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Purpose: To study the potential drug–drug interactions between simvastatin and vonoprazan and to provide the scientific basis for
rational use of them in clinical practice.
Methods: An incubation system was established with rat liver microsomes, and the main metabolite of vonoprazan M-I was detected
by UPLC-MS/MS. The IC50 value of simvastatin was then calculated and its inhibitory mechanism against vonoprazan was also
analyzed. Twelve SD rats were randomly divided into 2 groups, then they were given simvastatin or saline for 2 weeks continuously.
On the day of the experiment, both groups were intragastrically administered with vonoprazan once, followed by the collection of
blood at different time points. Then the plasma concentration of vonoprazan and M-I in rats were detected by UPLC-MS/MS.
Results: In vitro experiments revealed that simvastatin could inhibit the metabolism of vonoprazan, and its inhibition type belonged to
the mixed non-competitive and competitive inhibition model. In vivo experiments in rats demonstrated that the area under concentra-
tion time curve (AUC) of vonoprazan was decreased but the clearance (CLz/F) of it was increased in the simvastatin administrated
group, as compared to those of the control group. However, M-I in simvastatin treated group exhibited the higher AUC and lower CLz/
F values compared to those in the control group. These data indicated that multiple doses of simvastatin administration could reduce
the plasma concentration of vonoprazan and accelerate its metabolic rate in rats.
Conclusion: Simvastatin could inhibit the metabolism of vonoprazan in vitro but multiple doses of simvastatin exhibited the opposite
effect In vivo. Altogether, our data indicated that an interaction existed between simvastatin and vonoprazan and additional cares might
be taken when they were co-administrated in clinic.
Keywords: vonoprazan, simvastatin, drug–drug interactions, liquid chromatography-tandem mass spectrometry, rat liver microsomes

Introduction
As one of the drugs with wide clinical application, simvastatin is mainly used to treat dyslipidemia and it can reduce the
concentrations of total cholesterol, triglyceride and low-density lipoprotein (LDL) in plasma, accomplished by increasing
the concentration of high-density lipoprotein (HDL).1 It has been reported that simvastatin is the substrates for cytochrome
P450 (CYP) enzymes, P-glycoprotein (P-gp) and organic anion-transporting polypeptide transporter (OATP1B1), and it is
mainly metabolized via CYP3A4/5, with CYP2C8/9/19 and CYP2D6 also involved in partial metabolism.2 Recently, drug–
drug interactions between simvastatin and other drugs were reported, such as simvastatin could inhibit the metabolism of
verapamil and apatinib and increase their bioavailability by inhibiting CYP3A and P-glycoprotein (P-gp) efflux pumps.3,4

Vonoprazan, a potassium-competitive acid blocker (P-CAB), is a novel reversible proton pump inhibitor (PPI) that is used
for the treatment or the prevention of gastric acid-related clinical conditions, such as erosive esophagitis, gastroesophageal
reflux, gastroduodenal ulcer, aspirin or NSAID-induced peptic ulcer, and it can also be used for the eradication of Helicobacter

Drug Design, Development and Therapy 2022:16 1779–1789 1779
© 2022 Hong et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Drug Design, Development and Therapy Dovepress
open access to scientific and medical research

Open Access Full Text Article

Received: 9 March 2022
Accepted: 2 June 2022
Published: 9 June 2022

http://orcid.org/0000-0002-6727-2145
http://orcid.org/0000-0003-2793-9221
http://orcid.org/0000-0003-1539-5263
https://www.dovepress.com/terms.php
http://creativecommons.org/licenses/by-nc/3.0/
https://www.dovepress.com/terms.php
http://www.dovepress.com/permissions.php
https://www.dovepress.com


pylori.5 It is reported that vonoprazan has a promising prospect for clinical application as it can be absorbed faster and has
a longer half-life with stronger and longer-lasting antigastric acid secretion effect, compared to the traditional PPIs.6

