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A Novel Bayesian General Medical
Diagnostic Assistant Achieves
Superior Accuracy With Sparse
History

A Performance Comparison of 7 Online Diagnostic
Aids and Physicians

Alicia M. Jones and Daniel R. Jones*

Eureka Clinical Computing, Eureka Springs, AR, United States

Online AI symptom checkers and diagnostic assistants (DAs) have tremendous potential

to reduce misdiagnosis and cost, while increasing the quality, convenience, and

availability of healthcare, but only if they can perform with high accuracy. We introduce

a novel Bayesian DA designed to improve diagnostic accuracy by addressing key

weaknesses of Bayesian Network implementations for clinical diagnosis. We compare

the performance of our prototype DA (MidasMed) to that of physicians and six other

publicly accessible DAs (Ada, Babylon, Buoy, Isabel, Symptomate, and WebMD) using

a set of 30 publicly available case vignettes, and using only sparse history (no exam

findings or tests). Our results demonstrate superior performance of the MidasMed DA,

with the correct diagnosis being the top ranked disorder in 93% of cases, and in the top

3 in 96% of cases.

Keywords: Bayesian medical diagnosis, symptom checkers, general medical diagnostic assistant, diagnostic

performance, Bayesian network, comparison of physicians with AI decision support, AI medical diagnosis,

diagnostic decision support system

INTRODUCTION

Online AI symptom checkers and diagnostic assistants (DAs) have tremendous potential to reduce
misdiagnosis and cost, while increasing the quality, convenience, and availability of healthcare,
but only if they can perform with high accuracy (Millenson et al., 2018; Van Veen et al., 2019;
Rowland et al., 2020). Machine Learning (ML) and Bayesian Networks (BNs) are promising
technologies in healthcare, but both have limitations for general medical diagnosis. Despite major
advances in the application of ML to narrow biomedical applications (Beede et al., 2020; Liu
et al., 2020; McKinney et al., 2020), challenges remain for its application to general medical
diagnosis, including the inability to model causal inference (Velikova et al., 2014; Richens et al.,
2020), semantic relationships including subtypes (“is-a” and “part-of”), logic, and heuristics;
and lack of interpretability. Furthermore, challenges remain in training or educating DAs with
electronic medical record (EMR) data, including proper interpretation of incomplete or missing
data (Nikovski, 2000), unreliable labels and label leakage, bias (Ghassemi et al., 2020), and the fact
that EMRs are designed to document and support care and reimbursement and to minimize legal
risks, rather than to describe disorders.
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The use of Bayesian approaches for medical diagnosis is well-
documented, from early expert systems (Yu et al., 1988; Shwe
et al., 1990; Barnett et al., 1998) to today’s chatbot triage and
symptom checkers (Zagorecki et al., 2013; Baker et al., 2020).
But thus far they have fallen short of the desired accuracy
despite incremental improvements (Lemmer and Gossink, 2004;
Antonucci, 2011; Richens et al., 2020). In previous studies such
DAs have underperformed physicians in diagnostic accuracy
(Semigran et al., 2015, 2016; Millenson et al., 2018; Chambers
et al., 2019; Yu et al., 2019). For example, Semigran et al. (2015)
evaluated the performance of 23 symptom checkers using case
vignettes, and found they ranked the correct diagnosis first 34%
of the time, and in the top 3 in 51% of cases. In a subsequent
paper (Semigran et al., 2016) compared symptom checkers to
physicians, and showed much better performance for physicians,
who ranked the target diagnosis #1 in 72.1% of cases, vs. only
34% for the symptom checkers. A more recent paper (Baker
et al., 2020), using 30 of the case vignettes tested in Semigran
et al. (2015) and Semigran et al. (2016), reported performance
comparable to physicians: the Babylon system ranked the target
diagnosis #1 for 70% of the vignettes and in the top 3 for 96.7%,
compared to 75.3 and 90.3%, respectively, for physicians. But
even the benchmark of obtaining physician diagnostic accuracy
leaves much to be desired, with reported physician diagnostic
error rates of 10–24% or greater (Graber, 2012; Meyer et al., 2013;
Baker et al., 2020). Diagnostic errors are the leading cause of paid
malpractice claims (28.6%), and are responsible for the highest
proportion of total payments (35.2%) (Tehrani et al., 2013).
Diagnostic errors were almost twice as likely to be associated with
patient death as other types of errors (e.g., treatment, surgery,
medication, or obstetrics errors). Almost 70% of diagnostic errors
occurred in the outpatient setting (Tehrani et al., 2013).

BNs model causal inference using Bayes’ theorem. They offer
a formal method for representing an evolving process of refining
the posterior probabilities of outcomes based on the likelihood of
relevant data. This approach is particularly suitable for diagnosis,
where clinicians formulate an initial differential diagnosis based
on the patient chief complaint, and then proceed to refine the
diagnosis based on additional data obtained from the patient
interview, exams, tests, and treatment outcomes. In this iterative
process, each differential diagnosis ranks the likelihood of each
contending disorder, and provides priorities for the next data
items to ascertain.

Given a joint random variable X = X1, . . . ,XN , a Bayesian
Network (BN) offers a compact representation of its local
conditional probability distributions (Koller and Friedman,
2009). Formally, a Bayesian Network is defined as a pair BN
= (G, P), where G is a directed acyclic graph (DAG) and P
is the joint probability distribution of X as specified by the
conditional probability tables (CPTs) of the graph nodes. The
graph G = (V, E), is comprised of nodes or vertices V and
directed arcs or edges E ⊆ V × V. Each node in V represents
a distinct random variable in X, and each arc in E represents
the conditional probability of the child node given its parent.
Every node is conditionally independent of its non-parent non-
descendants, given its parents. It follows that the joint probability
distribution P(X) reduces to the product of the conditional

probability distributions at each node (local Markov property),
and can be written as:

P (x1, . . . , xN) =

N
∏

i=1

P(xi|πi) (1)

where πi is the state of the joint variable defined by the elements
of X that are the parents of Xi (Fagiuoli and Zaffalon, 1998;
Antonucci, 2011).

The size of the CPT describing the joint probability
distribution at a node grows exponentially with the number
of inputs (parents). For problems involving a large number of
variables and/or dense graphs, computational complexity and/or
lack of sufficient data can make this approach impractical.
The leaky noisy-OR function (Henrion, 1987; Antonucci, 2011)
is a popular technique for reducing the input parameter
requirements from exponential to linear (for binary variables).
It does so by assuming the parent nodes are conditionally
independent given their joint child. With this assumption, the
joint probability distribution of the child node simplifies to:

P (xi|πi) = 1− (1− ni)
∏

xj∈πi

(

1− P(xi|xj)
)δj (2)

where P(xi|xj) is the conditional probability of the child node
given parentXj, and δj = 1 if xj = true and 0 if it is false. Equation
(2) can be interpreted as meaning that Xj only affects change
when it is present. Ignoring the (1 − ni) term for a moment,
we see this is simply the probability formula for the union of
independent events, i.e., P

(
⋃

i Ai

)

= 1 −
∏

i

((

1− P(Ai

))

. The
variable ni is a noise term, which is optionally a function of Xi,
and represents unmodeled causes of Xi assumed to be present.

