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ABSTRACT 
 
Objectives: To perform an international comparison of the trajectory of laboratory values among 
hospitalized patients with COVID-19 who develop severe disease and identify optimal timing of 
laboratory value collection to predict severity across hospitals and regions.   
  
Design: Retrospective cohort study. 
  
Setting: The Consortium for Clinical Characterization of COVID-19 by EHR 
(4CE), an international multi-site data-sharing collaborative of 342 hospitals in the US and in 
Europe. 
  
Participants: Patients hospitalized with COVID-19, admitted before or after PCR-confirmed 
result for SARS-CoV-2. 
  
Primary and secondary outcome measures: Patients were categorized as “ever-severe” or 
“never-severe” using the validated 4CE severity criteria. Eighteen laboratory tests associated 
with poor COVID-19-related outcomes were evaluated for predictive accuracy by area under the 
curve (AUC), compared between the severity categories. Subgroup analysis was performed to 
validate a subset of laboratory values as predictive of severity against a published algorithm. A 
subset of laboratory values (CRP, albumin, LDH, neutrophil count, D-dimer, and procalcitonin) 
was compared between North American and European sites for severity prediction. 
  
Results: Of 36,447 patients with COVID-19, 19,953 (43.7%) were categorized as ever-severe. 
Most patients (78.7%) were 50 years of age or older and male (60.5%). Longitudinal trajectories 
of CRP, albumin, LDH, neutrophil count, D-dimer, and procalcitonin showed association with 
disease severity. Significant differences of laboratory values at admission were found between 
the two groups. With the exception of D-dimer, predictive discrimination of laboratory values 
did not improve after admission. Sub-group analysis using age, D-dimer, CRP, and lymphocyte 
count as predictive of severity at admission showed similar discrimination to a published 
algorithm (AUC=0.88 and 0.91, respectively). Both models deteriorated in predictive accuracy 
as the disease progressed. On average, no difference in severity prediction was found between 
North American and European sites. 
  
Conclusions: Laboratory test values at admission can be used to predict severity in patients with 
COVID-19. Prediction models show consistency across international sites highlighting the 
potential generalizability of these models. 
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INTRODUCTION 
 
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused millions of cases of 
coronavirus disease 2019 (COVID-19) in nearly every country. While most patients with 
COVID-19 have a mild form of viral pneumonia, an appreciable subgroup develops rapid onset 
of severe disease. Several large national studies have demonstrated that a variable and potentially 
significant proportion (ranging from 5-70%) [1–3] of hospitalized patients with COVID-19 
develop cardiorespiratory failure, require mechanical ventilation and hemodynamic support, and 
may ultimately die. The early identification of patients at high risk for severe disease and worse 
outcomes can improve triage and resource allocation, particularly when numbers of COVID-19 
cases overwhelm health systems. [4] 
 
Numerous studies have reported models using clinical data, including laboratory values, to 
predict patients at high risk of severe disease. [2] However, most models have not been tested 
across hospital systems and countries to determine generalizability. Few studies have included 
patients from multi-national cohorts. 
 
We formed the 4CE Consortium [5] as an international research collaborative of nearly 350 
hospitals from six countries in order to collect standardized patient-level electronic health record 
(EHR) data to examine the epidemiology, pathophysiology, management, and healthcare system 
dynamics of COVID-19. Using the 4CE data, we examined the relationship between pre-selected 
laboratory values [6] collected during the early phase of hospitalization for COVID-19 and 
subsequent progression to severe disease during hospitalization across institutions and countries. 
We compared prediction models using single laboratory values at admission and during 
hospitalization to a prediction model containing multiple laboratory values. We chose the model 
developed by Chen and Liu [7] as it included laboratory values we could easily compare. Across 
all models, we evaluated geographical differences (national and continental) among the severity 
prediction models. 
 
