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Receptor-mediated endocytosis is a pivotal function of renal proximal tubule epithelial cells (PTECs) to reabsorb and metabolize
substantial amounts of proteins and other substances in glomerular filtrates. The function accounts for the conservation of
nutrients, including carrier-bound vitamins and trace elements, filtered by glomeruli. Impairment of the process results in a
loss of such substances and development of proteinuria, an important clinical sign of kidney disease and a risk marker for
cardiovascular disease. Megalin is a multiligand endocytic receptor expressed at clathrin-coated pits of PTEC, playing a central
role in the process. Megalin cooperates with various membrane molecules and interacts with many intracellular adaptor proteins
for endocytic trafficking. Megalin is also involved in signaling pathways in the cells. Megalin-mediated endocytic overload leads to
damage of PTEC. Further studies are needed to elucidate the mechanism of megalin-mediated endocytosis and develop strategies
for preventing the damage of PTEC.

1. Introduction

Renal proximal tubular epithelial cells (PTECs) are involved
in a variety of vital functions. Of these, receptor-mediated
endocytosis is a pivotal function of the cells to reabsorb
and metabolize proteins and other substances in glomerular
filtrates. Megalin is a membrane receptor that plays a central
role in the endocytic functions of PTEC. Megalin cooperates
with various molecules in the cells, taking up ligands into the
endocytic pathway to lysosomes, as well as mediating signal
transduction. In this review, we focus on recent progress in
the research on megalin and its associated molecules. We
also discuss how impaired or overloaded endocytosis induces
PTEC damage which is tightly associated with the onset of
proteinuria and the development of chronic kidney disease
(CKD).

2. Megalin: A Major Endocytic
Receptor in PTEC

Megalin is a large (∼600 kDa) glycoprotein member of the
low-density lipoprotein (LDL) receptor family [1, 2] that

is primarily expressed at clathrin-coated pits and partly at
microvilli of PTEC (Figure 1) [3, 4]. Megalin contains a huge
extracellular domain responsible for its multispecific proper-
ties. The domain consists of 4398 amino acids (in humans)
and is made by three types of repeats which are characteristic
of the LDL receptor family: (1) 36 cysteine-rich complement-
type repeats organized in four clusters, (2) 16 growth factor
repeats separated by 8 YWTD containing spacer regions
involved in pH dependent release of ligands in endosomal
compartments [5], and (3) a single epidermal growth factor-
like repeat. The extracellular domain is followed by a single
transmembrane segment and a cytoplasmic domain of 209
amino acids. The cytoplasmic tail contains two endocytic
motifs (NPXY) mediating clustering into clathrin coated pits
and an NPXY-like motif (NQNY) involved in apical sorting
of the receptor [6] as well as other protein interaction motifs
(SH3 and PDZ domains) and phosphorylation sites [1, 2].
The physiological potential of these regulatory motifs has not
yet been fully understood.

Megalin plays a critical role in the reabsorption
of glomerular-filtered substances including albumin and
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Figure 1: Megalin and its associated molecules involved in receptor-mediated endocytosis in PTEC. On the apical membrane of PTEC,
various molecules are involved in the process of receptor-mediated endocytosis. Megalin, playing a central role in the process, cooperates
with other membrane proteins such as the cubilin-amnionless complex (CUBAM), NHE3, and ClC5. Megalin and CUBAM directly bind a
variety of ligands, whereas NHE3 and ClC5 are involved in endosomal acidification, which is important for further processing of endocytosed
proteins. Megalin also interacts with intracellular adaptor proteins such as ARH, Dab2, and GIPC. Dab2 binds to motor proteins, myosin
VI, and NMHC IIA, which may mediate endocytic trafficking of the molecular complexes through actin filaments. The cytoplasmic tail of
megalin is released from the membrane by γ-secretase and is involved in intracellular signal transduction.

low-molecular-weight proteins. Also, megalin may take up
proteins that are released by PTEC to the apical tubular
space. Megalin knockout mice display low-molecular-weight
proteinuria and albuminuria [7]. Furthermore, patients with
Donnai-Barrow and facio-oculo-acoustico-renal syndromes,
caused by mutations in the megalin gene, show increased
urinary excretion of albumin and low-molecular-weight
proteins [8]. In this process, meglin mediates the conserva-
tion of carrier bound vitamins and trace elements filtered
by glomeruli, including vitamin D [9], vitamin A [10],
vitamin B12 [11], and iron [12]. Megalin cooperates with a
variety of molecules at the apical membranes and also in
the cytoplasm of PTEC (Figure 1) as described in the next
section.

