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1. INTRODUCTION

Animal models for human immunodeficiency virus (HIV) infection play a
key role in understanding the pathogenesis of AIDS and the development
of therapeutic agents and vaccines. As the only lentivirus that causes an
immunodeficiency resembling that of HIV infection, in its natural host,
feline immunodeficiency virus (FIV) has been a unique and powerful
model for AIDS research. FIV was first described in 1987 by Niels 
Pedersen and co-workers as the causative agent for a fatal immunodefi-
ciency syndrome observed in cats housed in a cattery in Petaluma, Cali-
fornia.1,2 Since this landmark observation, multiple studies have shown that
natural and experimental infection of cats with biological isolates of FIV
produces an AIDS syndrome very similar in pathogenesis to that observed
for human AIDS. FIV infection induces an acute viremia associated with T-
cell alterations including depressed CD4:CD8 T-cell ratios and CD4 T-cell
depletion, peripheral lymphadenopathy, and neutropenia.3–13 In later
stages of FIV infection, the host suffers from chronic persistent infections
that are typically self-limiting in an immunocompetent host, as well as
opportunistic infections, chronic diarrhea and wasting, blood dyscracias,
significant CD4 T-cell depletion, neurologic disorders, and B-cell lym-
phomas.2,6,9,12–14 Importantly, chronic FIV infection induces a progressive
lymphoid and CD4 T-cell depletion in the infected cat. The primary mode
of natural FIV transmission appears to be blood-borne facilitated by fight-
ing and biting.13,15 However, experimental infection through transmucosal
routes (rectal and vaginal mucosa and perinatal) have been well docu-
mented for specific FIV isolates.16–23 Accordingly, FIV disease pathogenesis
exhibits striking similarities to that described for HIV-1 infection.24 Recent
observations regarding functions of FIV accessory and structural genes, FIV



tropism, and immunopathogenesis have further corroborated similarities
shared by FIV and HIV-1. This chapter will serve as an overview of the FIV
animal model for HIV AIDS and as such, will focus on FIV molecular
biology and virology and address recent developments in FIV viral vector
development as well as nondomestic FIV biology. FIV pathogenesis, vaccine
development, and antiviral therapies are critical topics for discussion
regarding the value of the FIV animal model and will also be described
briefly in this overview, but will be examined in more significant detail in
subsequent chapters.

2. FIV GENOME, STRUCTURE, AND GENE FUNCTION

Virion Structure

The morphology of the FIV virus particle is similar to that of other
lentiviruses.1,14,25 The mature extracellular virion is spherical to ellipsoid,
100 to 125nm in diameter, and bordered by an outer envelope with poorly
defined short projections or knobs. An elongated conical shell surrounds
an eccentrically positioned electron-dense viral nucleoid. A polygonal 
electron-lucent halo is often visible between the core and a granular layer
located just inside the envelope. Similar to other lentiviruses, the density
of FIV was shown to be 1.15–1.17g/cm3 by continuous sucrose gradient
centrifugation.26

Typical of other retroviruses, the FIV genome consists of an identical
pair of single-stranded RNA molecules that are approximately 9,200 bases
in length and densely packed within the virion by their association with
nucleocapsid protein (NC, p7).27,28 A t-RNAlys is hydrogen-bonded to each
RNA molecule at the primer binding site (PBS) located within the 5¢ ter-
minal 180 bases of the genome and serves as the primer for negative strand
reverse transcription. The ribonucleoprotein complex is contained within
a protein core largely composed of the viral capsid protein (CA, p24) that
is associated with and surrounded by a roughly spherical shell consisting
of myristylated matrix protein (MA, p14). Also contained in the viral capsid
are viral enzymes involved in particle maturation and replication of the
viral RNA genome including protease (PR), reverse transcriptase (RT),
integrase (IN), and dUTPase (DU).29–31 NC, CA, and MA are expressed
from the gag gene, while PR, RT, DU, and IN are products of the pol gene.
Outside the matrix coat is a lipid bilayer of the virion envelope, which
confers the characteristic icosahedral morphology to the enveloped retro-
virus. Embedded within the lipid bilayer are viral envelope glycoproteins,
with the transmembrane subunit (TM, gp40) present as a single-pass trans-
membrane protein anchor, and the surface unit (SU, gp95) as an entirely
extravirion protein bound to TM.27 Both TM and SU are the products of
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the env gene. Env gene products mediate binding of the virus to cell surface
receptors and fusion with the target cell membrane32–36 and are critical
targets for host humoral and cellular immune responses.

Genome Organization and Expression

Sequence organization of the FIV genome is similar to that of HIV-1
and other lentiviruses.37,38 Flanked by two long terminal repeats (LTR) at
both ends, the FIV proviral DNA genome contains three large open
reading frames (ORFs), gag, pol, and env, encoding internal structural pro-
teins, RT and other viral enzymes, and envelope proteins, respectively, as
well as various small ORFs encoding regulatory and accessory proteins
(Figure 1). The FIV genome also contains nonencoding regulatory
sequences important for virus replication. These sequences include tran-
scriptional elements within the LTRs, a posttranscriptional regulatory
sequence located in 3¢ half of the genome,39–43 and encapsidation deter-
minants within the U5 domain and the first 90–300 nucleotides of gag.44,45

Other critical noncoding sequences include the central polypurine tract
(cPPT) involved in priming plus-strand DNA synthesis and the central ter-
mination sequence (CTS) important for formation of a central DNA flap
during reverse transcription.46

The approximately 355 bp long FIV LTR accommodates multiple 
regulatory sequences and is composed of three domains designated U3, R,
and U5. Located at each terminus of the proviral DNA genome, the LTRs
are bordered by two bp-inverted repeats. Critical transcriptional regulatory
sequences located in the FIV U3 domain consist of enhancer elements
including AP-1, ATF (also known as the cAMP response element or CRE),
and cEBP sites. These cis-acting elements have been shown to be impor-
tant for FIV LTR promoter activity in vitro and for virus replication in vitro
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and in vivo.39,40,43,47–49 Previous studies also demonstrated binding of these
specific LTR sequences by cellular proteins using DNase I footprinting and
gel shift assays.39,50 Although cis-acting transcriptional elements within the
FIV U3 domain differ from those described as critical for the HIV LTR
(NFkb and SP1),51,52 FIV-encoded AP-1 and ATF sequences are positive reg-
ulatory elements that respond to host cell activation states,40 a property also
shared by the NFkb site within the HIV-1 LTR. Other retroviruses encod-
ing LTRs regulated by ATF/CREB family of transcription factors include
human T-lymphotropic virus type (HTLV-1) and bovine leukemia virus
(BLV).53–56 Similarly, an AP-1 site encoded by the visna virus LTR was found
to be critical for basal activity and for transactivation of the viral LTR result-
ing from interactions of the visna virus putative transcriptional transacti-
vator (Tat) protein with cellular transcription factors Fos and Jun.57–59

Interestingly the structure of Orf-A, an FIV accessory gene product previ-
ously regarded to be a Tat protein, is very similar to that of visna virus Tat.60

Collectively, these observations suggest that FIV LTR promoter activity may
be regulated by multiple cell activation pathways involving possible inter-
actions between a viral accessory protein (Orf-A) with cellular proteins that
bind either AP-1, ATF, or cEBP elements. However, a definitive character-
ization of these potential interactions has not yet been reported. Knowl-
edge of potential complex interactions between the FIV LTR and viral and
cellular proteins that are most likely involved in regulation of FIV expres-
sion is still rudimentary at best.