A classifier can be defined in conjunction with a BN by
assigning each node to 1 of 3 types: (1) input, data, features,
or evidence; (2) outputs or class labels; and optionally (3)
intermediate or hidden nodes. Given K possible outputs,
y1, . . . , yK , and L inputs, x1, . . . , xL, the classifier selects the
output node ŷ such that

ŷ = argmaxi∈{1,...,K}P(yi|x1, . . . , xL) (3)

where argmax selects the maximum argument, i.e., the output
node that maximizes P(yi|x1, . . . , xL). Using Bayes Theorem and
assuming the output nodes are mutually independent, Equation
(3) reduces to

ŷ = argmaxi∈{1,...,K}P(yi) · P
(

x1, . . . , xL|yi
)

(4)

where P
(

yi
)

is the a priori probability of yi. In the special case
where the variablesXi are independent, we obtain the naïve Bayes
classifier (Koller and Friedman, 2009)

ŷ = argmaxi∈{1,...,K}P(yi) ·

L
∏

j = 1

P
(

xj|yi
)

(5)

It is important to keep in mind the assumptions that lead to
the simplifications of Equations (4) and (5). Medical diagnosis
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FIGURE 1 | Diagnostic BN hierarchy (A) Generic fragment where each node represents a risk factor (R) disease (D), pathophysiological state (P), or findings (F); (B)

BN fragment for liver cirrhosis.

is one domain in which these assumptions are not always valid,
resulting in excessively degraded classification.

In a medical diagnostic BN (Figure 1) the input nodes
represent all known risk factors and findings (i.e., symptoms,
examination results, and test results), while the output nodes
are all possible diagnoses. There may also be intermediate
nodes representing pathophysiological states or mechanisms. As
indicated by the causal arrows, risk factors increase the likelihood
of diseases; diseases cause other diseases, pathophysiological
states, and findings; physiological states cause findings (and
sometimes other physiological states); and findings may cause
other findings. For a given set of patient inputs we want to
determine the most probable diagnoses using both forward and
backward inference.

The characterization of nodes as risk factors, findings,
pathophysiological states, and disorders can be governed
by somewhat arbitrary nosological distinctions. For example,
dehydration is a pathophysiological state with multiple findings
(e.g., decreased urine output, dry mucus membranes, dizziness,
hypotension), and can be caused by multiple disorders such as
acute gastroenteritis and uncontrolled diabetes. But dehydration
is also used as a diagnosis when other causal disorders are ruled
out, and it can be attributed to, e.g., prolonged exertion in
heat without sufficient hydration (a risk factor). The findings
of dehydration can be attributed to its causal disorders, but
they tend to cluster as a distinct subpopulation in patients with
the causal disorders that develop dehydration. The distinction
between risk factors and findings can also be ambiguous. For
example, obesity is both a risk factor for developing type II
diabetes and also a finding of diabetes and other metabolic

disorders. And while some findings can cause other findings, it’s
important not to confuse temporal progression with causality.
For example, in an infectious disorder, fever may precede a rash,
but doesn’t cause it.

Figure 2 shows typical diagnostic BN configurations. In
Figure 2A a disorder causes 2 findings (F1, F2). These
findings may be considered conditionally independent, as in
pulmonary embolus (PE) causes cough and syncope (the 2
symptoms result from distinct pathophysiologic pathways); or
they may be conditionally dependent, as in pulmonary embolus
causes cyanosis and syncope (both result from a common
pathophysiologic pathway of a PE subset, massive embolism
causing circulatory obstruction). In Figure 2B two marginally
independent disorders cause a single finding, e.g., pneumonia
and acute bronchitis both cause cough. In Figure 2C, two
causally related disorders each cause the same finding, e.g.,
chronic hepatitis causes cirrhosis and both disorders cause
hyperbilirubinemia and jaundice; or acute bronchitis precipitates
a COPD flare and both cause cough. In Figure 2D, two causally
related disorders each explain a distinct subset of the patient
findings, e.g., deep vein thrombosis causes pulmonary embolus,
with patient findings leg edema (caused by DVT) and dyspnea
(caused by PE).

BNs have been a popular choice for medical diagnosis because
of their ability to model complex domains and to provide a
sound basis for their inference. Compared to pure ML solutions,
BNs can incorporate derived medical knowledge (e.g., published
studies, textbooks, expert opinion), and do not require huge
raw datasets. Fundamental problems with traditional Bayesian
implementations include:
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FIGURE 2 | Typical diagnostic BN configurations. (A) A disorder causes 2 findings; (B) Independent disorders both cause a finding; (C) Causally related disorders

cause the same finding; (D) Causally related disorders each explain a subset of the patient findings.

• Severe scalability problems due to the large number of nodes
required for a diagnostic network with a large number
of diagnoses and/or findings (Cheng and Druzdzel, 2000;
Heckerman, 2013). A general medical diagnosis BN (e.g., for
primary care) may have thousands of diagnoses and tens
of thousands of findings. The richer the model, the larger
and more complex the DAG becomes, and the more data is
required to populate the CPTs. Furthermore, high accuracy
requires that many of the findings be modeled as continuous
or categorical random variables which can make the CPTs
very large.

• Inability to model large-scale knowledge representations
(Koller and Pfeffer, 1997). The BN DAG represents a single
semantic dimension (causality), but other relationships are
required to represent the diagnostic process. Of specific
interest in diagnosis is the ability to model inheritance
hierarchies. For example, to diagnose “brain tumor or
neoplasm” or one of its many subtypes, a conventional BN
would require the parent disorder and all of its descendants to
each independently be represented in the DAG. This presents
not only complexity issues but also defies basic diagnostic
heuristics, e.g., that “brain tumor” shouldn’t “compete” in
the differential diagnosis with its child, “dominant temporal
lobe tumor”.