3. Molecules Associated with
Megalin’s Functions in PTEC

3.1. Cubilin-Amnionless Complex (CUBAM). Cubilin is a
460-kDa peripheral glycoprotein, thus lacking transmem-
brane and intracellular segments, but anchored to the apical
membranes in PTEC. It was originally identified as the
receptor for intrinsic factor-vitamin B12 [13, 14], and its
gene defects are the causes of hereditary megaloblastic

anaemia 1 or Imerslund-Gräsbeck syndrome (selective vita-
min B12 malabsorption with proteinuria) [15]. Cubilin is also
involved in the absorption of various protein ligands present
in glomerular filtrates, including albumin, transferrin, and
vitamin D-binding protein [4]. Cubilin is known to interact
with megalin for its endocytic functions [12, 16]; however, it
is bound more firmly by a protein called amnionless, forming
a complex named CUBAM, to be translocated to the plasma
membrane [17, 18]. Amnionless, a 38–50 kDa membrane
protein with a single transmembrane domain, was initially
identified as a component for the normal development of
the trunk mesoderm derived from the middle streak [19].
Its gene defects also cause hereditary megaloblastic anaemia
[20]. However, the role of amnionless in PTEC is not fully
identified.

3.2. Na+/H+ Exchanger Isoform 3 (NHE3). NHE3, the main
NHE isoform in PTEC, mediates isotonic reabsorption of
approximately two thirds of the filtered NaCl and water, the
reabsorption of bicarbonate, and the secretion of ammo-
nium [21]. It also contributes to the reabsorption of filtered
citrate, amino acids, and oligopeptides by providing H+ used
for the H+-coupled cotransporters. Enhanced NHE3 activity
is assumed to be a factor for increased Na+ reabsorption
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and the development of hypertension in diabetes. NHE3
was reported to interact with megalin in intermicrovillar
clefts of PTEC [22, 23]. After endocytosis with megalin,
NHE3 is postulated to utilize the outward transvesicular Na+

gradient of endocytic vesicles and early endosomes to drive
inward movement of H+ and endosomal acidification, which
is important for dissociating reabsorbed ligand proteins from
megalin for further processing.

3.3. ClC-5. ClC-5 is a 746-amino acid protein originally
assumed to belong to the voltage-gated chloride channel
family [24], but more recent evidence suggests that it may
function as an H+/Cl− exchanger [25]. In kidney, ClC-5 is
highly expressed in PTEC and α and β intercalated cells
of collecting ducts [26]. In PTEC, ClC-5 is located at the
apical endosomes together with electrogenic V-type H+-
ATPases [26], where it has a complementary function in
endosomal acidification [27]. The physiological relevance
of ClC-5 in renal functions came into view when muta-
tions in the CLCN5 gene were identified in patients with
Dent’s disease, an X-linked renal tubular disorder [26].
This disorder is characterized by low molecular weight pro-
teinuria, hypercalciuria, nephrocalcinosis, nephrolithiasis,
aminoaciduria, phosphaturia, glycosuria, and renal failure
[28]. The precise mechanism of this abnormality is not
entirely clear but possibly results from defective acidification
and/or reduced expression of megalin and cubilin in PTEC
[29, 30].

3.4. Intracellular Adaptor Proteins. Various sorting and sig-
naling proteins bind to megalin’s cytoplasmic tail such as
JIP1 and JIP2, SEMCAP-1 (GIPC), ANKRA, Dab2, PDS-95,
MegBP, and ARH [31–37]. ARH and Dab2 are components
of the clathrin coat, and they bind to the first and third NPXY
motif of megalin, respectively, through their PTB domains
[33, 37]. ARH and Dab2 are known to interact with motor
proteins as described below. Dab2 is also known to mediate
signal transduction [38, 39].

4. Regulation of Megalin Expression

Cellular expression of megalin was found to be down-
regulated by the action of TGFß [40]. We also found
that megalin expression is upregulated in cultured PTEC
by treatment with insulin or high-concentration glucose
(17.5 mM), whereas it is downregulated by angiotnsin II
[41]. Furthermore, we demonstrated that there is com-
petitive cross talk between anigotensin II type 1 receptor-
and insulin-mediated signaling pathways in the regulation
of megalin expression in the cells, suggesting a counter-
balanced mechanism that regulates megalin expression and
functions in PTEC [41].

Decreased megalin expression in PTEC has been found
in the early diabetic stages in experimental animals [40,
42]. It is also suggested that the functions of megalin
are impaired in patients in the early stages of diabetic
nephropathy, since low-molecular-weight proteinuria are
frequently observed in patients at these stages [43, 44]. Thus,

the altered regulation of megalin expression and functions
must be significantly responsible for the early devel-
opment of proteinuria/albuminuria in diabetic patients.
The mechanisms of the regulation remain to be further
investigated.

5. Regulation of Megalin Transport by
Motor Proteins

The mechanisms of intracellular transport of megalin are
largely unknown. Reverse-direction molecular motor myosin
IV was found to be linked to Dab2 and GIPC, which
binds to the cytoplasmic tail of megalin, and is assumed
to be involved in the endocytosis in PTEC [45]. However,
myosin VI knockout mice, used as an animal model for
deafness, showed no apparent renal manifestation presenting
proteinuria [46].