The FIV LTR is also distinguished from the HIV-1 LTR by its strong
basal promoter activity that does not require activation by a viral transacti-
vator.39,40,43,61 Similarly, other animal lentiviruses including caprine arthritis
encephalitis virus (CAEV) and visna virus (VV) also encode LTR pro-
moters capable of high basal levels of transcription in the absence of a viral
transactivator.62,63 In contrast, LTRs encoded by primate lentiviruses includ-
ing HIV and simian immunodeficiency virus (SIV), include a transcrip-
tional element designated TAR (Tat responsive element) that possesses a
stem-loop structure for binding of the virus encoded transactivator Tat and
other cellular proteins.64,65 Tat transactivation of the HIV LTR is required
for elongation of initiated RNA transcripts and for efficient transcription
of viral genes. The FIV LTR does not contain a stem-loop structure of
similar complexity nor does FIV encode a transcriptional transactivator
with structure or activity similar to that described for HIV Tat.39,40,43,61 Pre-
vious reports have proposed that the gene product of FIV accessory gene
orf-A may encode a viral transactivator or FIV Tat. However, these studies
have generated conflicting data regarding the ability of FIV-encoded Orf-
A to transactivate the FIV LTR and revealed either no effect, a small effect,
or a moderate effect imposed by Orf-A on FIV LTR-directed gene expres-
sion in transient expression assays.39,40,43,61,66,67 Taken together, these data
suggest that the FIV LTR may be regulated in part by accessory protein Orf-
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A although by mechanisms unlike those described for the HIV LTR and
HIV Tat.

Examination of FIV mRNA species from infected cells revealed the
presence of at least five short multiply spliced transcripts in addition to
unspliced genomic RNA and env-containing singly spliced transcripts.42,66,68

Nuclear export of unspliced and singly spliced FIV mRNA transcripts
involves binding of a posttranscriptional regulatory sequence, designated
the rev response element (RRE), by the FIV regulatory protein Rev. The
FIV RRE is a 243 nucleotide sequence that forms a stem-loop structure
within viral mRNA species and serves as a binding site for FIV regulatory
protein Rev and is structurally and functionally similar to the HIV-1 RRE.41

However, the FIV RRE is located at the 3¢ terminus of the env gene and
partially overlaps the 3¢ LTR, whereas the HIV-1 RRE is positioned between
the junction of the SU and TM open reading frames within env. Binding
of the FIV RRE by the viral protein Rev is critical for cytoplasmic accumu-
lation of unspliced and singly spliced FIV mRNA transcripts and for FIV
structural (Gag and Env) and enzymatic (Pol) protein expression.41,69

FIV Structural and Enzymatic Proteins

FIV Gag proteins are necessary and sufficient for the formation of the
noninfectious virus-like particles. Similar to other lentivirus systems, expres-
sion of FIV Gag polyprotein precursor (p50) from the gag gene within the
unspliced genome RNA is dependent on viral Rev. Nevertheless, the FIV
Gag polyprotein, when expressed in the absence of other viral structural
proteins such as env gene products, is capable of self-assembly into virus
particles that are released from the plasma membrane of Gag-expressing
cells.70 Formation of mature virus particles, however, requires cleavage of
the FIV Gag polyprotein by virus-encoded PR during or shortly after
budding from the cell to generate three mature Gag proteins: MA, CA, and
NC (Figure 2).28,71 Examination of the proteolytic sites within the FIV Gag
polyprotein revealed processing of Gag proteins similar to that for HIV-1
Gag proteins, and in particular to HIV-1 CA protein.71 Within the mature
virion, MA is attached to the viral lipid membrane while CA forms the virus
core, and NC is present in the virus core in a ribonucleoprotein complex
with the viral RNA genome.72

Reports describing studies focused on FIV Gag protein processing and
characterization of functional domains are still limited.27,28,70,71 Similar to
HIV MA, myristylation of FIV MA is required for targeting of MA to the
plasma membrane during late events of viral assembly.70,71 In contrast to
observations for HIV-1 MA, targeting of FIV MA to the cellular plasma
membrane is not dependent on a N-terminal polybasic domain that is
present in both FIV and primate lentivirus MA proteins. Instead, this con-
served polybasic domain (lysine-rich) in FIV MA appears necessary for
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either particle assembly or release.70 The role of FIV MA in other steps of
virus replication, where HIV-1 MA is thought to be important, such as early
postentry events,73 has not yet been determined.

The principal function of FIV NC involves encapsidation of full-length,
unspliced viral genomic RNA into virions. Similar to other retroviruses, FIV
NC protein contains two copies of a zinc finger motif, which has been 
characterized as a zinc-binding moiety for HIV-1 RNA.74 Although studies
describing FIV NC interactions with viral RNA are few, recent observations
suggest that FIV NC binds to viral RNA at, or upstream of, the PBS and
may thereby initiate RNA dimerization and promote initiation of minus
strand DNA.75 However, the role of NC in viral RNA encapsidation or deter-
minants responsible for FIV NC binding of RNA have not yet been
reported. Interestingly, examination of proteolytic cleavage of NC revealed
a secondary cleavage site within the C-terminus of NC that produces a
mature NC 7.1kD protein and a C-terminus 1.9kD protein.71 Although
further characterization of this C-terminus 1.9kD protein has not yet been
described, amino acid sequence of this cleavage product contains a PSAP
motif similar to the PTAP motif also characterized as a “late” or L domain
encoded by the HIV-1 p6 Gag protein.76 This motif within HIV-1 p6 func-
tions in virus particle budding and release77,78 and is a binding motif for
proteins encoding WW domains.79 Interactions of the L domain of HIV-1
p6 with cellular protein TSG101 are reported to be critical for HIV-1
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budding80–82 and are under investigation as potential targets for antiviral
therapeutics. Examination of the significance and potential function of this
C-terminal cleavage product of FIV NC as a L domain for FIV Gag may be
warranted and provide another lentiviral model for characterizing cellular
proteins important for lentivirus assembly and release.

In addition to MA, CA, and NC proteins encoded by FIV gag, the FIV
Gag polyprotein contains a CA-NC spacer region shown to regulate tem-
poral Gag processing for several retroviruses including HIV-1, bovine
immunodeficiency virus (BIV), and Rous sarcoma virus (RSV).83 The FIV
CA-NC spacer region consists of nine residues and contains a LAEAL motif
also found in the HIV-1 CA-NC spacer region and reported to be indis-
pensable for HIV-1 Gag assembly.84,85 Although a recent study showed that
the FIV CA-NC spacer region was capable of functionally replacing the BIV
CA-NC spacer region for BIV Gag assembly, studies examining the FIV CA-
NC spacer region in FIV Gag assembly have not been reported. This obser-
vation, however, suggests that FIV Gag may provide another model for
examination of this Gag motif in HIV-1 assembly.