• Failure to capture the semantic overlap or partial synonymy

among findings. Semantic overlap is an inevitable byproduct of
a complex ontology. When semantic overlap occurs, findings
cannot be considered independent, and they jointly fail to
deliver the same diagnostic power that is implied by the
assumption of independence. For example, if a chest x-ray
shows left atrial enlargement (LAE), then an echocardiogram
showing LAE may provide slightly more information since
it has a higher specificity, but not as much as if the x-ray
had not been discerned. Similarly, if we first discerned that
the echocardiogram shows LAE, then the x-ray has little
to no additional diagnostic value. The effect of semantic
overlap in a system that assumes findings are independent
can cause overconfidence or premature closure, leading the
system to conclude that a specific disease is the correct
diagnosis when in fact there is insufficient evidence for that
claim. One approach that has been proposed to partially
address this problem is to introduce an intermediate node

that represents the collective effect of a set of correlated
findings (Yu et al., 1988; Nikovski, 2000; Velikova et al.,
2014).

• Failure to capture higher order statistics among finding
nodes of a given disorder, e.g., how findings vary with
duration of symptoms, age, gender, and other risk
factors. For example, gender per se has little effect on the
likelihood of psoriatic arthritis (PA), but males with PA are
significantly more likely to present with involvement of a
single joint.

• Failure to capture causal relationships among disorder
nodes (Richens et al., 2020). The assumption that a
patient’s findings must be explained by a single disorder
rather than the simultaneous occurrence of multiple
causally linked disorders can cause underconfidence
(diffidence), leading the system to fail to rank the
correct diagnosis or diagnoses as the top disorder(s)
even after sufficient information was presented for that
claim. For an in-depth discussion of diffidence and over-
confidence detection in diagnostic systems, see (Hilden et al.,
1978).

MATERIALS AND METHODS

This paper describes the MidasMed DA, a prototype system
based on a novel BN with improved diagnostic modeling. A
comprehensive description of the diagnostic engine that powers
the MidasMed DA is outside of the scope of this paper.
However, we provide highlights of the solution architecture
and key innovations that address the fundamental limitations
of traditional implementations listed above, and advance the
state-of-the-art in AI diagnosis.

The solution architecture consists of the following
key components:

• A rich semantic model that captures entity data and
relationships among entities of the medical ontology that
is largely independent of implementation constraints. The
semantic model is instantiated as an object-oriented model for
efficient diagnostic computations.

• A diagnostic engine that for each diagnostic request
dynamically generates a sparse BN, and then applies a Bayesian
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classifier to generate a differential diagnosis. The classifier
implements disorder subtype hierarchies to recursively and
efficiently generate a differential diagnosis with the maximum
disorder specificity supported by the data. For example, if
warranted by the data, the system will report “anteroseptal
acute myocardial infarction” instead of the less specific
“acute myocardial infarction.” Note that for many disorders,
optimum treatment depends on knowing the specific subtype.

• A “Best Next Finding”module that generates a set of additional
findings to discern (from the patient or clinician) in order to
most quickly and economically refine the diagnosis.

The semantic model describes the medical ontology and the
relationships among its concepts using statistical, logical, and
heuristic data. The model can be edited and viewed using a
web-based content management system (CMS), and is stored
in a semantic SQL database. A constructor algorithm generates
an object-oriented model from the semantic assertions in the
database, resulting in a Data Transfer Object (DTO). The
DTO may be serialized for storage and transport to the server
running the diagnostic engine. The DTO represents an in-
memory object-oriented image of the semantic model that
enables rapid and efficient diagnostic computation in real-time.
The DTO abstractly represents the global BN, although other
(more efficient) data structures are used to hold the node objects.
Each node encapsulates all the information it needs to discover
its graph neighbors via pointers to other nodes.

Our diagnostic model focuses primarily on the following
aspects: (1) dependencies among disorders, (2) subtype relations
within a disorder family, (3) the characterization of each
disorder in terms of its relevant findings and risk factors, (4)
statistical correlation and semantic overlap among findings, and
(5) finding contingency hierarchies stemming from the relative
semantic scope of each finding and the linear progression of the
diagnostic interview. Each of these topics in described in the
following sections.

Inter-disorder Dependency
Disorder dependency is important to model because a patient
may present with symptoms of both a causal disease and its
complication(s). For example, a patient might present with deep
venous thrombosis (DVT) in a leg, combined with symptoms
of pulmonary embolus, a life-threatening complication of DVT.
In cases where the initial cause is insidious or insufficiently
bothersome, or when the cause and its complication(s) occur
in rapid succession, the causal disorder may not have been
previously diagnosed. We do not want the classifier to “punish”
a disorder for not explaining findings of its co-presenting
dependent disorder(s); rather, such combinations of findings
often provide high confidence for the diagnosis of a combination
of causally linked disorders. Therefore, our classifier is designed
to identify single disorders or clusters of dependent disorders
that best explain the patient findings. Of course two independent
disorders may also jointly explain the patient findings; however,
the probability of such an event is generally much lower.

We used the term Multi-Disease Model (MDM) to describe
a classifier that detects and accounts for clusters of dependent

disorders in the differential diagnosis. One of the consequences of
MDM is that co-occurring dependent disorders may each explain
some of the same finding(s). We therefor need a mechanism
for describing how the joint interaction among disorders affects
the presentation of their common findings. We use the term
equivalent sensitivity to describe the sensitivity of a finding that
is relevant to multiple dependent disorders that are all assumed
to be present (with appropriate extensions for categorical and
continuous findings). To illustrate this case, suppose D1 causes
D2, and both share common a finding F1 with sensitivities s1,1 =
P(F1|D1) and s1,2 = P(F1|D2). The cluster consisting of D1 and
D2 has 3 configuration: {D+

1 , D
−
2 }, {D

−
1 , D

+
2 }, and {D+

1 , D
+
2 },

where the+/– indicate whether the disorder is present or absent.
When both disorders are present, F1 will have an equivalent
sensitivity for the configuration that depends on (a) the nature
of F1, (b) the sensitivities s1,1 and s1,2, and (c) whether or not F1
arises in D1 and D2 due to shared or distinct pathophysiological
mechanisms. For example, if F1 is body temperature, D1 causes
hypothermia and D2 causes fever (an admittedly unusual case),
then we would expect the patient temperature (given that she
has both D1 and D2) to be s1,1 < s1 < s1,2. On the other
hand, if D1 and D2 both cause fever, and due to the same
underlying mechanism, then we expect s1, ≈ max(s1,1, s1,2). But
if D1 and D2 both cause fever due to different mechanisms,
we might expect s1 > max(s1,1, s1,2). Now suppose F1 is time
to diagnosis, with the corresponding question “How long ago
did your symptom(s) begin?”. If D1 has a gradual onset with a
distribution centered on “months to years”, whileD2 has a shorter
onset, say “days to weeks” then the equivalent sensitivity will
satisfy s1 ≈ max(s1,1, s1,2), because the patient will most likely
associate the beginning of the problem with the onset of D1,
which started first.