Previous reports revealed that vonoprazan was mainly metabolized in two different pathways, the oxidization pathway
by CYP enzyme isoforms (CYP3A4, CYP2B6, CYP2C19, CYP2D6) and the non-oxidization pathway by sulfotransferase
(SULT2A1). With CYP enzyme, especially for CYP3A4, vonoprazan can be converted into 5-(2-fluorophenyl)-1-(pyridin-
3-ylsulfonyl)-1H-pyrrole-3-carboxylic acid (M-I) by the oxidative deamidation. We provided 3D models of chemical
structure of vonoprazan andM-I for reference (Figure 1). As the main primary metabolite of vonoprazan, M-I can be further
metabolized to the secondary metabolites, such as 5-(2-fluorophenyl)-1H-pyrrole-3-carboxylic acid (M-II), M-III and
M-IV-Sul. However, none of these metabolites is pharmacologically active.7–9

Like other CYP3A4-mediated drugs, the metabolism of vonoprazan could be inhibited by some strong CYP3A4
inhibitor drugs. For example, voriconazole was reported to inhibit vonoprazan metabolism by inhibiting the enzymatic
activity of cytochrome P450.10 To date, no reports were found regarding the potential interactions between CYP3A4-
mediated drugs simvastatin and vonoprazan. Considering for the wide usage of simvastatin and the possibility of co-
administration of simvastatin and acid inhibitory drugs in clinic, we performed the drug-drug interaction study in rat
model both in vitro and In vivo. Our data provide the first-hand evidence of the interactions between these two drugs and
indicated that more cares might be taken when using them simultaneously in clinic.

Materials and Methods
Drugs and Reagents
Simvastatin and vonoprazan were purchased from Sunflower Technology Development Co. (Beijing, China). M-I was
got from Wuxi Medical Technology Co. (Wuxi, China). Diazepam was purchased from Tianjin Golden York
Pharmaceutical Co. (Tianjin China). Methanol and acetonitrile (chromatographic grade) were obtained from Merck
GmbH (Darmstadt, Germany). Formic acid (chromatographic grade) was gotten from Sigma-Aldrich (St. Louis,
Missouri, USA). Other chemical reagents were all analytically pure or guaranteed reagent.

Experimental Animals
The experimental animals were healthy SPF-grade SD male rats with 250±20 g, provided by the Laboratory Animal
Center of Wenzhou Medical University. Animals were fed rat chow once in the morning and once in the evening, and
water was consumed freely at daily temperature of 20–25°C, 12 hours of light and relative humidity of 40–60% for 1

Figure 1 Structure displays of vonoprazan and M-I. (A) 3D model of chemical structure of vonoprazan; (B) 3D model of chemical structure of M-I.
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week before the drug administrations. All experiments were performed in accordance with the Guide for the Care and
Use of Laboratory Animals, the Animal Welfare Act, and the Office of Laboratory Animal Welfare.

All experimental procedures were approved by the Animal Experimental Ethics Inspection Department of the
Laboratory Animal Center in Wenzhou Medical University (approval No. wydw2019-650).

Chromatography and Conditions
ACQUITY I-Class UPLC and Waters XEVO TQD MS (Milford, MA, USA) were used for the detection of vonoprazan
and M-I with ACQUITY UPLC BEH C18 column (50 mm×2.1 mm, 1.7 μm) (Milford, MA, USA) at temperature of
40°C. The mobile phase consisted of acetonitrile and 0.1% formic acid in gradient proportion with running time of 3
minutes at flow rate of 0.4 mL/min. The injection volume of sample was 2 μL. The scanning method was multiple
reaction monitoring (MRM) with detection in positive ion mode and an ESI+ ion source. Other mass spectrometry
parameters were listed as following: capillary voltage 2.0 kV; ion source temperature 150 °C; argon flow rate: 0.15 mL/
min. The other conditions of mass spectrometry were referred to Shen.10