The FIV pol gene positioned downstream of gag, encodes four
enzymes: protease (PR), reverse transcriptase (RT), dUTPase (DU), and
integrase (IN) (Figure 2). FIV pol overlaps the gag gene by 109 nucleotides
and is in a -1 reading frame with respect to that of gag. Similar to other
retroviruses, pol is translated as a Gag-Pol fusion polyprotein produced by
ribosomal frameshifting86 facilitated by a consensus frameshift signal
sequence of GGGAAAC within the gag-pol overlap region, together with a
sequence displaying potential for a pseudoknot tertiary structure immedi-
ately downstream of the signal sequence.87 The Pol polypeptide of the Gag-
Pol fusion precursor protein is cleaved by viral PR into functional enzymes
during virus assembly.

FIV PR is a 14.3kD protein that facilitates processing of Gag and Gag-
Pol polyproteins into individual structural and enzymatic proteins during
assembly and maturation of the virus particle.88 Focus on antiviral thera-
pies targeted to HIV-1 PR have promoted interest in FIV PR as a model for
design of protease inhibitors as well as structural studies characterizing FIV
PR. Based on three-dimensional crystal structure analysis, FIV PR is a
homodimeric aspartyl proteinase with quarternary structures very similar
to those of HIV-1 PR despite a conservation of only 27 amino acids between
the two enzymes.89,90 However, each monomer of FIV protease is composed
of 116 amino acids compared to 99 amino acids for HIV-1 PR. Regardless
of similarities observed between FIV PR and HIV-1 PR, FIV PR exhibits a
substrate specificity that is restricted to FIV Gag cleavage sites and excludes
sites within HIV-1 Gag.90,91 Multiple residue substitutions are required
within FIV PR to modify this specificity to include HIV-1 Gag cleavage
sites.92–94 Furthermore, residues peripheral to the active site of PR, as well
as those within the active site, influence binding of substrate by stabilizing
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crucial residues within the active site that directly contact substrate and may
account for differences in substrate specificities observed between FIV and
HIV-1 PR activities.95 Regardless of disparate substrate specificity displayed
by FIV PR and HIV-1 PR, similarities in their structure have been utilized
in the development of broad-based inhibitors that will bind both HIV PR
and FIV PR.94,96,97 These comparative analyses should significantly increase
the understanding of the molecular basis for lentivirus PR substrate speci-
ficity and may possibly facilitate the development of PR inhibitors less sus-
ceptible to resistance development.

Reverse transcriptases are encoded by all retroviruses and are RNA-
dependent DNA polymerases that reverse transcribe viral genomic RNA
into a double-stranded proviral DNA copy that is subsequently integrated
into the host cellular genomic DNA.98 FIV RT is comparable to HIV-1 RT
in amino acid sequence, structure and physical properties, catalytic activi-
ties, and susceptibility to multiple nucleoside analogs.99–101 Amino acid
sequence analysis reveals a 48% identity and 67% similarity between HIV-
1 RT and FIV RT.101 Like HIV-1 RT, FIV RT exists as a heterodimer con-
sisting of a 66 kD subunit (p66) and a 51 kD subunit (p51), each of which
contains a common N-terminus and are present in equimolar concentra-
tions.100 The p51 subunit is generated by cleavage of the RNase H domain
from C-terminus of p66. The RNase H domains in FIV RT and HIV-1 RT
function in reverse transcription to degrade RNA from the DNA-RNA
hybrid.102 Importantly, FIV RT and HIV-1 RT exhibit a similar susceptibil-
ity to multiple nucleoside analogs.100,103–105 However, FIV RT resistance to
specific nucleoside analogs such as 3¢-azido-3¢-deoxythymidine (AZT), 2¢,3¢-
dideoxyinosine (ddI), 2¢,3¢-didehydro-3¢-deoxythymidine (d4T), and 2¢,3¢-
dideoxycytidine (ddC) does not map to homologous residues within
similarly drug-resistant HIV-1 RT mutants. In contrast, FIV RT and HIV-1
RT susceptibilities to nucleoside analog (-)-+-L-2¢,3¢-dideoxy-3¢-thiacytidine
(3TC) map to corresponding codon, M184 in the YMDD active site of the
RT palm subdomain.106,107 Other studies also revealed that a unique 3TC-
resistant FIV mutant encoded a novel proline to serine change at position
156, analogous to proline residue 157 residing within the template grip of
HIV-1 RT.108 This observation suggested that mutations within a region
(template grip) close to, but distinct from the RT active site could influ-
ence substrate recognition, a conclusion further substantiated by exami-
nation of homologous HIV-1 RT mutant P157S.103 Furthermore, functional
studies assessing chimeric RT molecules composed of FIV and HIV-1 p51
and p66 subunits demonstrated the importance of p51 in maintaining
optimal structural integrity of RT and shed some light on significance of
the p51 subunit.109,110 These studies also produced observations showing
the lack of FIV RT sensitivity to non-nucleoside RT inhibitors (NNRTI)
found to block HIV-1 replication, although amino acids lining the NNRTI-
specific pocket of HIV-1 RT exhibit a higher similarity to the correspond-
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ing FIV RT residues than to HIV-2 RT.109,110 Catalytic activity of HIV/FIV
chimeric RTs was also found to be significantly decreased compared to wild
type HIV and FIV RTs, despite similarities observed between the two mol-
ecules.109 In summary, similarities and differences observed between HIV-
1 and FIV RT have generated somewhat limited support for use of FIV RT
as a model for HIV-1 RT-targeted drug design and studies of drug resis-
tance both in cell culture and in vivo.111

A DU gene product is expressed from the pol gene in genomes from
nonprimate lentiviruses including FIV and the type-D retroviruses, but not
from primate lentiviruses.30 FIV DU resides immediately downstream of RT
in the Pol polyprotein and is packaged in active form in FIV virions. DU
catalyzes the hydrolysis of dUTP to dUMP and inorganic pyrophosphate
(PPi), and is believed to minimize misincorporation of dUTP into DNA,
which can be mutagenic.112 For those viruses encoding a DU, enzymatic
activity is required for productive viral replication in cells such as primary
macrophages that express low dUTPase activity.113–115 Infection of cats with
a DU mutant of FIV resulted in fivefold increase in the number of muta-
tions observed in the viral genome.114,115 Although HIV-1 does not encode
a dUTPase activity, recruitment of a cellular DNA repair enzyme, uracil
DNA glycosylase (UNG), into HIV-1 virions by accessory protein Vpr, also
acts to modulate viral mutation rate.116–119 Accordingly, HIV Vpr activity
imparts a similar effect to that of FIV DU on virus replication but through
a different mechanism.