To formally describe MDM, consider a cluster of dependent
disorders. To qualify, each cluster member must have at least
one link to another cluster member, and must explain at least
one abnormal patient finding. A disorder may belong to at most
one cluster, for if it belonged to multiple clusters those would be
merged into a single cluster. A disorder with no dependencies is
called a singleton (cluster of size 1). Let D1, . . . , DN be members
of cluster C, and F1, . . . , FM be the known patient findings. The
configurations of C are all permutations of the cluster disorders
in which some are present and others are absent. For the net
probability of C (all configurations) we have:

P
(

C
∣

∣f1, . . . , fM
)

=
∑

j

P
(

C+
j

∣

∣

∣
f1, . . . , fM

)

=
∑

j

I(C+
j ) ·

M
∏

i = 1

sij

(6)

where I(C+
j ) is the joint incidence (prior probability) of the

disorders in C+
j co-occurring, and sij is the equivalent sensitivity

for finding Fi in C+
j . The probability of cluster disorder Dk is

the sum of the probabilities of all configurations in which it is
present, i.e.,

P
(

Dk

∣

∣f1, . . . , fM
)

=
∑

j

P
(

C+
j

∣

∣

∣
f1, . . . , fM

)

· δjk (7)
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where δjk = 1 if Dk ∈ C+
j and 0 otherwise. While the total

number of configurations may be very large (since C may be
large) this does not present a computational problem, since the
vast majority of configurations can be discarded using pruning
heuristics with negligible effect on the accuracy of the cluster
probability computation. Note that given the set of all contending
diagnoses across all clusters, the cluster probabilities sum up to
1.0 but the disorder probabilities do not, due to co-occurrence
among the disorders.

Disorder Subtype Hierarchies
The ability to model disorder subtypes is important in diagnosis,
because disorder subtypes may have different prognoses and/or
require different treatments (e.g., viral vs. bacterial meningitis).
We use the term subtypy to define a framework for describing the
disorder inheritance hierarchy. Note that inheritance hierarchies
in diagnosis are statistical and not directly analogous to
the programming concept of object-oriented inheritance. In
diagnosis, the ancestor represents a statistical aggregate of its
descendants or variants, and while it may be convenient to think
of a subset of findings as manifest in the parent and passed on
to the children, there are usually variations in how these findings
are expressed (or not) in each child. For example, conjunctival
injection is always present in infectious conjunctivitis, and
inherited to both subtypes gonococcal (bacterial) conjunctivitis
and viral conjunctivitis. However, conjunctival hemorrhages are
more common in the viral variant, while eyelid edema and
purulent discharge are more common the bacterial variant.
Furthermore, a Gram stain of the gonococcal conjunctivitis
discharge may identify Gram-negative diplococci, but it is
irrelevant to the viral variant. So the Gram stain test finding is
relevant to the parent (infectious conjunctivitis), but not to its
viral child. In summary, a child attribute is always represented by
the parent, but not necessarily vice versa, and the manifestation
in the parent is a statistical aggregate of its children.

Because each parent represents the statistical aggregate of its
children, and the probability of each child varies based on the
patient findings, we must compute all sensitivities dynamically
for each new set of patient findings, and we must do so by
starting at the very bottom of the hierarchy tree (the “leaves”
or childless disorders). To see why this is the case, consider a
simple example with parent disorder meningitis and its children
viral and bacterial meningitis. The prior probability (incidence)
of meningitis in the U.S. is ∼9.25e-5. Approximately 82% of
cases are viral and 18% bacterial. Consider the finding “CSF
culture positive for bacteria.” This finding is relevant to bacterial
meningitis with sbm ≈0.95 and is not relevant to viral meningitis,
so we assign a noise sensitivity, e.g., svm =0.02, and compute the
sensitivity in the parent as the weighted sum: sm = (Ivm · svm +

Ibm · sbm)/Im = 0.82 · 0.02 + 0.18 · 0.95 = 0.187. Now suppose
this finding was determined to be positive in the patient. The
posterior relative probability of the children is now Pvm = Ivm
· svm = 0.82 · 9.25e-5 · 0.02 = 1.152e-6 and Pbm = Ibm · sbm
= 0.18 · 9.25e-5 · 0.95 = 1.58e-5. The relative probability of the
children has changed from 0.82/0.18 to 0.07/0.93, and sm = 0.07
· 0.02 + 0.93 · 0.95 = 0.88. Similarly, if the finding was negative
in the patient then Pvm = Ivm · (1− svm)= 0.82 · 9.25e-5 · 0.98=

7.43e-5, Pbm = Ibm · (1 − sbm) = 0.18 · 9.25e-5 · 0.05 = 8.32e-7,
the relative probability ratio is 0.99/0.01 and sm = 0.99 · 0.02 +

0.01 · 0.95= 0.03.
From the end user perspective it is desirable for the diagnostic

process to proceed from the general to the specific (e.g., from
“stoke or TIA” to “cortical posterior cerebral artery stroke,
dominant”) progressively as more of the relevant patient findings
are discerned. To do so, we use a heuristic called Child Better
than Next that replaces a parent disorder by all its direct children
provided that the relative probability of at least one of the
children exceeds that of the next disorder in the differential
diagnosis stack. This requires the disorders to be ranked by
descending relative probability, and for the stack to be resorted
after each replacement.

Disorder Findings Dependencies
Each finding is modeled as binary, discrete multi-valued
(categorical), or a continuous random variable. We use the
term “finding” broadly to include risk factors, and distinguish
between them by selecting the appropriate interaction model
(e.g., reflecting direction of causality) when computing their
impact on disorder probabilities.

While some findings may justifiably be modeled as
conditionally independent for a given disorder (Naïve Bayes),
this is not the case in general. Frequently, findings vary with
other findings that are not directly relevant to the index disorder.
In such cases we can write:

P
(

f1|D
)

= P
(

f1|f2, . . . , fL,D
)

(8)

where F1 is relevant to D and P
(

f1|D
)

can be described by a
multidimensional probability distribution, with factor findings
F2, . . . , FL that are not necessarily directly relevant to D, but
act as factors in the computation of its finding probabilities.
Common factor findings are age, gender, and time-to-diagnosis;
however, many findings have their unique factor findings. For
example, Figure 3 depicts the distribution of serum glucose for
diabetic ketoacidosis (DKA) as a function of factor findings
“current pregnancy” and “recent heavy alcohol consumption”.

Inter-findings Dependencies
Failure to capture semantic overlap or disjunction can cause
significant distortion unless inter-finding dependencies are
properly managed. At the root of the problem is the basic
concept of finding diagnostic power. The diagnostic power of a
finding represents how much information it contributes to the
likelihood of a disorder relative to contending disorders. That is,
given what we already know about the likelihood of a disorder
from its prior probability (incidence) and previously ascertained
findings, how much additional information does a new finding
provide? We define diagnostic power using a measure called
the probability factor (PF), which is the ratio of the probability
of the finding in the disorder relative to its prevalence in the
general population. Table 4 in Supplementary Materials shows
how this measure relates to other popular measures that quantify
the discriminating power of a finding.