METHODS 
 
Cohort identification 

We included all patients hospitalized at participating 4CE sites with an admission date from 7 
days before to 14 days after the date of their first reverse transcription polymerase chain reaction 
(PCR)-confirmed SARS-CoV-2 positive test result. The first admission date within this 21-day 
time window was considered the index admission date. Throughout this work, “days since 
admission” refers to this index date. 

Participating sites 

Data were available from 36,447 patients from 342 hospitals (affiliated with 46 sites) across six 
countries: France, Germany, Italy, Singapore, Spain, and the United States. See eTABLE 2 for 
details about participating sites. Several sites collected data from multiple hospitals. In the 
United States, 170 medical centers of the US Department of Veterans Affairs were grouped into 
18 regional divisions called Veterans Integrated Service Networks.  
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Patient and Public Involvement 

Patients and the public were not involved in the design, conduct, or reporting, or dissemination 
plans of the research. 

Severe COVID-19 

We categorized the primary patient outcome as “ever-severe” or “never-severe” based on 
whether the patients, at any time during their hospitalization, progressed to severe disease—even 
if they later recovered from COVID-19. We defined “ever-severe” COVID-19 using the 
validated 4CE severity criteria based on the presence of at least one of the following codes in the 
EHR during the hospitalization: an order for any medication in two broad classes (intravenous 
anesthetics or cardiac inotropes), a collected partial pressure of arterial oxygen (PaO2) laboratory 
test (regardless of the result), an International Classification of Disease (ICD)-10 diagnosis code 
for acute respiratory distress syndrome or ventilator-associated pneumonia, or an ICD-10 
procedure code for insertion of endotracheal tube or invasive mechanical ventilation [8]. A more 
complete description is available in eTABLE 3. The full list of codes is available in [8] and in 
the consortium’s GitHub [9].  

We chose this definition of severity because of the availability of standardized coded data 
describing medications, laboratory tests, diagnoses, and procedures. In contrast, other measures 
of disease severity, including requirement for mechanical ventilation or intensive care and death, 
are often unavailable in the EHR or are inconsistently recorded and are not easily ascertained. As 
an example, admission to traditional ICU spaces was not an effective measure of ICU admission 
when surge conditions required non-traditional placement. 

Local data collection and central data aggregation 

Following our prior approach [5], each contributing site executed queries on local database 
systems containing EHR data to generate six tables in comma-separated values (CSV) format, 
containing aggregate counts and statistics on their respective patient cohorts: DailyCounts, 
ClinicalCourse, Demographics, Labs, Diagnoses, and Medications (see eTABLE 4 for 
descriptions of the files and Figure 1).  Sites uploaded their six CSV files to a central 4CE Data 
Upload Tool, which performed several validation steps, which included variable consistency and 
range and count evaluation. The results of validation were either a report of any errors or the 
ability to save the files to a private shared folder. Throughout this process, patient-level files 
remained at each site and were not centrally shared. A key advantage of executing queries locally 
and sharing only aggregate data was that sites were able to obtain institutional approval more 
rapidly. Further, this approach facilitated analysis at the site, country, and region by reducing 
barriers to federated data generation and aggregation at each level. 

Most sites used the open-source i2b2 (Informatics for Integrating Biology and the Bedside) 
software platform to obtain the data. More than 200 organizations worldwide use i2b2 for 
purposes that include identifying participants for clinical trials, drug safety monitoring, and 
clinical and epidemiological research. Those 4CE sites with i2b2 used database scripts to directly 
query their i2b2 repository, calculate the counts and statistics, and export the data files. The 4CE 
sites without i2b2 used the Observational Medical Outcomes Partnership (OMOP) Common 
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Data Model or their own clinical data warehouse solutions (e.g., Epic Caboodle) and querying 
tools to create the required files.  