Integration of double stranded proviral DNA into the host genome is
a function of all retroviral integrase proteins and is a distinguishing feature
of retrovirus replication.120 FIV IN is a 32 kD protein that is approximately
37% identical to HIV-1 IN by amino acid sequence.121 Similar to other retro-
viral IN proteins, FIV IN contains three domains including an N-terminal
domain, a central catalytic core domain, and a C-terminal domain.122

Studies testing activity of a recombinant FIV IN expressed in E. coli revealed
that FIV IN exhibits a relaxed sequence requirement for site-specific cleav-
age and integration of viral DNA termini and is active on FIV, HIV, and
Moloney murine leukemia virus (MoMLV) DNA termini.121 A difference
noted between FIV IN and HIV-1 IN was their choice of nucleophiles in
vitro with FIV IN preferentially using the 3¢ OH viral DNA ends and HIV-
1 IN using H2O and glycerol. In vitro analyses of recombinant FIV IN also
demonstrated that the central catalytic core domain determined target site
selection and the importance of a central aspartic acid (D118) in 3¢ ter-
minus processing and joining activities.123,124 Virus replication studies
testing FIV IN mutants in the context of FIV vectors showed that mutation
of either D66 and or both D66 and D118 within the catalytic core domain
blocked transduction of dividing fibroblast and integrations, as would be
predicted for type I IN mutants.125 These observations for mutants involv-
ing FIV IN residues D66 and D118 that correspond to D64 and D116 in
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the catalytic triad of HIV-1 IN, characterized properties of catalytic core IN
mutants for a non-HIV-1 lentivirus, and verified similarities between FIV
and HIV-1 IN.

In addition to a direct role in integration of proviral DNA into host
cell genomic DNA, HIV-1 IN is a component of the PIC that also contains
newly synthesized proviral DNA, viral MA and Vpr, and the viral central
DNA flap. Each of these viral components are thought to contribute to
nuclear import of the PIC126 and IN may play the primary role.127 Similar
to HIV-1 IN, FIV IN exhibits karyophilic properties. Determinants encoded
by FIV IN for nuclear import map to a N-terminal zinc-binding domain and
to a region rich with basic residues near the C-terminal domain, rather than
to a canonical nuclear localization signal (NLS).128 The NLS for HIV-1 IN
is also thought to involve a bipartite signal that instead includes a 13 residue
peptide within the central core domain of IN, but does not include the N-
terminal zinc-binding domain, suggesting that mechanisms for nuclear
import of HIV-1 and FIV integrase molecules are different.128

The env gene of FIV and other lentiviruses is the most diverse viral
gene in size and sequence.73 Lentivirus envelope proteins play a major role
in the virus life cycle by encoding determinants that interact with cell
surface receptor and mediate fusion between the lipid bilayer of the viral
envelope and host cell plasma membrane. Accordingly, variation in viral
envelope proteins, particularly the surface glycoprotein, affects virus host
cell tropism and fusogenicity, as well as virus replication. In addition, the
Env glycoproteins contain epitopes that elicit immune responses important
for both diagnosis and protective immunity.

FIV env expression from a singly spliced mRNA is Rev-dependent,
similar to other structural proteins. In contrast to primate lentivirus Env
proteins, FIV Env and other nonprimate lentiviruses Env proteins encode
a lengthy N-terminal presequence upstream of the hydrophobic region of
the Env signal peptide (Figure 3).37,38,129,130 This N-terminal presequence of
FIV Env, containing 149 amino acids, represents a 20kD polypeptide and
includes the L region of env that encodes the N-terminal exon of FIV
Rev.41,69 The early gene product of FIV env is a full-length uncleaved 
precursor 145–150kD glycoprotein that is subsequently processed to a 
130kD precursor (gp130) by cleavage of the N-terminal 20kD polypeptide
and hydrophobic signal sequence.129,130 Precursor gp130 is then trans-
ported to the Golgi and proteolytically cleaved to produce mature FIV
surface glycoprotein (SU) gp95 and characteristic hydrophobic mem-
brane-spanning glycoprotein (TM) gp40. SU forms a noncovalent associa-
tion with TM, which anchors the envelope complex to the lipid bilayer.
Studies using glycosylation inhibitors have confirmed extensive glycosyla-
tion of FIV envelope proteins similar to that observed for HIV Env and
demonstrated cell type-specific glycosylation of Env.129,131 These studies also
verified the role of envelope protein glycosylation in virus infectivity.129 Sig-
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nificance, structure, or function of this 20 kD N-terminal polypeptide cleav-
age product, apart from proper Env processing, is not well understood,
although one study revealed that partial deletion of this peptide produced
a virus unable to infect primary feline astrocytes while still infectious for
feline lymphocytes and macrophages.132

Structural models based on x-ray crystallography or NMR spectroscopy
indicate that HIV-1 envelope proteins form trimers on the viral surface.
Furthermore, SU binding of the primary receptor, CD4, results in confor-
mational changes facilitating formation of a ternary complex composed of
CD4, SU, and coreceptor molecules (b-chemokine receptors CCR-5 and
CXCR-4). This ternary complex triggers additional conformation changes
in TM that mediate fusion of envelope proteins with the cellular plasma
membrane.73 Models for spatial folding of FIV Env SU and TM proteins
based on predictive algorithms using Env amino acid sequence from mul-
tiple isolates, reveal structural similarities to HIV-1 envelope proteins,
including conserved and hypervariable domains for both FIV SU and
TM.133–135 A principal immunodominant domain (PID) within the extra-
cellular region of TM that is conserved among lentivirus transmembrane
glycoproteins, including HIV-1 TM, has also been described for FIV TM
(Figure 3).133,136 Despite conservation of the PID, mutation of this TM
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FIGURE 3. Schematic representation of variable regions, functional domains, and various
epitopes encoded by FIV env gene products SU and TM. Amino acid positions indicated for
each domain or epitope are based on deduced amino acid sequence of FIV molecular clone
34TF10.38 Variable regions (V3 through V9) are shown as previously described.134,142 Func-
tional domains and epitopes within TM as previously reported,133,137,138,454 include: FC, fusion
peptide; leucine zipper region; principal immunodominant domain, PID; a TM3 epitope anal-
ogous to neutralizing HIV-1 2F5 epitope; a tryptophan (W)-rich motif important for infectiv-
ity; the membrane-spanning region, MSR, and the cytoplasmic domain, Cyto.



domain was not found to alter FIV infectivity.136 In contrast, disruption of
a tryptophan-rich domain also conserved among lentivirus TM proteins
and located in the extracellular region immediately upstream of the mem-
brane-spanning domain abrogated virus entry.34 Findings from a second
study demonstrated a role for the FIV TM tryptophan-rich domain in Env-
mediated fusion between viral and cellular membranes, thus providing a
probable mechanism by which this domain affects virus infectivity.137

Finally, synthetic peptides modeled on this tryptophan-rich domain were
found to inhibit FIV replication.138 These findings parallel other data
demonstrating the importance of a similar tryptophan-rich domain
encoded by HIV TM for HIV-1 entry and HIV-1 fusiogenic effects139,140 and
suggest that FIV and HIV-1 TM may share one mechanism necessary for
fusion of viral and cellular membranes. However, a more detailed struc-
tural analysis of FIV envelope proteins and their interactions with cell
surface receptors based on x-ray crystallography will be needed for a thor-
ough comparison of FIV and HIV-1 envelope proteins.