In vitro Incubation Experiments
Rat liver microsomes (RLM) were prepared by differential centrifugation as described previously9 and its protein concentra-
tion were determined as 28 mg/mL. The volume of incubation system was 190 μL, containing 10 μM vonoprazan (close to its
Km, Figure 2), 2 μL RLM, 20 μL potassium phosphate buffer (1 M, pH = 7.4), 100, 50, 10, 5, 1, 0.1, 0.01, and 0 μM
simvastatin. Three parallels were set up for each group and the above operations were performed on ice. Then the mixture was
vortexed and pre-incubated in a water bath at 37°C for 5 min, and the reaction was initiated by adding 10 μL of NADPH (1
mM) and incubated at 37°C for 30 min with shaking in water bath. At the end, 200 μL acetonitrile and 20 μL internal standard
diazepam (500 ng/mL) were added to terminate the reaction, following by vortex and centrifugation at 13,000 rpm for 5
minutes. Subsequently, 150 μL of supernatant was taken out and 2μL of sample was injected into LC-MS/MSmachine for the
detection and quantification of M1 which were used for calculation of IC50 value by GraphPad Prism 9.0.

In order to investigate the inhibition mechanism of simvastatin on vonoprazan, these two drugs were incubated
together at different concentration gradients, with 2.5, 5, 10 and 20 μM of vonoprazan and 0, 1.5, 3, 6 and 12 μM of
simvastatin. The incubation procedure was the same as that mentioned above.

Figure 2 Michaelis-Menten kinetics of vonoprazan on cytochrome P450 enzymes in rat liver microsomes.
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In vivo Pharmacokinetic Experiments
Twelve healthy SPF-grade SD male rats were randomly and equally divided into 2 groups: animals in the simvastatin group
were injected intraperitoneally with 50 mg/kg of simvastatin solution once a day for 2 weeks, followed by 12 hours of fasting
in advance then administrated by intragastrical gavage of vonoprazan (10 mg/kg); animals in the control group were injected
with saline for 2 weeks, followed by gavage administration of the same dose of vonoprazan in the same period. Next, at
0.083h, 0.25h, 0.5h, 1h, 2h, 3h, 4h, 6h, 12h, and 24h after administration, 300 μL of blood was collected from the tail vein and
placed into EP tubes containing 20 μL sodium heparin. After the centrifugation at 4°C, 4000 rpm for 10 minutes, 100 μL of
plasma samples were taken out and mixed with 100 μL of acetonitrile and 20 μL of diazepam (500 ng/mL) to precipitate
proteins. Then the mixtures were vortexed and centrifuged at 4°C, 4000 rpm for 5 minutes. 150 μL supernatant was transferred
into the sample bottle and 2 μL of sample was analyzed by LC-MS/MS machine for metabolites quantification.

Molecular Docking Method
We retrieved the crystal structure of CYP3A4 from the RCSB PDB database (https://www.rcsb.org/) and the molecular
structures of simvastatin and vornolazem from Pubchem (https://pubchem.ncbi.nlm.nih.gov/), and then we performed
structure optimization using Pymol (Version 2.5. 2) and molecular docking by AutoDock Vina (Version 1.2.0), choosing
the result with the highest affinity among the docked structures we simulated.11,12 Finally, we visualized docking results
on Pymol and found the sites where the drug interactions with CYP through hydrogen bonding.

Statistical Analysis
The IC50 value, Lineweaver-Burk plot and plasma concentration-time curves were obtained by GraphPad prism software
(version 9.0, San Diego, CA, USA). DAS (Drug and Statistics) software (version 3.2.8; Lishui People’s Hospital, Lishui, China)
was used to plot the drug-time curves and to calculate the changes of vonoprazan and M-I in rat plasma over time with the non-
atrial model of statistical moment parameters. Statistical analysis of the main pharmacokinetic parameters, such as area under the
drug-time curve (AUC), clearance (CLz/F), and peak concentration (Cmax), was performed using SPSS software (version 25.0;
SPSS Inc., Chicago, IL, USA). All data were assessed distribution by using QQ plots. When comparing two independent
samples, the Independent Samples t-test was used for normally distributed data (parametric test) and Mann–Whitney test was
used for the non-normal distributed dataset (non-parametric test) and *P<0.05 indicates the statistical difference.