Selection of laboratory tests and medications 

We focused on 18 laboratory tests associated with worse outcomes in patients with COVID-19 
based on prior reports [6]. We provided each site with a single standard Logical Objects, 
Identifiers, Names and Codes (LOINC) identifier for each test, but sites often needed to map 
tests to additional LOINC or custom codes within their EHR. We addressed barriers that arose 
during initial efforts to extract these laboratory values by stratifying region-specific laboratory 
test types to reduce extraction errors and enable standardization. For example, D-dimer was 
extracted with both fibrinogen-equivalent unit and D-dimer unit measurements. We converted all 
results to D-dimer units for subsequent analyses. 

Quality control 
 
After file upload, the online validation process checked the file and column names, column 
orders, data types, code values and ranges, and duplicated records. Then, we ran an R script for 
the following additional quality control checks: consistency of the total counts of ever-severe and 
never-severe cases across all datasets within each site, consistency between the 3-digit diagnosis 
codes and the ICD dictionary, and consistency of the range of laboratory data from each site with 
data observed from all sites. We contacted a site for site-specific quality control if the site 
laboratory values were consistently lower or higher than the other sites or otherwise implausible.  

Statistical analysis  
 
We estimated the country-level daily incidence of new patients hospitalized with COVID-19 
during the study period from January 23, 2020 to September 29, 2020. Specifically, for each 
country, we summed the daily incidence of new patients hospitalized with COVID-19 at each 
site within that country per 100,000 people of the country and multiplied this by an adjustment 
factor, defined as the ratio between the country’s overall inpatient discharge rate and the overall 
inpatient discharge rate of all 4CE sites in that country irrespective of COVID-19 status. We then 
reported the adjusted 7-day average incidence of new COVID-19 hospitalizations per 100,000 of 
the country population. 
 
We assessed the performance of laboratory values in predicting severity. We summarized the 
severity risk among different demographic subgroups by country based on the DerSimonian and 
Laird random effects meta-analysis of the site-specific risk estimates [10]. For each laboratory 
test, we first compared the mean values over time among the ever-severe group to those in the 
never-severe group. To account for cross-site variabilities and mitigate confounding bias, we 
summarized the overall mean trajectory over time via random effects meta-analyses and only 
included sites that had measurements for patients in both the ever-severe and never-severe 
groups.  
 
For each laboratory test, we assessed the ability of laboratory results measured at sequential days 
following the admission date to predict severity risk. We quantified the discriminatory capacity 
of each laboratory result by estimating the area under the receiver operating characteristic curve 
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(AUC), assuming that the laboratory values within the ever-severe group or the never-severe 
group at each site followed either a normal distribution or a log-normal distribution. The AUC 
estimate quantified the probability that the laboratory result of a randomly selected patient in the 
ever-severe group was sufficiently different from that of a randomly selected patient in the 
never-severe group. For each laboratory value measured on a given day, we obtained AUC 
estimates within each site and combined them across sites using meta-analysis (see 
Supplementary Materials). In addition, we estimated site-level AUCs as the probability that the 
average laboratory value in an ever-severe group selected randomly from all sites is higher than 
the average laboratory value in a never-severe group selected randomly from all sites. Site-level 
AUC assessed the degree to which each laboratory value is different on average in the ever-
severe group compared to the never-severe group.  
 
Recent literature suggested that combining multiple laboratory measurements may yield better 
severity predictions. We chose to validate a published composite severity risk score, calculated 
as a weighted average of several laboratory measurements, in comparison to our individual 
laboratory predictions. We chose [7] given the extremely high AUC, recent publication, and ease 
of application in our data set.  
 
RESULTS 
 
Characteristics of the Study Population 
 
In this study population of 36,447 patients, the incidence of hospitalization for COVID-19 
largely tracked with population dynamics of COVID-19 cases [11] across different countries 
during the initial pandemic period (FIGURE 2). Both the COVID-19 case rate and the COVID-
19 hospitalization rate dropped significantly from the first peak in April 2020. While 
hospitalization rates and incidence of severe disease remained relatively low for all countries, 
case rates increased in France, United States, and Spain and Singapore after June 2020. 
Hospitalization rate and incidence of ever-severe disease in Spain and Singapore increased after 
August 2020.  
 