As stated earlier in this chapter, envelope proteins exhibit the great-
est diversity in amino acids among all proteins encoded by lentiviruses. By 
comparison of different HIV isolates, five interspersed conserved (C1 to
C5) and five variable domains (V1–V5) were identified for HIV-1 env gene.73

Similarly, analysis of amino acid sequences derived from the env gene of
different isolates of FIV resulted in identification of nine variable regions
(V1–V9), separated by regions that are more conserved (Figure 3).134,141–143

Furthermore, examination of V3, V4, and V5 domains within SU-coding
sequence revealed up to 26% genetic diversity for different isolates and
allowed separation of FIV isolates into five clades, or subtypes, designated
A to E134,142,144–150 and possibly a sixth subtype arising from a subtype B
cluster found in Texas.151 Diversity between subtypes varies from 17 to 26%
whereas variation within a subtype ranges from 2.5 to 15%, findings that
are similar to those for HIV-1 isolates.142 Although geographic separation
is most likely a major factor for emerging genetic diversity of FIV, individ-
ual subtypes have been identified in geographically isolated regions of the
world (Table I). FIV subtype A and B isolates have been detected in United
States, Europe, Japan, and Australia, whereas subtype C variants have been
found in North America, Europe, and Taiwan. Subtype A isolates have also
been detected in Central and South America149 and all three FIV subtypes
A, B, and C have been isolated from a single location (Munich,
Germany).150 Subtype D and E isolates, characterized so far, are few and
restricted to Japan147 and Argentina145 respectively. Multiple genetic analy-
ses indicate that the vast majority of FIV isolates are either subtype A or B.
Interestingly, findings from one report revealed twice as many synonymous
site changes within FIV subtype B envelope V3 to V4 domains compared
to those detected for subtype A envelope, although both subtype A and B
envelopes encoded similar numbers of nonsynonymous site changes.150
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The greater diversity observed for subtype B suggests that this FIV subtype
may represent an older virus. Significant diversity of FIV subtype B variants
was also shown for viruses isolated from cats in Italy where this subtype is
highly prevalent.144 Findings from this study were generated by phyloge-
netic analysis focused on sequences from a Gag fragment from 32 isolates
and on SU sequences from four isolates. Finally, higher diversity for this
subtype was further supported by two recent studies. Examination of both
Gag and envelope sequences derived from FIV subtype B isolates in Austria,
where subtype B predominates, revealed subtype B clusters with sufficient
genetic diversity to support their designation as subclades.146 A second
study characterized a cluster of FIV isolates from Texas more closely related
to FIV subtype B viruses than to other subtypes, yet clearly distinct from
this subtype.151 Findings from this study suggested that this virus cluster was
either a separate subtype that recently emerged from subtype B or repre-
sented a subgroup within subtype B. Collectively, these findings strengthen
the hypothesis of FIV subtype B as an older virus existing within the domes-
tic cat population for a longer time period than other FIV subtypes. Host
adaptation and lower virulence has been suggested to be associated with
FIV B subtype isolates but not confirmed by rigorous examination.

Several reports have also presented evidence of both naturally 
occurring149,150 and experimentally induced152 intersubtype recombinant
viruses derived from recombination within the env gene. Observation of
intersubtype recombinants involving a common break-point within gag was
also recently reported.153 These findings for FIV agree with reports of
recombinant HIV-1 isolates generated by divergent HIV subtypes in geo-
graphic regions where multiple HIV subtypes are found.154–156 Identifica-
tion of multiple subtypes, significant divergence within the major subtype
B viruses, and confirmation of naturally occurring FIV recombinants are
relevant issues for FIV vaccine design and suggest that vaccines specific to
geographic area and subtype prevalence may be required. Similar issues
exist for HIV-1 vaccine design and provide an opportunity for the FIV
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TABLE I
Geographic Distribution of FIV Subtypes

Subtype Location

A United States, Europe, Japan, Australia, Central and South America
B United States, Europe, Japan, and Australia
C North America, Europe, and Taiwan
D Japan
E Argentina



vaccine model to address the importance of multisubtype vaccine
approaches.

Regulatory and Accessory Genes

Only one regulatory gene (rev) and two accessory genes (vif and orf-
A) have been characterized for the FIV genome. Although several research
groups have shown that FIV Rev and FIV Vif provide functions in virus repli-
cation similar to those described for analogous HIV-1 proteins, exhaustive
examination of these FIV gene products has not been reported. FIV acces-
sory genes, that are clearly analogous to primate lentivirus regulatory and
accessory genes, including tat, vpr, vpu, vpx, or nef, have not been identi-
fied. Early reports proposed that FIV Orf-A encoded a HIV-1 Tat gene
product. However, studies testing Orf-A transactivation of the FIV LTR did
not demonstrate Orf-A activity comparable to HIV-1 Tat.39,40,43,61 Recent
findings suggest that FIV Orf-A may express functions more similar to those
of HIV-1 Vpr or perhaps Vpu, although data supporting this premise are
very limited.157,158 However, the possibility that viral functions and activities
expressed by multiple unique HIV-1 accessory proteins may be encom-
passed by a single FIV accessory protein along with specific domains within
FIV structural proteins warrants further examination.

Genomes of all members of lentivirus subfamily encode for a HIV-1
Rev-like posttranscriptional regulatory protein that is expressed early in the
viral life cycle from a multiply spliced mRNA species containing either orf-
A and the L region of env and orf-H, or the L region of env42,66 and orf-H
only.68 FIV Rev is a 23kD protein that is expressed from two exons derived
from the L region of env and from orf-H (Figure 2). The first rev exon
extends through the 5¢ terminal L region of the env gene and is in the same
open reading frame as env. The second exon (orf-H) is located at the 3¢ ter-
minus of the env gene and overlaps the 5¢ terminus of the 3¢ LTR. Similar
to HIV-1 Rev, FIV Rev is a nucleolar protein that binds as multimers to the
cis-acting regulatory RRE sequence contained within unspliced and singly
spliced viral mRNAs to promote nuclear export of these mRNA species to
the cytoplasm and to also increase mRNA stability and protein transla-
tion.41,68,69,159,160 FIV Rev contains a highly basic domain similar to that
described for other lentivirus Rev proteins. This basic domain located in
the second exon, most likely serves as an RRE binding domain, although
studies confirming the function of this FIV Rev element have not been
reported. Another viral mRNA containing only the second Rev exon (orf-
H) has also been identified and encodes for a truncated Rev protein des-
ignated p15rev.66 P15rev contains the highly basic domain and effector
domain of Rev but lacks the N terminus derived from the first exon. This
truncated Rev protein exhibited Rev activity by in vitro assays but only 20%
of the activity observed for wild type full-length FIV Rev. The significance
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of p15rev in virus replication has not been characterized. Expression of FIV
structural and enzymatic proteins, including Vif, is dependent on Rev
expression and activity. Accordingly, the Rev regulatory system is essential
for productive virus replication.