Results
Chromatograms of Vonoprazan Metabolite
Under conditions listed in the methods section, the peak emergence times of vonoprazan metabolite M-I and internal
standard diazepam were 1.45 minutes and 1.70 minutes, respectively. As shown in Figure 3 that no interference could be
detected among input drugs vonoprazan, M-I and diazepam, or in the blank rat liver microsomes.

Figure 3 UPLC-MS/MS chromatograms of vonoprazan metabolite M-I and internal standard (IS) diazepam. (A) Blank rat microsomal system; (B) Standard M-I was mixed
with denatured microsomes; (C) M-I and diazepam were detected after the incubation of rat liver microsomes with vonoprazan.
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Inhibition of Vonoprazan by Simvastatin in vitro
In vitro pharmacokinetic data revealed that simvastatin could inhibit the metabolism of vonoprazan with IC50 value of
6.444 μM (Figure 4). Lineweaver-Burk plots for simvastatin inhibition of vonoprazan metabolism in rat liver microsomes
indicated that the mechanism behind this inhibition was a mixture of non-competitive and competitive inhibition with
Ki=13.46 μM and αKi=5.54 μM (Figure 5).

Effect of Multiple Doses of Simvastatin on Vonoprazan in vivo
The mean plasma concentration-versus-time curves of vonoprazan and its main metabolite M-1 in rat after administration by
gavage of simvastatin are shown in Figure 6. Detailed pharmacokinetic parameters of drugs are illustrated in Table 1. As
compared to those of control group, the AUC(0-t) and AUC(0-∞) of vonoprazan in the simvastatin pretreated group decreased to
33.4% and 34.5%, respectively; the peak concentration Cmax of vonoprazan decreased to 25.4%, while the clearance CLz/F of
vonoprazan increased by 1.65-fold. On the contrary, the AUC(0-t) and AUC(0-∞) of M-I in the simvastatin pretreated group
were 1.28-fold and 1.35-fold higher than those in the control group, respectively, but the clearance CLz/F of M-I decreased to
77.9% of control group. These data indicated that multiple doses of simvastatin could significantly induce the metabolism of
vonoprazan in rats by decreasing the plasma concentration of vonoprazan and increasing that of its metabolite.

Molecular Docking Prediction of Simvastatin and Vonoprozan
To better understand the mechanism behind the interaction of simvastatin and vonoprazan, molecular docking analysis
were also conducted in this study according to the methods previously reported.13–15 Our simulation results on Pymol
showed that simvastatin interacted with arginine (ARG) at position 106 of CYP3A4 via hydrogen bonding, while
vonoprazan interacted with heme (HEM) at position 601 of CYP3A4, with the sites of action 9.2 Å apart (Figure 7).
Probably, this spatial positional proximity may be one of the reasons for the ease of interaction between the two drugs.

Figure 4 IC50 profile of simvastatin on cytochrome P450 enzymes in rat liver microsomes.
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Figure 5 Lineweaver-Burk plots for simvastatin inhibition of vonoprazan metabolism in rat liver microsomes. (A) Lineweaver–Burk plots for simvastatin (0, 1.5, 6, 12 μM)
inhibition of vonoprazan (2.5, 5, 10, 20 μM) in rat liver microsomes. Data are shown with the mean standard deviation of three parallel experiments; (B) Slope of primary
plot; (C) Intercept of primary plot.

Figure 6 The concentration-time curves of vonoprazan (A) and M-I (B) in rat (n = 6). The simvastatin group was injected with simvastatin intraperitoneally for 2 weeks and
then administered with vonoprazan intragastrically; The control group was injected with saline only for 2 weeks and followed by administrated with same dose of
vonoprazan to that of simvastatin pretreated group.
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Discussion
Traditional PPIs are widely used for the treatment of gastric acid-related diseases, however, a series of deficiencies have
been reported recently, such as instability under acidic conditions, relatively slow onset of action, and unstable and short
duration of acid-suppressive effects. Specially, traditional PPIs are mainly metabolized by the hepatic CYP2C19, and
about 63.75% of the Chinese population are poor metabolizers who carry the typical defective alleles CYP2C19*2 or
CYP2C19*3. These two variants can significantly reduce the drug metabolic activity of CYP2C19, and that is the main
reason for the individual differences in pharmacokinetics of PPIs in the oriental Asian population.16,17 In contrast,
vonoprazan is mainly metabolized by CYP3A4 and is more stable than traditional PPIs that exhibits a promising prospect
in clinic, especially for Asian populations.18