Consistent with prior studies [4][12], the study population of patients hospitalized with COVID-
19 showed a higher prevalence of men and older populations. See Table 1 for demographic 
characteristics among ever-severe and never-severe patients and percentages among age group, 
race/ethnicity, and sex.  In our sample, men in the 50-69 age group made up a plurality (25%) of 
admitted cases, were the most likely to have ever-severe disease.  International comparisons 
were consistent and showed across six countries that older age was associated with increased risk 
of severe disease (eFIGURE 1).  In the United States, where race/ethnicity data were available, 
minority patients had a higher number of COVID-19 hospitalizations and proportion of severe 
disease relative to the White reference group.  
 
LABORATORY TRAJECTORIES 
 
We evaluated the predictive performance of individual and combined laboratory values available 
at admission and throughout hospitalization to predict our measure of severe disease. 
Specifically, we investigated the longitudinal trajectories, AUCs, and thresholds of eighteen 
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laboratory values that were associated with severe disease in prior studies.  Six of the labs were 
most robustly replicated in our analysis: C-reactive protein (CRP), albumin, lactate 
dehydrogenase (LDH), neutrophil count, D-dimer, and procalcitonin, as shown in FIGURE 3. 
Trajectories for the remaining laboratory values are shown in the supplemental data (eFIGURE 
2). 
 
When examining the distribution of between-site variation relative to average within-site 
variation stratified by country across all laboratory tests over 7-day windows, we found that the 
relative variation was <1, indicating that the site-level variations were much larger than the 
country-level variations (see eFIGURE 3). Using country-level data to evaluate prediction scores 
would incorrectly assume consistency of presentation of patients at each site within a country. As 
a result, we focused on site-level analysis of laboratory values thereafter.   
 
Predicting Severity from Individual Laboratory Values at Admission 
 
We pooled admission laboratory measures in ever-severe and never-severe patients across all 
sites (eTABLE 5). After log transformation, differences in admission laboratory values were 
significant for all laboratory tests (FIGURE 3). For most laboratory studies, differences in initial 
laboratory values widened between ever-severe and never-severe cases during the first few days 
after admission. For example, average CRP at admission across all sites was 124 mg/dL (95% CI 
of 111-135) for ever-severe patients and 71 mg/dL (95% CI of 57-84) for never-severe patients. 
Initial CRP values predicted severe disease with an AUC of 0.66 (95% CI of 0.61-0.71). CRP 
was the best laboratory test for distinguishing severe patients at admission in our study, with a 
threshold value of 91 mg/dL. Additional laboratory studies with potential ability to identify 
severe disease at admission were D-dimer (AUC = 0.57, 95% CI = 0.50-0.63), albumin (AUC = 
0.61, 95% CI = 0.55-0.66), LDH (AUC = 0.64, 95% CI = 0.59-0.69), and procalcitonin (AUC = 
0.62, 95% CI = 0.56-0.68).  
 
Predicting Severity using Individual Laboratory Values after Admission 
 
Given the potential value of laboratory values to better predict patients who transition to severe 
disease, we next examined the predictive performance of the laboratory values during the 
hospitalization (FIGURE 3, eFIGURE 2). Laboratory values exhibited distinct trajectories over 
time.  For instance, CRP rapidly fell after an initial peak shortly after admission. In contrast, 
neutrophil count rose gradually during the hospitalization and ultimately plateaued. Confidence 
intervals widened over time for all laboratory values due to decreasing sample size with 
prolonged hospitalization. 
 
We calculated AUC (and 95% CI) of six laboratory tests that distinguished ever-severe and 
never-severe patients over 14 days. Albumin and CRP were the best predictors of ever-severe 
disease. Compared to laboratory values on admission, prediction models based on CRP values 
over the 7 days after admission only marginally improved prediction. Maximum AUC for CRP 
and albumin was 0.66 and 0.68, respectively. Procalcitonin, neutrophil count, and LDH also had 
an AUC greater than 0.6. Thus, the utility of most laboratory tests in predicting severe disease 
from measurements subsequent to admission was minimal.  One notable exception was D-dimer. 
Its performance in predicting severe disease improved from AUC=0.56 (95% CI of 0.50 - 0.63) 
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at admission to AUC=0.68 (95% CI of 0.58 - 0.77) during the later stage of the hospitalization, 
suggesting that initial elevations of the disease may be less valuable for predicting ever-severe 
disease.   
 