Although FIV Rev shares similar activities and functions with HIV-1
Rev, the FIV Rev effector (activation) domain located immediately down-
stream of the basic domain, contains a nuclear export signal (NES) that
differs significantly in amino acid sequence from those described for Rev
effector domains of primate and ungulate lentiviruses.60,161,162 The FIV Rev
effector domain/NES lacks organized hydrophobic residues (leucine-rich
clusters) and a core tetramer, which are properties that define the HIV-1
Rev NES.163 Instead, the FIV Rev effector domain/NES is characterized by
basic residues and dispersed leucine residues similar to that observed for
equine infectious anemia virus (EIAV) Rev. However, both FIV and EIAV
Rev effector domains can functionally replace the effector domain of HIV-
1 Rev, a finding that suggests FIV and HIV-1 Rev proteins utilize similar cel-
lular pathways for their activity.162 Similarity between FIV Rev and HIV-1
Rev is further supported by studies demonstrating that nuclear export of
FIV and EIAV Rev proteins, as well as Rev function, is inhibited by lepto-
mycin B, a drug previously shown to block HIV-1 Rev NES interactions with
CRM1 (exportin 1).161 This observation suggests that binding of CRM1 for
nuclear export may be a property that FIV Rev shares with HIV-1 Rev,
regardless of their dissimilar activation domains. Another functional prop-
erty shared by the FIV and HIV-1 Rev regulatory systems involves an inter-
action with cellular eukaryotic initiation factor 5A (eIF-5A), which is also
associated with Rev’s nuclear export of unspliced and singly spliced viral
mRNA.164–166 Biologically active eIF-5A was previously shown to be required
for HIV-1 Rev function and to specifically facilitate binding of Rev/RRE
complex to CRM1.167 Activation of eIF-5A requires synthesis of the unique
amino acid hypusine, which is sustained by deoxyhypusine synthetase.168 A
recent report revealed that 1,8-diaminooctane, an inhibitor of deoxyhypu-
sine synthetase, significantly inhibited FIV replication and specifically
restricted FIV Rev function.166 Taken together, these observations demon-
strate similarities shared between HIV-1 and FIV Rev proteins and validate
FIV Rev as a model for potential antiviral therapies that target HIV-1 Rev.

An accessory gene designated as vif is conserved among all the
lentiviruses with the exception of EIAV73 and has been determined to
encode a factor necessary for virion cell-free infectivity, although not
required for virion production.169,170 FIV vif resides at the 3¢ terminus of
the pol gene in the viral genome and is translated from a singly spliced
mRNA171 to express a 23-kD basic protein (Figure 2). The role of FIV Vif
in viral infectivity for primary feline lymphocytes and macrophages has
been clearly established.172–174 However, biochemical characterization of
FIV Vif has been limited and restricted to one report describing nuclear
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localization for this FIV accessory protein.175 Studies regarding mechanisms
of Vif function have so far focused instead on primate lentivirus Vif pro-
teins. Early studies demonstrated that the replication phenotype of vif-
deleted HIV mutants was cell type-dependent and specifically dependent
of the cell producing the virion.176 Cell types, including primary lympho-
cytes and macrophages as well as specific T-cell lines, required the presence
of HIV-1 Vif expression for production of infectious HIV and were desig-
nated as “nonpermissive” for replication of vif-deleted mutants of HIV-1.
However, specific human T-cell lines designated as “permissive cells,”
including SupT-1 cells and Jurkat cells, supported productive virus repli-
cation for HIV-1 vif-deleted variants. Cell fusion experiments showed that
heterokaryons formed between permissive and nonpermissive cells dis-
played the nonpermissive phenotype, suggesting that nonpermissive cells
naturally express an antiviral activity that inhibits the replication of vif-
deficient virus.177 Virions produced in nonpermissive cells in the absence
of the vif gene are impaired for reverse transcription of genomic RNA and
therefore fail to establish full-length proviruses after entry into a target cell.
The small number of reports focused on FIV Vif to date have not revealed
a feline cell line “permissive” for vif deletion mutants of FIV. This obser-
vation may be due in part to the very few established feline T-cell lines that
are available and permissive for primary wild type isolates of FIV.

Recent reports have revealed major breakthroughs in the under-
standing of HIV-1 Vif functions and interactions with host cell proteins.
Sheehy and colleagues first identified a cellular protein designated CEM15
as the “nonpermissive” cell factor responsible for production of noninfec-
tious virus particles in the absence of HIV-1 Vif.178 CEM-15 was later iden-
tified as APOBEC3G, a cell protein closely related to APOBEC1 and a
member of the cytidine deaminase family of nucleic acid-editing enzymes.
Numerous studies have now established APOBEC3G as a cellular factor that
exerts an antiviral effect by deamination of cytosines to uracils in single-
stranded minus-strand DNA during reverse transcription, resulting in
either degradation of newly synthesized minus-strand DNA or guanidine
to adenine hypermutations in the final double-stranded proviral DNA
product.179–181 In the absence of HIV-1 Vif, APOBEC3G is packaged into
virions, allowing this cellular protein to exert its antiviral effect during
reverse transcription after virion entry into a target cell. However, if present
during virion assembly, HIV-1 Vif forms a complex with human APOBEC3G
that targets the cellular factor for proteosomal degradation and thereby
prevents virion encapsidation of APOBEC3G to facilitate particle infectiv-
ity.182–184 These advances in the elucidation of HIV-1 Vif function have gen-
erated new enthusiasm for designing antiviral therapeutics targeting Vif
and Vif-APOBEC3G interactions. Recent studies have also confirmed that
other primate lentivirus (SIV) Vif proteins also target APOBEC3G in simian
cells, although these interactions appear to be species-specific for some of
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the simian species. Whether nonprimate lentivirus Vif proteins, including
FIV Vif, function similarly by interacting with a species-specific APOBEC3G
analog has yet to be determined. Evidence that supports this possibility is
derived from reports demonstrating that APOBEC3G degradation is medi-
ated by the HIV-1 Vif SLQ(Y/F)LA domain, an amino acid motif that is
conserved among all lentivirus Vif proteins including FIV Vif.173,182,183

FIV gene orf-A (also referred to as orf-2) encodes a 77 amino acid acces-
sory protein previously implicated to encode a Tat-like protein and is crit-
ical for efficient viral replication in peripheral blood mononuclear cells
(PBMC) in vitro and in vivo.61,157,185–188 Although the orf-A gene product con-
tains a cysteine-rich domain within its 3¢ terminus, similar to Tat proteins
encoded by ungulate lentiviruses, this gene product does not include core
and basic domains comparable to those found in Tat proteins encoded by
primate lentiviruses, EIAV, or BIV. Amino acid sequence alignments of FIV
Orf-A with visna virus and CAEV Tat proteins reveal a similar organization
of conserved putative domains, including N-terminal hydrophobic, central
leucine-rich, and C-terminal cysteine-rich regions.60 In addition, FIV Orf-A
encodes previously unrecognized conserved tryptophans at positions 43
and 66 positioned similarly to conserved tryptophan residues 63 and 85 of
visna virus Tat. Two recent studies demonstrated a moderate upregulation
of the FIV LTR promoter activity by coexpression of Orf-A in transient
reporter gene expression assays.66,67 In contrast, earlier reports revealed
either a small effect or no effect imposed by Orf-A on FIV LTR-directed
gene expression.39,40,43,61 These findings suggest that Orf-A very likely drives
FIV-LTR-directed transcription, but by indirect mechanisms involving inter-
actions with cellular transcription factors.