To illustrate the problem of semantic overlap, consider a
patient complaining of pain, edema (swelling), and erythema
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FIGURE 3 | This figure (image captured from our CMS) shows random serum glucose modeled as a log normal distribution for (peak distributions left-to-right): normal

(healthy), chronic diabetes mellitus, and DKA. The overlay table in the top left shows multifactorial distributions of serum glucose for DKA as a function of factor

findings “current pregnancy” and “recent heavy alcohol consumption”.

(redness) at the knee. These findings collectively represent
aspects of knee joint inflammation in rheumatoid, traumatic,
or reactive arthritis. Note however that these findings are not
correlated or even jointly relevant for all disorders that cause
knee pain. For example, L4 lumbar disc herniation can cause knee
pain, but not edema or erythema.

We address semantic overlap by defining an intermediate
node called an xopathy (a generalization of terms such
as neuropathy, dermopathy, or arthropathy). The xopathy
framework enables us to represent a set of findings that are
conditionally dependent with respect to an index disorder using
an interim aggregate node. The xopathy sensitivity represents the
incidence of the xopathy in the population of patients with the
disorder. The xopathy sensitivity can also be interpreted as the
conditional probability that one or more of the xopathy findings
is present given the index disorder.

Let D represent a disorder with conditionally dependent
findings F1, . . . , FL. We construct an xopathy Xop with
the findings as its members, and each having a sensitivity
si = P(fi|xop). We are also given the xopathy sensitivity,
sXop = P(xop|D). Our goal is to compute dynamic sensitivities
s∗1 , . . . , s

∗
K , K ≤ L for each known finding that satisfy

P
(

f1, . . . , fK |D
)

=

K
∏

i=1

s∗i (9)

The actual algorithms for computing {s∗i } are beyond the scope
of this paper. However, we provide a brief outline of the process
with key equations.

Step 1: Compute the independent xopathy diagnostic power
(probability factor), PFindep, as the product of the finding PFs.
This represents the diagnostic power we would introduce into
the disorder probability computation if we assumed the findings

were independent. As noted earlier, PFindep will generally be
greater than the desired diagnostic power when the findings
are correlated.

PFindep
(

Xop
)

=

K
∏

i=1

PF
(

fi
∣

∣Xop
)

(10)

where
(

fi
∣

∣Xop
)

= si/ni, ni is the prevalence of Fi in the general
population, and si is the finding sensitivity relative to the xopathy.
Note that the findings are independent relative to the xopathy
(but not the disorder), which allows us to use the Naïve Bayes
assumption in Equation (10).

Step 2: Determine the maximum allowed PF for this xopathy,
PFmax

(

Xop
)

. If PFindep exceeds PFmax then apply compression
to decrease finding sensitivities. We denote the compressed
sensitivities {s̈i}. The compression algorithm must satisfy several
constraints, such as preserving the relative magnitude of the
original sensitivities (si > sj → s̈i > s̈j), and ensuring that

positive findings remain so
(

si
ni

> 1 → s̈i
ni

> 1
)

.

Step 3: Reflect the xopathy sensitivities to the disorder. The
sensitivities {s̈i} represent the conditional probability of the
findings on the xopathy, but what we really want is sensitivities
conditioned on the disorder per Equation (9). Let x0 = sXop =

P(xop|D), ŝ =
(

∏K
i = 1 s̈i

)
1
K
, and n̂ =

(

∏K
i=1 ni

)
1
K
, where ŝ and

n̂ represent the geometric means of {s̈i} and {ni}, respectively.
For simplicity, in this derivation we’re interpreting si as the
probability of the finding Fi in its known state. If the finding is
negative then si = 1− P(Fi is positive).

We initialize the algorithm as follows:

{

s̃1 = x0 · ŝ+ (1− x0) · n̂

x1 = x0 ·
ŝ
s̃1

(11)
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Note that s̃1 is the expected sensitivity over the two mutually
exclusive disorder subpopulations: the xopathy population with
prior probability x0, and the complementary population with
prior probability (1 − x0). With each discerned finding, the
probability that the patient belongs to the xopathy subpopulation
changes. If the finding was positive the xopathy probability
increases and if it was negative it decreases.

Similarly, for the remaining iterations, j = 2, ..,K we have:

{

s̃j = xj−1 · ŝ+ (1− xj−1) · n̂

xj = xj−1 ·
ŝ
s̃j

(12)

Similar to ŝ, we define š =
(

∏K
i = 1 S̃i

)
1
K
as the geometric mean of

the raw disorder sensitivities computed in Equation (12). Finally,

we normalize the
{

s̃j
}

using the scaling factor R = š
ŝ
in order to

preserve the xopathy diagnostic power achieved in Step 2. The
final sensitivities {s∗i } for Equation (9) are:

{

s∗i = R · s̈i for R ≤ 1.0

s∗i = R·s̈i
1+s̈i(R−1)

for R > 1
(13)

The second form of s∗i in Equation (13) uses the function f (x) =
R·x

1+x(R−1)
to guarantee that the sensitivity never exceeds 1.0.While

previous work has described the use of intermediate nodes to
express the aggregate sensitivity of correlated findings (Yu et al.,
1988; Nikovski, 2000; Velikova et al., 2014), we are unaware
of other successful attempts to express the diagnostic power
and sensitivity of the intermediate node as independent finding
sensitivities for the disorder per Equation (9). This process is
critical to avoid semantic disjunction in MDM computations. To
see why this is the case, consider dependent disorders D1 and D2.
Suppose findings F1 and F2 are relevant to both disorders, but
are only conditionally dependent with respect to D1. If we were
to replace F1 and F2 by an xopathy node Xop(F1, F2) as a finding
of D1, then the disorder cluster {D1, D2} would have 3 findings
instead of 2, thus creating semantic disjunction and rendering the
equivalent sensitivities incorrect.

Finding Contingency Hierarchies
The finding contingency hierarchy represents a formalization of
the “drill-down” conventions of the medical interview. The top
finding (e.g., “chest pain”) is usually followed by more specific
findings like quality or character of the pain (e.g., sharp, dull,
stabbing, burning, pressing), exacerbating factors (e.g., cough or
exercise), relieving factors (e.g., drinking water or sitting up), etc.
For many “top level” findings like chest pain or skin rash there
may be tens of additional secondary or contingent findings that
need to be discerned to obtain a clear picture of the disease state.