Validating Existing Risk Scores 
 
Next, we performed a subgroup analysis to assess whether a combination of laboratory tests 
would improve prediction of severe disease over each individual laboratory test. Specifically, we 
chose to validate a published algorithm [7] that included age, D-dimer, CRP, and lymphocyte 
count. For the three laboratory tests, we used site-level average values. FIGURE 4 shows the 
performance of the algorithm to identify severe cases over the first 14 days of hospitalization. 
For the subset of 11 sites where we had all necessary admission laboratory data, we found that 
the algorithm had an AUC of 0.91 at day 0, which was similar to the published AUC of 0.881. 
Similar to models based on individual laboratory tests, prediction performance improved 
marginally in the first couple days after admission and then gradually deteriorated over time. 
Such changes in performance underlined the need for prediction systems that explicitly address 
early versus later periods. 
 
Evaluating Geographical Differences in Severity Prediction 
 
Given the unique multi-national nature of the 4CE consortium, we compared performance of the 
best performing laboratory tests (CRP, albumin, LDH, neutrophil count, D-dimer, and 
procalcitonin) over time between continents, after grouping North American and European sites 
(FIGURE 5).  Overall, the predictive performance was similar between the sites from the two 
continents at admission (e.g., for CRP at North American sites: AUC=0.63, 95% CI 0.56 - 0.72; 
European sites: AUC=0.67, 95% CI 0.63 - 0.70) and over time (e.g., for CRP at North American 
sites: AUC=0.65, 95% CI 0.56 - 0.74; European sites: AUC=0.68, 95% CI 0.65 - 0.72). We 
observed a similar pattern for other laboratory tests (eFIGURE4). While variation in laboratory 
results was notably greater in North America than Europe at all time points, the average results 
between these two continents were surprisingly similar. These results indicate that it is feasible 
to use national datasets for severity prediction. 
 
DISCUSSION 
 
Statement of Principal findings  
 
This study builds upon the growing literature of COVID-19 severity prediction to report key 
findings pertaining to the optimal timing of inpatient laboratory results to predict a severe course 
of disease. We additionally used an international cohort to validate the generalizability of these 
models. First, we identified severe patients using a previously validated algorithm within the 
4CE consortium. For patients hospitalized for COVID-19, we identified six laboratory tests with 
the highest predictive power to identify severe disease: CRP, LDH, procalcitonin, D-dimer, 
neutrophil count, and albumin. These laboratory tests are a subset of a list of tests previously 
associated with worse outcomes in patients with COVID-19.[6] Second, with the exception of D-
dimer, laboratory values at the time of admission showed comparable predictive performance to 
values measured 7 days after admission. These findings suggest the predictive performance of 
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the identified individual laboratory tests is not significantly improved after admission. Third, we 
reported laboratory value thresholds for these multiple laboratory tests to predict transitions to 
severe disease which should be validated with individual-level patient data in future work. 
Finally, we report important comparisons of laboratory studies between North American and 
European sites.  
 
Strengths and weaknesses  
The nature and construction of the 4CE consortium offers a number of key strengths and requires 
acknowledgement of important limitations. The consortium approach enabled the pooling of 
laboratory values across 342 hospitals with diverse healthcare practices. This showed that site-
level (within-site and between-site) differences were greater than country-level differences. 
Interestingly, the severity predictive performance (AUC) of each laboratory study is remarkably 
consistent between North America and Europe. Despite the differences in the composition of 
ever-severe and never-severe patients across sites and countries, the directionality of laboratory 
values and the threshold for ever-severe disease shared many similarities. The design of the 
consortium and these analyses highlight that these findings are unlikely to be site-specific or the 
result of health care system dynamics; the predictive nature of identified lab tests is more likely 
to generalize. Additionally, given the diversity of sites, the findings are unlikely to be biased by a 
majority population demographic. 
 