A recent report revealed Orf-A to be important in the late steps of the
FIV life cycle involved in virion formation and in early steps involved in
virus infectivity and mapped critical Orf-A domains needed for these steps
in replication.157 Central leucine-rich and C-terminal cysteine-rich regions,
along with a conserved central tryptophan (residue 43) within Orf-A, 
were shown to be critical determinants for efficient virus replication and
infectivity. The leucine-rich domain was important for infectivity, whereas
tryptophan 43 and the cysteine-rich domain were important for both 
infectivity and virion formation. Importantly, deletions and point mutations
in orf-A imposed a small or no effect on FIV LTR-driven viral gene expres-
sion and no effect on viral protein expression. These findings suggested
that orf-A represents a FIV-encoded analog more similar to accessory genes
vpr, vpu, or nef rather than the regulatory tat gene encoded by the primate
lentiviruses. This concept was further supported by another recent study
using mammalian expression plasmids encoding wild type or deletion
mutant Orf-A proteins fused to the C¢-terminus of green fluorescent
protein (GFP) to evaluate Orf-A subcellular localization and effects on 
cell function.158 Findings from this study demonstrated nuclear localization
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for the GFP-Orf-A fusion protein and allowed mapping of a NLS (residues
44–54) critical for nuclear import of FIV Orf-A. Furthermore, assessment
of cell cycle profiles of cells transiently expressing GFP-Orf-A revealed that
Orf-A causes an arrest at G2 of the cell cycle. These novel findings sug-
gested that Orf-A is a nuclear protein that expresses some properties
similar to those reported for HIV-1-encoded Vpr. Collective data generated
from both reports suggest the possibility that Orf-A may encode specific
functions attributed to several different HIV-1 encoded accessory protein
but not all functions characterized for a single HIV-1 accessory protein.
Additional support for this possibility is provided by a recent report
showing that CAEV Tat, which shares structural homology with FIV Orf-A,
also localizes to the nucleus and arrest cells in G2.189 Verification of 
these findings for FIV Orf-A from other research groups and for Orf-A 
proteins encoded by multiple FIV isolates will be needed to confirm the
similarities between FIV Orf-A and HIV-1 Vpr and other HIV-1 accessory
proteins.

3. FIV TROPISM

FIV Receptor Usage

Natural and experimental infection of cats with biological and mole-
cularly cloned isolates of FIV consistently induce an acute viremia associ-
ated with T-cell alterations including depressed CD4:CD8 T-cell ratios and
CD4 T-cell depletion.4–7,10,11,21,190–194 Early studies revealed that targets for
FIV in vitro and in vivo included CD4 T-cells, macrophages, dendritic cells,
microglia, and astrocytes similar to those for HIV infection in humans, but
also included CD8 T-cells, and B-cells (Table II).4,18,23,186,195–210 Early reports
also demonstrated that continuous passage of particular FIV isolates in cell
culture selected for virus variants capable of replication in feline adherent
cell lines, including Crandell feline kidney cells (CrFK) and G355-5 cells,
as well as established feline interleukin (IL)-2-independent T-cell
lines.2,25,42,211 Importantly, experimental inoculation studies in cats revealed
that cell culture-adapted viruses represented a particular subset of viral vari-
ants that exhibited reduced replication and virulence in vivo.111,192,197,212

FIV infection of feline CD4-negative adherent cell lines provided indi-
rect evidence that FIV differs with HIV-1 and does not utilize CD4 as a
primary receptor. In addition, direct evidence refuting FIV usage of CD4
was provided by studies revealing an absence of virus infectivity for non-
lymphoid cells expressing feline CD4.213 Subsequent reports described
blocking of FIV infectivity by an antibody specific for feline CD9, a cell
surface antigen belonging to the four-transmembrane-spanning domain
superfamily (TM4SF).214,215 However, anti-CD9 antibody was later shown to
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block virus infection by inhibition of virus release and not by interference
with virus-receptor binding.216

A major breakthrough in characterization of FIV cell surface recep-
tors resulted from observations showing that cell culture-adapted FIV iso-
lates primarily utilize the b-chemokine receptor CXCR4 for infection in a
similar fashion to T-cell line-adapted isolates of HIV-1 (Table II).33,217

Induced cell surface expression of CXCR4 was shown to mediate a sus-
ceptibility to FIV infection33,218 that could be abrogated by treatment with
natural ligands for CXCR4 such as stromal cell-derived factor (SDF-1) and
with CXCR4 antagonists including AMD3100.219–221 Furthermore, critical
determinants for FIV infection were mapped to the extracellular loop of
CXCR4.218,222 Multiple reports have now confirmed that cell culture-
adapted FIV isolates are capable of using CXCR4 exclusively for virus entry
and infection.33,36,218–221,223,224

Results of subsequent reports suggesting FIV usage of chemokine
receptors CCR5 and CCR3223,225 have conflicted with observations of other
investigators and may have resulted from enhanced expression of CXCR4
associated with ectopic expression of CCR5.224 Use of other chemokine
receptors by particular FIV isolates is not clear at this time and is under
investigation. Similar to HIV-1 envelope proteins, binding of FIV Env to
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TABLE II
Comparison of FIV and HIV-1 Replication Properties In Vitro

Property FIV HIV-1

Permissive PBMC, CD4 T-cells, CD8 T-cells, PBMC, CD4 T-cells, macrophages
primary cells macrophages, various other various other cell types

cell types including microglia including microglia and
and astrocytes astrocytes

Permissive IL-2-dependent T-cell lines Various CD4 T-cell lines
cell lines IL-2-independent T-cell lines macrophage cell lines

fibroblastic adherent cell
lines (CrFK and G355-5)

Cytopathic effects Syncytium, giant cell formation Same as FIV
cell lysis, apoptosis

Receptors
Primary isolates CD134 and CXCR4 CD4 and CCR5 or dual-tropic

(R5X4)
Adapted isolates CD134 and CXCR4 or CD4 and CXCR4 or other

CXCR4 only “orphan” chemokine receptors
or CXCR4 only

Host range Feline cells only (?) Human, some nonhuman primate
cells

Viral tropism Env: V3 region and TM Env: V3, V1/V2
determinants Orf-A, U3 domain of LTR Vpr



other cell surface makers, including heparan sulfate proteoglycans
(HSPGs) and DC-SIGN, has been shown and is specific for particular iso-
lates.35,36 Binding of DC-SIGN was observed with recombinant Env proteins
derived from primary and cell culture-passaged FIV isolates, whereas
binding of HSPGs was observed only with a cell culture-passaged FIV strain.
Although virus entry was shown to be mediated exclusively by CXCR4, virus
infectivity was enhanced by factors including temperature or HSPGs, which
either increase concentration of or binding for CXCR4, respectively.226 The
roles of binding of DC-SIGN and HSPGs by FIV Env in FIV infection and
pathogenesis in vivo are currently not well understood and warrant further
examination.

