 200 Hz; a gain of

10 dB). Artifacts were removed through visual inspection of the filtered data (0.16–33 Hz). American Academy of Sleep Medicine (AASM)

manual80 was used to determine wake and sleep stages (N1, N2, N3, REM sleep) by two independent scorers. Details of determining

non-overlapping slow and fast frequency ranges separately for each subject were explained previously.35 Briefly, analyses were conducted

on continuous N2 and N3 (30-s) epochs, within 150 min immediately after the termination of a sham-stimulation (i.e., commencing

46.38 G 1.66 min after sleep onset) the power spectra (obtained by using 5 s Hanning window with 50% overlap) of the temporal derivative

of EEG epochs were used to determine the fast and slow spindle peaks within the corresponding frequency range (9–11.5 Hz for slow spindles

and 12.5–15 Hz for fast spindles). As reported in Koo et al.,34 the amount of time spent in N2 (No-Task: 49.1G 4.2 min, Task: 48.3G 3.5 min)

and N3 (No-Task: 65.5G 4.9 min, Task: 68.1G 4.4 min) did not differ between conditions (paired sample t-test, p > 0.5). Spindle peaks were

determined across Fz for slow spindles, and across Cz for fast spindles for each subject. All the subjects had a discrete fast spindle peak (prom-

inence greater than 0.02, detected from the spectra normalized with respect to power in the 0.2–4 Hz frequency band). For subjects without a

prominent discrete slow spindle peak in any condition or stage, the average value for slow spindle peak frequency across other subjects was

used. For subjects with slow spindle peak lower than 11Hz, the slow spindle frequency rangewas determined as +/�2Hz around the peak. For

other subjects the slow spindle frequency range was determined from 2 Hz lower than the peak frequency to 12 Hz. For subjects with fast

spindle peak greater than 13 Hz, the fast spindle frequency range was determined as +/�2 Hz around the peak. For other subjects, the

fast spindle frequency range was determined from 12 Hz to 2 Hz greater than the peak frequency.

Slow oscillation and spindle detection

ThealgorithmfordetectingSOsandspindleswas thesameas inDehanvi et al.35 Inbrief, forSOdetection, first thenegativeandpositivepeaksof

the filteredEEG (0.16–3.5 Hz, FIR band-pass filter, filter order corresponds to 3 cycles of the low frequency cut off, EEGLAB toolbox) were deter-

mined.Negativepeaksgreater than the subjects’ averagednegativepeakby a factor of 1.25weredetected as negativepeakof slowoscillations

if i) the cycle duration defined as the time between the consecutive positive to negative zero crossingswas between 0.8 and 2 s and ii) the ampli-

tudedifferencebetween the negative andpositivepeakswas 1.25 times larger than the averageddifferencebetween the negative andpositive

peaks. Spindles were detected as intervals with the root-mean-square (RMS) of the filtered signal (individually determined spindle frequency

range, FIR band-pass filter, filter order of 3 cycles the low frequency cut off) greater than 1.5 standard deviation (SD) for 0.5–3 s. RMS signal

was calculated using moving windows of 0.2 s, with a step size of 10 ms and then smoothed using a moving window of 0.2 s.

Phase amplitude coupling

We assessed Phase Amplitude Coupling (PAC) between SOs and spindles like a previously employedmethod.35,81 First, time–frequency Rep-

resentations (TFRs) were calculated �3 s–3 s around each SO negative half-wave peak using FieldTrip toolbox of MATLAB. TFRs were then

normalized as difference to pre-event baseline (�2.5 to�1.2 s) and the normalizedmean power was computed in the spindle frequency range.

Both EEG and the spindle power computed around the SO event were then filtered between 0.5 and 1.25 Hz (to avoid edge effects we
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conducted zero-padding) and the phase differencebetween the SOevent and spindle power were calculated using theHilbert transform. Syn-

chronization index (SI) is defined for eachevent as the circularmeanof this phasedifferenceover a timewindowof�1 to1 s around theSOevent.

SI =
1

m

Xm
j = 1

ei½qSOðjÞ� qSPðjÞ�

wherem is the number of time points, qSO(j) and qSP(j) are the phase value of the SOevent and spindle power time series at time point tj respec-

tively. The absolute of SI indicates the strength of coupling between the SO and the spindle power, and the angle of SI represents the phase

shift between SO event and spindle power.

Statistical analysis

MATLAB (version 2017b) was used for all statistical analyses. The data of one subject with so-slow spindle strength greater than the meanG

two times SD were excluded from all statistical analyses on slow spindle properties.