The main advantages of vonoprazan over conventional PPIs include: (1) Vonoprazan has stronger and more lasting
anti-gastric acid secretion effect than common PPIs. As a lipophilic weak base with high pKa value (9.3), vonoprazan can
immediately be protonated when exposing it to the acidic environment. Due to the highly selective and slow dissociation
rate for binding to H+-K+-ATPase in the range of weak acid to neutral pH, vonoprazan exhibited 358–2357 times greater
H+-K+-ATPase activity than that of lansoprazole. It is not only less affected by pH value, but also can better control of
nocturnal acid secretion; (2) Vonoprazan absorbs faster than traditional PPIs, and it can reach maximum plasma
concentration within 1.5–2.0 hours of oral administration; (3) Vonoprazan has shorter onset time than conventional
PPIs, with acid-suppressive effects occurring within 24 hours of administration of 20 mg; (4) Vonoprazan exhibits longer
half-life of approximately 7.7 hours, compared with that of 1–1.5 hours for conventional PPIs; (5) Vonoprazan has high
stability, whereas the activation of conventional PPIs is acid-dependent; (6) Vonoprazan has higher population
tolerance.19–22

In spite of the advantages listed above, vonoprazan still has some potential to interact with other drugs, especially for
CYP3A4 mediated drugs. As the most highly expressed metabolic enzyme in the liver, CYP3A4 is involved in the
in vivo metabolism of most of the clinically used drugs. It has been reported that many drugs can also inhibit or induce
changes in CYP3A4 activity or expression, thus cause drug toxicity reactions or make the treatment ineffective.23,24

However, little is known about the drug-drug interactions between vonoprazan and other drugs metabolized by CYP3A4.
In this study, the influence of simvastatin on the metabolism of vonoprazan was investigated for the first time. Our

data indicated that simvastatin could inhibit the metabolism of vonoprazan in a mixed model of non-competitive and
competitive inhibition in vitro (Figure 5). However, in vivo experiments showed that plasma concentration of vonoprazan
was decreased and its clearance was increased significantly in the simvastatin pretreated group. These data inferred that
simvastatin could significantly induce the metabolism of vonoprazan in rats. Wang et al also reported similar results when
they investigated the interactions between simvastatin and sinomenine. They found that simvastatin could inhibit the

Table 1 Main Pharmacokinetic Parameters of Vonoprazan and M-I in vivo

Pharmacokinetic Parameters Vonoprazan M-I

Simvastatin Groupa Control Group Simvastatin Groupa Control Group

AUC(0-t) (μg/L*h) 13.87±4.96* 41.544±18.51 2186.23(2027.74–3109.85) * 1711.08±109.64

AUC(0-∞) (μg/L*h) 14.46±4.80* 41.93±18.59 2351.96(2052.43–3170.09) * 1737.64±115.58
MRT(0-t) (h) 3.21±0.39* 2.62±0.27 2.40±0.16* 2.17±0.17

MRT(0-∞) (h) 3.47(2.70–6.43) * 2.74±0.34 2.54±0.23 2.40±0.27

t1/2 (h) 1.97(1.79–5.41) 1.79±0.41 2.02±0.33 2.58±1.21
Tmax (h) 1(1–1) * 0.67±0.26 1±0 1±0

Vz/F (L/kg) 569.6±330.37* 149.13±83.89 2.51±0.48 4.27±1.86

CLz/F (L/h/kg) 151.05±48.77* 56.98±27.31 0.9040(0.63–0.97) * 1.16±0.08
Cmax (μg/L) 4.17±1.91 16.45±9.66 926.29±133.45 796.11±118.16