We recently identified that another motor protein,
nonmuscle myosin heavy chain IIA (NMHC IIA), binds
to Dab2 and is involved in megalin-mediated endocytosis
[47]. Genetic alterations of NMHC-IIA are known to cause
inherited human diseases, known as MYH9 disorders, which
are characterized by giant platelets, thrombocytopenia, and
granulocyte inclusions [48, 49]. The spectrum of diseases
due to mutations in the gene includes May-Hegglin anomaly,
Sebastian syndrome, Fechtner syndrome, and Epstein syn-
drome [48–51]. It has been also reported that all of these
disorders are related to development of kidney disease [50,
52]. The manifestation of kidney disease in MYH9 disorders
indicates the importance of NMHC-IIA in maintaining
normal kidney functions, which has been also verified by two
recent genomewide scan analyses [53, 54].

Another megalin-binding adaptor protein ARH also
associates with motor and centrosomal proteins and is
involved in centrosome assembly and cytokinesis [55]. The
relevance of the adaptor protein’s association with such
molecules in the regulation of megalin transport remains
undetermined.

6. Overloaded Endocytosis-Induced
PTEC Injury in CKD

Overloaded endocytosis in PTEC due to increased glomeru-
lar protein filtration has been postulated to be a cause of
tubulointerstitial injury. Megalin is identified as the key
molecule to initiate the pathogenic process [56]. In diabetes,
advanced glycation endproducts (AGEs) are generated in
the circulation and involved in a variety of cellular damage
[57]. Megalin also mediates the endocyosis of glomerular-
filtered AGE in PTEC [58, 59], which causes toxicity in the
cells [60, 61]. In metabolic syndrome or dyslipidemia, free
fatty acids are delivered to PTEC with the carrier proteins
such as albumin or liver-type fatty acid binding protein [62].
Metabolically overloaded PTECs are activated to express
proinflammatory cytokines, such as MCP1 and TNFα, and
lead to apoptosis [56] or epithelial-mesenchymal transition
[63, 64].
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7. Handling of Albumin in PTEC, Related to
the Mechanism of Albuminuria

Albumin (∼69 kDa) is the most abundant circulating pro-
tein, carrying a variety of substances in plasma. Glomerular
albumin filtration is assumed to be 3–6 g/d in humans [65].
Only negligible amounts of albumin are detected in urine,
and the substantial remaining of glomerular-filtered albumin
is reabsorbed in PTEC via endocytosis, mediated by megalin
and CUBAM. Albuminuria is an important clinical sign
of kidney disease such as diabetic nephropathy [66, 67]
as well as a risk marker of cardiovascular disease (CVD)
[68, 69]. Impaired endocytic functions of PTEC for albumin
are relevant to the mechanisms of albuminuria.

After endocytosis, albumin is considered to be trans-
ferred to lysosomes for degradation to amino acids [70]. On
the contrary, the presence of a retrieval or transcytic pathway
of albumin in PTEC is suggested [71]. A recent analysis using
neonatal Fc receptor knockout mice supports the retrieval
pathway in PTEC where the receptor appears to play a critical
role to reclaim albumin from the glomerular filtrates [72].

The association of albuminuria with the development
of CVD may be related to the impairment of metabolic or
synthetic functions of PTEC that may contribute to systemic
vascular damage. For instance, vitamin D deficiency, which is
caused by megalin dysfunction, is independently associated
with increased cardiovascular mortality [73, 74]. Selenopro-
tein P, a major carrier of selenium, is taken up by megalin
[75] and provides selenium for synthesizing glutathione
peroxidase 3 (GPx3) in PTEC [76, 77]. GPx3 is secreted
into the extracellular space from where it enters the blood
and acts as antioxidant [78]. Therefore, reduced uptake of
selenoprotein P in PTEC due to impaired megalin function
may result in decreased GPx3 synthesis by the cells and may
be associated with the development of vascular diseases.

8. Megalin-Mediated Signaling

Biemesderfer and his colleagues identified that megalin
undergoes regulated intramembrane proteolysis as some
other membrane proteins such as those belonging to the
Notch and amyloidal precursor protein families [79, 80].
They showed (1) that high levels of γ-secretase are expressed
in the brush border and endocytic pathway of PTEC where
it colocalizes with megalin, (2) that megalin is subjected to
PKC-regulated, metalloprotease-mediated ectodomain shed-
ding that produces a 35 to 40 kDa megalin COOH-terminal
fragment (MCTF), and (3) that the MCTF is membrane
bound and is constitutively processed by γ-secretase activity
[81]. They also found evidence suggesting that the COOH-
terminal domain of megalin regulates megalin and NHE3
gene expression [82]. These findings strongly indicate that
megalin is not only involved in scavenging functions in PTEC
but also participate in the signal transduction in the cells.

9. Conclusions

Megalin, an endocytic receptor, mediates the conservation of
nutrients and carrier bound vitamins and trace elements in

glomerular filtrates via interaction with various molecules
in PTEC. Megalin also plays a critical role in the uptake
of pathological substances or overloaded endocytosis that
may lead to the cellular damage. Megalin-mediated signaling
transduction may be also involved in the process. Further
studies are needed to elucidate the molecular mechanism
fully and develop strategies for preventing PTEC damage.
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