The federated nature of analyses presented several additional limitations the consortium 
acknowledged and took measures to mitigate. First, EHR data have intrinsic noise, variable 
levels and causes of missing data, and policy effects on available documentation that will result 
in differences between sites. By leveraging a federated system of common EHR data elements 
and capturing site-level heterogeneity to identify patterns across hospitals and countries, the 4CE 
consortium is uniquely positioned to identify international differences in patient trajectories and 
hospital care that affect patient and population-level outcomes. To mitigate the intrinsic noisiness 
of EHR data, we performed extensive and iterative quality controls to address potential 
imprecision and incompleteness of datasets. Careful work with collaborators uncovered and 
addressed site-specific variations in data extraction and incomplete mapping of local EHR codes 
to desired data elements. Second, we used aggregate rather than patient-level data from each site 
for the current analysis in order to minimize privacy concerns and expedite the collaboration. 
Aggregation enabled rapid sharing of data across sites and countries. As such, we could not 
assess the prediction performance of a composite risk score at patient level but instead report the 
predictive accuracy at the site level. To address this concern, we used comprehensive statistical 
tools to perform meta-analyses across sites. Third, the severity algorithm can accurately identify 
patients hospitalized with COVID-19 who develop severe disease, but it cannot presently 
identify the clinical trajectory that leads up to such a transition. Given the limitations of the 
severity algorithm that we previously validated, [8] we could not differentiate between patients 
who presented in a severe state and those who transitioned to severe disease over time. Our 
clinical experience and patient-level data from several institutions suggested that some patients 
were severe at admission while other patients transitioned to severe disease within a week of 
admission, sometimes suddenly. Thus, post-admission laboratory values might not capture the 
transition to severe disease.  
 
Unanswered questions and future research  
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We plan future analyses of patient-level data at each site to fully assess the temporal trend of 
individual and composite laboratory tests throughout the disease course. We have established a 
platform of harmonized data that is enabling our consortium to study questions related to 
coagulopathy, acute renal failure, pediatric symptomology, neurological sequelae, and many 
other areas of interest of our members. As the pandemic evolves, we are also examining how the 
data collection assumptions made in the first wave are faring when presentations of those with 
chronic COVID-19 disease is now present within our health systems. Our future work related to 
severity prediction will optimize risk scores based on laboratory values and other clinical 
features to capture temporal changes in patient population and clinical care. Additionally, we are 
evaluating the case mix changes for hospitals over time that may influence identification and 
type of severe COVID-19 disease. 
 
Meaning of the study: possible explanations and implications for clinicians and 
policymakers  
 
We make several noteworthy observations. First, the key laboratory values emerging from our 
study represent the combination of acute inflammatory changes (CRP, LDH, procalcitonin) and 
underlying physiology (albumin).  Both baseline health state and acuity of physiologic response 
to severe viral infection predict the risk of severe COVID-19. Second, the relatively low AUCs 
are likely due to the large variation within each site for a given laboratory value. When used in 
combination, prediction performance was dramatically improved. Third, the performance of the 
combined algorithm was relatively stable--and did not improve--over the first days of 
hospitalization. Stability over time implies that laboratory values at admission can be used to 
differentiate those patients likely to develop severe disease almost as well as models from 
subsequent days of hospitalization. As such, the current study examines the timing of laboratory 
tests in distinguishing patients who develop severe disease from those who do not.   
 