Notes: n=6 per group; data are expressed mean ± SD; *P < 0.05 indicates statistical difference between simvastatin group and control group. aAll data were assessed
distribution by using QQ plots. Skewed data were presented as median (min - max) while normal distribution data were presented as mean ± SD.
Abbreviations: AUC, the area under concentration time curve; MRT, the mean residence time; t1/2, half-life period; Tmax, maximum plasma time; Vz/F, apparent volume of
distribution; CLz/F, clearance; Cmax, peak plasma concentration.
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metabolism of sinomenine in vitro, while multiple doses of simvastatin could induce the metabolism of sinomenine In
vivo.25 They proved that CYP3A1/2 was responsible for the metabolism of sinomenine in rats and the mRNA and protein
expression levels of CYP3A1/2 in rat livers were significantly increased in the simvastatin pretreated group.25 Because
CYP3A1/2 in rats is highly homologous to CYP3A4 in humans, we believe that the induction effect of simvastatin to
vonoprazan metabolism in rats might also be due to the higher expression level of CYP3A1/2 in multidose simvastatin
pretreated animals.

In addition to simvastatin, some other statins like atorvastatin and lovastatin were also reported to increase the
enzymatic activity of CYPs to different degrees, in which the capacity of this induction is CYP2C8>CYP3A4>CY
P2C9>CYP2C19~CYP2D6.26 Schuetz and Kocarek also reported the induction of CYP3A4 by simvastatin. They found
that the expression levels of CYP3A4 mRNA and protein were increased around 24–36 times and 6–20 times,

Figure 7 Molecular docking scheme of simvastatin and vonoprozan. (A) Action site between simvastatin and CYP3A4 via hydrogen bonding; (B) Action site between
vonoprazan and CYP3A4 via hydrogen bonding; (C) Aligned docking results of the two groups.
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respectively, after taking some statins like simvastatin 24 hours later.27,28 The explanation for the induction effect of
simvastatin is that it can affect lipids metabolism and may trigger the activation of pregnane X receptor PXR, that is the
main nuclear receptor mediating the effects of exogenous drugs on CYP3A4 expression.29,30

In addition to the hypolipidemic effect, simvastatin also exhibits certain anti-inflammatory effects by reducing the
mRNA expression level and decreasing the production of the famous pro-inflammatory marker interleukin-6 (IL-6).31

Machavaram et al reported that upregulated IL-6 levels could decrease the metabolic activity of CYP3A4, whereas
blocking the IL-6 signaling pathway could restore the enzyme activity.32 Accordingly, we believed that simvastatin may
also induce the enhancement of CYP3A4 activity in this study, by inhibiting the production of IL-6 in simvastatin
group.

It was reported that statins have different affinities for the membrane transport proteins that associated with intestinal
absorption, hepatic metabolism, biliary excretion, and renal clearance. Whether this association can impact the extra-
hepatic metabolism of vonoprazan also needs further investigation, because vonoparazan can also be metabolized by
some extrahepatic pathway, such as renal clearance.33–35

What is noteworthy is that, in clinic, both simvastatin and vonoprazan are well generally tolerated and most of the
adverse reactions are mild and transient if take them solely. However, data in this study indicated that simvastatin
exhibited strong inhibitory effect on the metabolism of vonoprazan, and some of the side effects of vonoprazan in
digestive system might be stronger when co-administrated these two drugs together in clinic, such as diarrhea,
constipation, nausea and abdominal distension. In addition, diseases of other systems such as headache, rash, edema,
eosinophilia, and muscle injury may also be present rarely.

Conclusion
In vitro incubation experiments indicated that simvastatin had a metabolic inhibitory effect on vonoprazan. However, In
vivo pharmacokinetic experiments in rats revealed that multiple doses of simvastatin could accelerate the metabolism of
vonoprazan in rats. Considering for the wide usage of simvastatin and bright prospects of vonoprazan, our data suggest
that the interactions between vonoprazan and simvastatin may need to be considered when they are combined clinically,
so as to avoid or reduce the occurrence of some adverse reactions.
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