We say that finding Fc is contingent on Fp (and Fp is a
prerequisite of Fc) if Fc has no meaning unless Fp has been
discerned. Usually, Fc won’t have any meaning unless Fc takes
on specific state(s). For binary findings, this condition is always
that the prerequisite finding must be positive. For example, we
can’t ask about chest pain quality if the patient has denied
chest pain. Note that a prerequisite finding may have multiple
contingents, and that a contingent findingmay also havemultiple

prerequisites. Furthermore, contingencies may be chained or
nested to multiple levels.

In some cases the contingency chain must be queried in a
specific order to create a coherent interview that makes sense
to the patient. For example, if the patient complains of a skin
lesion, we cannot ask “How deep is the ulcer?” unless we first
determine that the lesion is, indeed, an ulcer. Similarly, if the
patient complains of abdominal pain, there is no point asking “Is
the pain relieved by antacids?” (suggests a peptic ulcer) unless
we first discern that the pain is located in the upper abdomen.
Similarly, we cannot ask “Which came first, the abdominal pain
or the nausea & vomiting?” until we have discerned that both
findings were reported.

Finding contingency chains present an interesting dilemma,
namely, what probability to assign to contingent findings whose
prerequisites are irrelevant to an index disorder. To illustrate this
scenario, suppose the patient presents with 2 positive findings,
F1 and F2 and that there are 3 contending disorders, D1, D2, and
D3. Suppose F1 is relevant to all 3 disorders and F2 is relevant
only to D1 and D2. For simplicity assume all disorders have
the same incidence, all findings have a sensitivity of 0.3 to all
relevant disorders, and that all findings have a noise sensitivity
of 0.02. The relative probabilities of the disorders at this point
are P(D1)/P(D2)/P(D3) = 0.32/0.32/0.3 · 0.02. The relative
probability of D3 has decreased by approximately an order of
magnitude. Now suppose F2 has contingent finding F21that is
positive in the patient, and only relevant to D1. The updated
relative probabilities are P(D1)/P(D2)/P(D3) = 0.33/0.32 ·

0.02/0.3 · 0.022. The decrease of P(D2) relative to P(D1) seems
justified, because given F2, D1 matches the finding pattern better
thanD2. However,D3 has essentially been punished twice for not
explaining the prerequisite finding. Each time we query another
finding in the F2 contingency chain the relative probability of
D3 will decrease by the probability factor 0.3/0.02, and very
quickly D3 will be discarded from consideration. We use the
term “don’t care” finding to mean a positive contingent finding
for a prerequisite that is irrelevant to the index disorder. In
our example, F21 is a “don’t care” condition for D3. We further
stipulate that the relative probability of a disorder should be
minimally impacted by its “don’t care” findings. The solution we
implemented was to derive a weak positive sensitivity to “don’t
care” findings.

The MidasMed Diagnostic Engine and Web
App
The diagnostic engine is implemented as a web server that
receives stateless diagnostic requests from a client, and returns a
response consisting of a probability ranked differential diagnosis
and a ranked list of the best next findings to discern. The first
step is to generate a list of all valid diagnoses that explain at
least one abnormal patient finding. The disorder list is used to
create a dynamic sparse BN. It is sparse, because it contains only
valid diagnoses for the given request. As described earlier, the
conditional probabilities for each parent disorder are represented
as statistical aggregates of the children. Note that there is
no need to compute the entire finding conditional probability
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FIGURE 4 | Illustration of recursive BN computations for disorder cluster and subtype fragments. (A) Cluster fragment for patient findings F1 and F3 and disorder

subtype ancestors. (B) Subtypy tree for disorder D3. (C,D) D3 in original network has been replaced by its children D31 and D32 to compute the cluster probabilities

with the two children.

distribution, only the probability of the patient value. A recursive
computation is then initialized with the ancestor disorders of
each subtype family. MDM computations are applied, and the
disorders are placed in a stack and ranked by descending relative
probability. The Child Better than Next heuristic is then applied
recursively (starting at the top of the disorder stack), by replacing
the next qualified parent and all its siblings by all their children,
updating the relative probabilities, and resorting the stack. Note
that only the MDM cluster containing the parent(s) needs
to be recomputed with each replacement. The resulting final
differential diagnosis offers the user the appropriate diagnostic
subtype specificity for the known findings.

Figure 4 illustrates a fragment of a single iteration in this
recursive process. Figure 4A shows a cluster fragment for patient
findings F1 and F3. Note that F3 is relevant to both D2 and D3,
so it will require an equivalent sensitivity for configurations in
which both disorders are present. In the next iteration (if the
Child Better than Next criterion is satisfied) D3 will be replaced
by children D31 and D32. In the following iteration D31 and D32

(siblings) will be replaced by all their children (D311, D312, D321,
and D322). Note that the network in Figure 4A depicts causality
(e.g., D1 causes D2 and D3), while the network in Figure 4B

depicts disorder subtypes (e.g.,D3 is a supertype ofD31 andD32).
Subtypes of a single parent (siblings) are considered mutually
exclusive, so P(D31) is computed using the configurations of the
cluster in Figure 4C. However, the probabilities of the dependent
disorders (D1 and D2) are computed from the configurations

of both Figures 4C,D, by summing the probabilities of all
configurations in which they appear. Similarly, in the next
recursion, configurations will be computed withD311,D312,D321,
and D322.

The innovations described above combine to produce a
nuanced approach to diagnosis that we assert results in
substantially greater accuracy than existing solutions in that the
differential diagnosis probabilities are more consistent with the
evidence available to support them. We further assert that with
diagnostic guidance based on Bayesian probabilities, heuristics,
and estimated costs, the differential diagnosis converges to the
correct diagnosis more efficiently, potentially translating into
time and cost savings.

Our prototype system (MidasMed) currently recognizes a
limited subset of 200 common adult primary care disorder
subtype families (760 total diagnoses) spanning a variety of
systems (respiratory, dermatology, neurology, musculoskeletal,
etc.), and 4,000 findings (We estimate these encompass
approximately half of the disorders a competent primary
care physician should be able to recognize.). The semantic
network is defined using statistical and logical analysis of
epidemiological data, case series, journal articles, textbooks, and
other online resources.

MidasMed includes a user-friendly web app for both patients
and clinicians using dual vocabularies and default application
settings for the two distinct user groups. For example, by
default patients and lay caregivers are presented only with
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history questions in lay terminology, while professional users are
asked all finding types (including exam and test results) using
professional terminology. The user interface is interactive, and
is designed to give the user maximum flexibility and control.
Throughout the encounter, patient findings can be augmented,
edited or deleted. The user can choose from 3 ways of entering
new findings to refine the initial differential:

1. Search: The user selects her own findings from a global
findings list.

2. Guide Me: MidasMed asks a short series of the best next
questions to discern.

3. Drill Down: The user selects a disorder from the differential
diagnosis to view, rank, and select undiscerned findings for
that disorder. This allows the user to focus on a condition of
particular concern due to urgency or severity, and answer the
questions that will most efficiently rule it in or out.