Our systematic approach and extensive quality control allowed us to aggregate EHR data across 
sites and countries in a collaborative fashion at scale. The value of this work arises from 
leveraging these cross-country differences and similarities. While there may be dramatic 
differences in the outcomes of patients based on the complex interplay of comorbid conditions, 
natural history of the disease, and healthcare system dynamics, this fundamental similarity 
highlights a truism of disease: that there are clear and consistent patterns to the way humans react 
to disease. As we continue to build our collaborative and pursue future patient-level analyses, we 
will seek to uncover more subtle patterns and the role healthcare systems have in defining such 
perturbations. 
 
Data Availability 
 
Only aggregate data was shared by sites for this study. All aggregate data in a de-identified 
fashion can be found and downloaded at www.covidclinical.net. 
https://www.covidclinical.net 
 
SUMMARY BOX 
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Numerous studies have demonstrated that a significant proportion of hospitalized patients with 
COVID-19 develop severe disease with cardiorespiratory failure, requirements for mechanical 
ventilation and, sometimes, death. Numerous studies have developed prediction models using 
clinical data, including laboratory values, to predict patients at high risk of severe disease. 
However, most models have not been tested across hospital systems and multi-national cohorts 
to determine generalizability.  
 
Across six countries and 46 health systems, we showed that average patient trajectories and their 
associations with severity risk were highly similar and consistent with previous models. 
Additionally, for most individual and combined laboratory value predictors (with the notable 
exception of D-dimer), initial average values were equivalent to those collected on subsequent 
days after admission. 
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FIGURES and TABLES 
 
FIGURE 1. Each site generated six data tables (comma-separated files) containing aggregate 
counts and statistics on their individual level data: 1) demographic breakdowns, 2) clinical 
course shown as counts and disposition from index date, 3) daily counts of patients and their 
disposition, 4) daily diagnosis counts and 5.) daily medication counts 6) daily trajectories of lab 
tests. These aggregate descriptive files without individual level data were provided to the 
consortium for extensive quality-assurance steps (see Methods).  
 
FIGURE 2. Adjusted 7-day average new hospitalization rate and rate of ever-severe disease per 
100,000 people by country based on 4CE contributors along with 95% confidence intervals 
compared with 7-day average new case rates collected by Johns Hopkins Center for Systems 
Science and Engineering (JHU CSSE). 
 
TABLE 1. Demographic characteristics among ever-severe and never-severe patients. 
 
FIGURE 3. A) Pooled laboratory values in ever-severe and never-severe patients for six selected 
laboratory tests, and B) patient-level AUC at each day after admission for those labs. Inset shows 
AUC of laboratory value at admission and in-hospital to individually predict ever-severe as well 
as optimized thresholds. 
 
FIGURE 4. Site level AUC of the risk score compared to the individual laboratory tests. 
 
FIGURE 5. Patient level AUC of six selected laboratory tests stratified by regions. 
 
 
 

 
TABLE 1. Demographic characteristics among ever-severe and never-severe patients. 
 

Group N=36,477 (all) 
% 

severe N=15,935 (ever-severe) N=20,524 (never-severe) 

Age 

00to25 995( 2.7%) 28.30% 282( 1.8%) 713( 3.5%) 

26to49 6593(18.2%) 38.60% 2546(16.0%) 4046(19.9%) 

50to69 13274(36.6%) 48.50% 6442(40.4%) 6832(33.5%) 

70to79 7425(20.4%) 47.60% 3536(22.2%) 3890(19.1%) 

80plus 7892(21.7%) 39.50% 3120(19.6%) 4772(23.4%) 

other 133( 0.4%) 9.00% 12( 0.1%) 121( 0.6%) 
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Sex 

female 14277(39.2%) 39.70% 5670(35.5%) 8606(42.1%) 

male 22061(60.5%) 46.80% 10318(64.5%) 11742(57.4%) 

other 102( 0.3%) 0.00% 0( 0.0%) 102( 0.5%) 

Race 

white 8694(25.7%) 38.00% 3300(22.0%) 5394(28.7%) 

black 6356(18.8%) 41.40% 2631(17.5%) 3725(19.8%) 

other 18767(55.5%) 48.50% 9101(60.5%) 9666(51.5%) 
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