The different strengths of SO-spindle coupling strength as well as spindle density and power were tested by a two-way repeated-measure

ANOVA, separately for slowand fast spindles ineach condition. Stage (N2,N3) andTopography (Fp1, Fpz, Fp2, F7, Fz, F8,C3,Cz,C4, P3, Pz, P4)

as twowithin-subject factorswereused in this analysis.Next, to explore theeffect ofMQon spindleproperties,MQwas includedas a covariate.

Thereby a repeatedmeasures ANCOVAwith Stage (N2, N3) and Topography as two within-subject factors andMQ as a covariate were used.

Greenhouse-Geisser corrections were applied when assumptions of sphericity were violated as indicated by Mauchly’s test of sphericity. Ho-

mogenity was examinedby the Levene’s test andmultivariate normality was assessedby calculating theMahalanobis distance and comparing

it to the Chi-square distribution. Neither criteria were violated. Analyses were conducted with SPSS statistical software version 16.

Statistical analyses on the SI angles employed MATLAB CircStat toolbox (Berens P. CircStat: a MATLAB toolbox for circular statistics.).

Within-subject differences in SI phases between sleep stages N2 and N3 were tested by comparing the difference in SI angles (N2-N3) to

zero using the one-sample t-test for circular values (m test in circular toolbox). The m test asks whether the population mean angle is equal

to a specified value. The relationship betweenMQand phase of SO-spindle coupling were investigated via circular-linear correlation (CircStat

toolbox82). Above phase analyses were only conducted for significant SI phase distributions (p < 0.05, Rayleigh test number of excluded sub-

jects for each electrode: 1 subject for F8, and P4, 2 subjects for FP1, Fz, C3, Cz, P3, and Pz and 3 subjects for FPz, F7 and C4).

The relationship between strength of SO-spindle coupling, and retention (MQ), as well as the relationship between retention (MQ) and

spindle density or power, respectively were investigated via Spearman’s correlation separately for slow and fast spindles. To correct for mul-

tiple comparisons for both evaluating the statistical differences and correlation analysis, a cluster-based permutation procedure like previous

articles57,83 was applied. A spatial cluster was formed as the sumof all test statistics exceeding a limit corresponding to p= 0.1, over the neigh-

boring electrodes. These cluster level statistics were then subjected to a Monte Carlo permutation algorithm (1000 permutations). A similar

procedure was performed for each of 1000 random permutations to establish the null distribution of cluster values. The final threshold for

significance of the summed test statistic within clusters was set to p < 0.05. The significant clusters for the differences in spindle density, spin-

dle power or SO-spindle coupling strength between the two stages were determined based on the t-values of paired (non-paired) t-test sta-

tistics. Clusters with significant correlations between retention (MQ) and spindle properties (density, power, SO-spindle coupling strength)

were obtained using the r-values of the Spearman correlation. Clusters with significant correlations between MQ and SO-spindle coupling

phase were obtained using the r-values of the circular-linear correlation.

We hypothesized that SO-spindle coupling strength, spindle power, density, as well as subject’s sex and age could be predictive of MQ.

So, to compute their independent contributions, we used a generalized linear model (GLM)-based estimation of MQ (glmfit function in

MATLAB) with mean SO-spindle coupling strength, power, and density of FP1, FPz, FP2, F7, Fz, F8, C3, Cz, C4 during N2 and N3 as well

as sex and age (in Z score units) as the predictor variables and MQ as a response variable with normal distribution.

One sample t-tests for each coefficient (predictors) were conducted to test the null hypothesis that the corresponding coefficient is zero

against the alternative that it is different from zero, For computation of the error of the GLM model to predict MQ, two out of 24 subject

datasets were selected for testing and 22 subject datasets were used for training. The averaged MQ error over the testing data was

computed as:

MQ error =

 
1

2

X2
i = 1

��predicted MQðiÞ � actual MQðiÞ��
actual MQðiÞ

!
� 100

For comparison of theMQerror (cp. Figure 7A), this procedure was done for 276 training-testing iterations and rmANOVAwas conducted

with the main factors Condition [No Task, Task] and Stage [N2, N3].

To compute the independent contributions of SO-spindle coupling strength, spindle power, density, subject’s sex and age for prediction of

retention,we used regressionmodel (orGLMmodel with normal distribution for response; cp. Figure 7B).Mean of SO-spindle coupling strength,

spindle power and density over FP1, FPz, FP2, F7, Fz, F8, C3, Cz, and C4 electrodes during N2 andN3 as well as sex and age were the predictor

variables. For fast spindle properties, 2 out of 25 subject datawere selected for testing and 23 subject datawere used for training. This procedure

was done for 300 training-testing iterations and GLM coefficients were driven from train data and were used for rm ANOVA analysis.
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