Experimental Paradigm
In this research we compare the performance of MidasMed
to that of physicians and six other publicly accessible online
diagnostic aids: Ada, Babylon, Buoy, Isabel, Symptomate, and
WebMD. To facilitate a comparison with previous studies,
we used a set of publicly available case vignettes (Semigran
et al., 2015) that were tested on 23 symptom checkers in 2015,
physicians (Semigran et al., 2016) and on three physicians and
the Babylon DA in 2020 (Baker et al., 2020). The vignettes are
available online in the format of Table 1. (See Table 5 in the
Supplementary Materials for a complete list of vignettes and also
a link to the vignettes file).

As in the previous studies (Semigran et al., 2015; Baker et al.,
2020), we used only the information from the “Simplified (added
symptoms)” column of the vignette file, and excluded vignettes
based on conditions on which MidasMed had not yet been
educated (in conformance with the methodology of Baker et al.,
2020). This resulted in a test set of 30 vignettes, the same number
used in Baker et al. (2020). We note that none of the vignettes
had been used in the training, education or parameterization
of MidasMed.

We regarded the diagnosis presented in the “Diagnosis”
column of the vignette file as the true or “target” diagnosis, except
in 2 cases where no final diagnosis was provided but was clearly
implied (the implied diagnosis was used), and 2 cases where
multiple causally linked disorders were implied by the vignette
history (either implied diagnosis was accepted). We did not find
descriptions of how these problematic vignettes were treated in
the previous articles. These exceptional cases are clearly identified
in Table 5 in the Supplementary Materials.

In two cases the diagnosis provided for the vignette seemed
inadequately substantiated by the simplified vignette history
in our clinical opinion. For presumed consistency with the
previously reported research, we nonetheless regarded it as
the target diagnosis. These cases are also identified in the
Supplementary Materials (Table 5).

MidasMed is an incomplete prototype, and therefore has not
been publicized or promoted, but is publicly accessible (for a
limited time) for evaluation and feedback at midasmed.com,

and the vignette cases created for this article are publicly
accessible via the application for anyone to view and experiment
with (see instructions in the Supplementary Materials). At this
writing, MidasMed recognizes only 200 adult disorder families.
A complete list of supported diagnoses can be found in the app at
midasmed.com from the Options (hamburger) menu.

For this study we used all of the adult vignette cases from the
source file on which MidasMed has been educated, plus three
pediatric cases for which the presentation is very similar to that in
adults. Since MidasMed only accepts patient ages ≥ 18, the ages
of the three pediatric patients were transposed to 18 years.

All the other DAs evaluated are publicly promoted as
diagnostic aids for the general public. (One limits the age to≥ 16,
for which the age of the two younger patients was also transposed
to that minimum age). Since none of the vignettes are based
on rare disorders, we assumed the other DAs to be capable of
recognizing all the target diagnoses.

The data for physicians and the Babylon DA were taken from
Baker et al. (2020), and were not independently replicated in this
study. For each of the other diagnostic assistants one of us (D.
Jones, MD, board certified in emergency medicine with 25 years’
primary care experience) entered only the “Simplified (added
symptoms)” findings for each vignette into the online DAs (See
the Supplementary Materials for links to all the DAs). Note that
these simplified vignettes were designed to reflect only the history
findings and observations that a patient could enter. For each
DA we recorded (a) the fraction of cases for which the target
diagnosis was #1 in the list of diagnoses provided; and (b) the
fraction for which the target diagnosis was in the top 3 disorders
of the list.

RESULTS

The results of our research are presented in Table 2.

Limitations Regarding Our Results
Although MidasMed aspires to be a complete diagnostic aid
for both patients and clinicians, and therefore includes the
physical examination and test findings required to definitively
diagnose the disorders on which it has been educated, only
history findings were entered in this study. The objective here
was to quantify the ability to identify the correct diagnosis based
on sparse patient histories, as are readily available directly from
patients online.

With only 30 cases, the statistical reliability of the results is
low, as reflected in the broad confidence intervals. The original
study for which the vignettes were created (Semigran et al., 2015)
included 45 vignettes, but only the 27 adult plus 3 pediatric
disorders on which MidasMed has been educated were tested
in this study, and only 30 in the study (Baker et al., 2020) that
produced the physician and Babylon data reported here.

It is possible that as the breadth of disorders covered
by MidasMed is increased, and the correct diagnosis
must compete with a greater number of similar disorders,
accuracy will decline. However, since (a) the disorders
presently covered by MidasMed were selected because
they are among the most common, and (b) the vignette
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TABLE 1 | Sample vignette.

Diagnosis Vignette Simplified (added

symptoms)

Requires emergent care (n = 15)

Appendicitis A 12-year-old girl presents with sudden-onset severe generalized abdominal pain

associated with nausea, vomiting, and diarrhea. On exam she appears ill and has a

temperature of 104◦F (40◦C). Her abdomen is tense with generalized abdominal pain,

nausea, tenderness and guarding. No bowel sounds are present.

12 y/o f, sudden onset

severe abdominal pain,

nausea, vomiting,

diarrhea, T = 104

TABLE 2 | Performance comparison summary results for 7 DAs and physicians.

Physician or DA Vignettes tested Target diagnosis ranked #1 Target diagnosis in the top 3

Fraction Percent (%) 95% CIe Fraction Percent (%) 95% CIe

Physiciansa 90b 68/90b 75.3 65.4–84.0 81/90b 90.3 81.9–95.3

Ada 30 22/30 73.3 54.1–87.7 27/30 90.0 73.5–97.9

Babylona 30 21/30 70.0 50.6–85.3 29/30 96.7 82.8–99.9

Buoy 21c 11/21 52.4 29.8–74.3 15/21 71.4 47.8–88.7

Isabeld 30 15/30 50.0 31.3–68.7 21/30 70.0 50.6−85.3

MidasMed 30 28/30 93.3 77.9–99.2 29/30 96.7 82.8–99.9

Symptomated 30 21/30 70.0 50.6–85.3 26/30 86.7 69.3–96.2

WebMDd 30 20/30 66.7 47.2–82.7 28/30 93.3 77.9–99.2

All DAs 201 138/201 67.7 61.8–75.0 175/201 87.1 81.6–91.4

Top 3 DAsf 90 71/90 78.9 69.0–86.8 82/90 91.1 83.2–96.1

aThe Babylon and physician tests were not replicated in this study, but were transcribed from Baker et al. (2020), which used the same methodology.
b In the Babylon study three physicians were tested, but only percent data were reported; therefore 95% CI’s were computed assuming a total of 90 vignettes (30 per doctor).
cFor 9 of the 30 disorders presented, Buoy gave no proposed diagnoses; only triage recommendations (e.g., “Contact a medical professional” or “Call 911!”).
d Isabel, Symptomate, and WebMD are the only DAs tested both in the original paper (Semigran et al., 2015) and this study.
eCI intervals were computed using Clopper-Pearson exact method for binomial probability distributions.
fFor a larger sample size to compare with physicians, we combined the top 3 DAs we tested (Ada, MidasMed, and Symptomate).

diagnoses are mostly common disorders, adding the less
common disorders is unlikely to hinder the recognition of
the vignette disorders. Rather, it will be difficult (probably
impossible) to correctly identify an uncommon disorder
(e.g., bronchiectasis or idiopathic pulmonary fibrosis) as the
most likely diagnosis based on only sparse vignette histories
such as were used here, some of which contain only 3 or 4
common findings.

It was difficult to make perfectly fair comparisons of the
different DAs due to differences in their user interface (UI)
approaches. For example, some apps (e.g., MidasMed, Ada) offer
an “unknown” option for (virtually) every follow-up question
queried, making it easy to limit the information entered strictly
to the items provided in the simplified vignettes. However, other
DAs (e.g., Buoy, Symptomate), presented follow-up questions
that required an affirmative or negative answer to proceed.
In those cases (i.e., when forced to provide information not
in the vignette), we attempted to err in the direction of
aiding the DA under test, by answering as a typical patient
with the target disorder would most likely answer. In a few
cases, it was not possible to enter all history items for a
specific vignette because an item was both (a) not accessible
in the DAs search facility (despite trying multiple synonyms),
and (b) not queried via follow-up questions presented by
the DA.

DISCUSSION

Canadian physician Sir William Osler (1849–1919), “the father
of modern medicine,” is known for saying, “Listen to your
patient, he is telling you the diagnosis.” This message repeats in
the medical school maxim, “90% of the diagnosis comes from
the history, 9% from your examination, and 1% from tests”
(Gruppen et al., 1988; Peterson et al., 1992). This maxim has been
forgotten in today’s over-stressed healthcare system. Too rushed
to take a comprehensive history, doctors often compensate by
ordering test panels, referring to specialists, and scheduling
more follow-up visits; “Next patient, please.” Patients on the
receiving end are justifiably frustrated and open to alternatives.
But with the growing role of telehealth, where the ability to
perform exams or order stat tests is limited, patient history should
regain its role as the primary factor in the diagnostic equation.
There is also a broader trend toward democratizing access to
medical information, or “eHealth” via phone apps, wearables, and
inexpensive measurement devices, giving patients more control
over care options.

In this study we performed a prospective validation of a novel
Bayesian diagnostic assistant (MidasMed), and compared it to
five online DAs (Ada, Buoy, Isabel, Symptomate, and WebMD)
and to the accuracy previously reported for the Babylon DA and
physicians. MidasMed was able to identify the correct diagnosis
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as most likely with 93% accuracy, significantly outperforming
physicians (75%) on the same vignettes (Baker et al., 2020).

We attribute the superior performance of MidasMed to
a diagnostic model that moves beyond the “leaky noisy
OR gate” assumption of conditional independence among
the BN nodes (Henrion, 1987), and to reducing semantic
overlap and disjunction that are common in the medical
literature and can lead to significant distortion in estimated
probabilities of the outcomes. These simple vignettes and
our scoring technique did not give MidasMed credit for
diagnosing co-present causally related disorders. In particular,
it is noteworthy that for the two vignettes that imply the
causal co-occurrence of multiple disorders, MidasMed produced
estimated relative probabilities for these disorders whose sum
approaches 200%, implying a high likelihood of co-occurrence
(See the Supplementary Materials, for instructions to access the
cases online).

It appears from our results that the accuracy of online DAs
has improved significantly in the 6-year interim since the original
paper (Semigran et al., 2015) evaluated the study vignettes.
In that paper, the best-performing symptom checker listed the
target diagnosis first only 50% of the time, and in the top
three only 67% of the time; and the average performance of
19 symptom checkers in that study for the top 1 and top
3 was only 34 and 51%, respectively. Whereas in this study,
the best performance was 93% (top 1) and 97% (top 3); and
the average DA performance was 68 and 86%, respectively,
showing significant improvement. Furthermore, in this study the
performance of the top three DAs combined was 78.9% (top 1)
and 91.1% (top 3), comparing very favorably with physicians
(75.3 and 90.3%, respectively). Note that in the later comparison
we use the 90 vignette aggregates, with similar narrower
confidence intervals.

We note several differences in test methodology that may
have contributed to the apparent accuracy improvements relative
to Semigran et al. (2015) for previously tested DAs. First, in
Semigran et al. (2015), all data was entered by non-clinicians,
who may not have been as facile at matching symptoms to
their various DA synonyms as the physician-testers in this
study and in Baker et al. (2020). However, that method may
give a better estimate of “read world” performance with real
patients seeking diagnosis. Second, responses to “mandatory”
questions (without which the interview does not proceed, but
are not answered by the vignette) may have been entered
inadvertently in a way that “punished” the target diagnosis,
whereas in this study we explicitly answered such questions
to favor the target diagnosis. Third, in Semigran et al. (2015)
all 45 vignettes in the source file were used to test all
DAs without verifying support for the target diagnosis. These
factors may have contributed to the lower scores in the
earlier study.

Future Work
At this time MidasMed recognizes a limited set of disorders
spanning all organ systems, but lacks comprehensive coverage for
any specific system. To complete our technology validation, we
plan next to expand its education to in-depth coverage of a major
organ system (e.g., gastrointestinal and hepatobiliary disorders),
and verify that (a) it continues to recognize most disorders as
the likely diagnosis based on history alone, (b) it recognizes all
disorders with high accuracy when exam findings and tests are
included, and (c) it guides the user efficiently from the initial
differential to the definitive diagnosis by optimizing a preset
criterion (e.g., diagnostic utility-to-cost ratio). When sufficient
data has been acquired, we will apply statistical reliability
measures (e.g., Hilden et al., 1978) to assess the confidence and
diffidence of the DA’s probability estimates.

Although the goal of this paper was limited to the
comparison of the diagnostic accuracy of currently available
online diagnostic assistants using standardized vignettes, we hope
in future work to present our diagnostic innovations in greater
detail, and to explicitly measure and compare the accuracy
contribution of individual algorithmic innovations (e.g., our
modeling of dependencies among findings, modeling of subtypy
relationships among disorders, use of continuous probability
distributions, etc.).

In this work, to facilitate an apples-to-apples comparison with
prior results, we tested on a small set of case vignettes previously
tested in Semigran et al. (2015, 2016), Baker et al. (2020).We hope
in future work to test across multiple DAs using larger sets of
test cases.
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