Previous studies confirming CXCR4 as a receptor also revealed that
CXCR4 expression was not sufficient for infectivity of primary FIV isolates
and suggested the likehood that primary isolates required a second recep-
tor for binding and entry. One report describing coimmunoprecipitation
of a recombinant FIV envelope protein with a 40 kD cellular protein pro-
vided further evidence of a non-CXCR4 receptor for FIV.36 A second major
advance in FIV receptor biology was the recent identification of this cellu-
lar protein as CD134, a 43kD cell surface marker, and the receptor utilized
by primary FIV isolates in conjunction with CXCR4.32,227 CD134 is a
member of the tumor necrosis factor-receptor superfamily and is expressed
primarily on activated CD4 T-cells (mouse and human) after T-cell recep-
tor (TCR) engagement.228 A recent report confirmed a similar phenotype
for feline CD134 by showing up-regulation of CD134 expression on
mitogen-activated feline CD4 T-cells.226 Binding of cell surface CD134 with
cellular CD134 ligands provides a costimulatory signal that results in pro-
inflammatory effects, as well as proliferation, migration, and cytokine 
production by memory T-cells. Low level CD134 expression has also been
reported for activated CD8 T-cells, activated B-cells, and macrophages in
mice and humans229–231 but has not been confirmed for the same feline cell
lineages.

So far, preliminary reports indicate that infection by primary isolates
requires binding of both CD134 and CXCR4.32,227 Assessment of receptor
usage by larger panels of primary FIV isolates will be needed to determine
if additional chemokine receptors may also be used for FIV infection, as
previously observed for HIV-1, and may be associated with specific FIV repli-
cation/pathogenic phenotypes. Whether infection of CD8 T-cells, B-cells,
and macrophages previously observed in later stages of FIV infection is due
to CD134-independent usage of CXCR4 expressed on these cell popula-
tions, or results from usage of both CD134 and CXCR4, has not yet been
clarified. Clearly, usage of CD134 as a receptor by primary FIV isolates
explains the specific targeting of the CD4 T-cell population for depletion
observed with FIV infection and the similarities in the acquired immuno-
deficiencies induced by both HIV-1 and FIV. Furthermore, these obser-
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vations elucidate a mechanism by which FIV and HIV-1 utilize unique
receptors (CD4 and CD134) to target a similar subset of T-cells (i.e., acti-
vated and resting memory CD4 T-cells) to impart disease pathogene-
sis.232–237 Accordingly, these findings further validate the importance of FIV
infection as a model for examination of HIV-1-induced AIDS. Examination
of pathogenic effects and cellular dysfunction imposed by virus-binding of
CD134 expressed on CD4 T-cells in vitro will also be important for defin-
ing potential viral mechanisms for induction of feline acquired immuno-
deficiency in vivo.

Viral Determinants for Cell Tropism

Replication phenotypes in vitro and in vivo clearly distinguish cell
culture-adapted FIV isolates from primary isolates. Most primary FIV iso-
lates examined to date require both CD134 and CXCR4 for infection and
exhibit a cell tropism restricted to primary feline PBMC, selected IL-2-
dependent T-cell lines, and possibly primary macrophages and astro-
cytes,2,42,61,196–199,238 although testing for tropism to the latter two cell types
has been infrequently reported (Table II). In contrast, FIV variants pas-
saged in vitro utilize CXCR4 solely for efficient infection and replication
in feline adherent cell lines including CrFK cells,33,36,218–221,223,224 as well as
feline PBMC, IL-2-dependent and independent feline T-cell lines and
macrophages.2,42,61,187,190,197,211,239–242 These highly passaged isolates, however,
exhibit severely restricted virus replication and pathogenicity in vivo as dis-
cussed above.111,192,197,212 Multiple studies using FIV molecular clones have
mapped Env as a major determinant that expands cell tropism to include
feline adherent cell lines including CrFK cells and G355–5 cells (feline glial
cell line), as well as feline astrocytes (Table II).33,212,223,243–248 Similar to the
V3 domain of HIV-1 Env, the V3 domain of the FIV SU encodes specific
tropism determinants212,223,243,244,249–251 in addition to important neutralizing
antibody epitopes (Figure 3).252–254 Critical amino acid residues mapped
within the FIV Env V3 domain appear to determine adherent cell tropism
by modifying the overall charge of the V3 loop.212,243,244 A recent report
describing the evolution of a nonpathogenic FIV isolate to a more patho-
genic virus in vivo over time suggested that mutation E409K within the V3
loop not only imposed CrFK cell tropism but also contributed to virus atten-
uation.212 This hypothesis is supported by the consistent observation of
severely restricted replication in vivo observed for viruses exhibiting a
tropism for CrFK cells in vitro.111,192,197,212 Other Env determinants affecting
FIV cell tropism for adherent cells have been mapped to the second con-
stant domain within SU, the extracellular domain of TM,247 and the cyto-
plasmic domain of TM.245 Although V3 and V4 domains of FIV SU are also
reported to influence FIV macrophage and brain microglia tropism,209,255

viral determinants critical for macrophage tropism as well as the frequency
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of macrophage tropism across many primary isolates have not been well
examined for FIV. Mechanisms by which these important Env residues or
domains contribute to virus infectivity (for all cell types) either by effects
on Env conformation or binding affinity to either CXCR4 or CD134 are
also not well understood at this time and warrant investigation to further
characterize the FIV animal model.

Multiple reports confirmed that the gene product of accessory gene
orf-A is a critical determinant for infection of feline PBMC61,157,187,197 but is
not required for infection of adherent cell lines including CrFK cells.
However, the role of Orf-A in FIV tropism for feline macrophages has
received only limited study and is unclear based on conflicting data
reported from different studies.61,187,197 Mechanisms by which Orf-A impacts
virus infectivity of PBMC are also undetermined at this time.

Interestingly, early studies suggested that restriction of productive FIV
infection in human cells resulted primarily from a block in FIV transcrip-
tion rather than a block in virus entry.40,256–259 The capability of FIV isolates
to establish latent infections in human cells258 was later explained by
demonstration of cell culture adapted-FIV usage of human CXCR4 for
fusion and infection of human cells.33 Subsequent studies focused on FIV
vector development revealed that the FIV U3 domain was the determinant
responsible for restricted virus replication in human cells and showed that
replacement of U3 with the cytomegalovirus immediate early promoter
produced FIV vectors capable of viral gene expression in human cells.225,260

Studies reported by one research group showing that FIV is capable of pro-
ductive infection of primate cells both in vitro and in vivo261,262 have not
been confirmed by other independent researchers but suggest FIV infec-
tion of nonfeline cells may warrant further examination.

4. EPIDEMIOLOGY AND TRANSMISSION

Similar to other lentiviruses, the presence of FIV-specific antibodies
signifies an established virus infection that will persist throughout the
remaining lifetime of the host. Antibody detection ELISAs and other
immunochromatographic methods (excluding western blot) have served
as the primary screening diagnostic assays for FIV infection in clinical vet-
erinary practice and epidemiologic studies.263–266 Although most FIV-
infected cats produce antibodies to both Gag and Env structural proteins,
a small proportion of cats will test positive for antibodies specific to only
one of these two structural proteins.267 Therefore, currently available com-
mercial FIV antibody assays include both FIV Gag and Env recombinant
antigens for optimal sensitivity as well as specificity.264 Current and earlier
serologic studies have shown that FIV is enzootic worldwide.13,15,264,266,268–273

Evaluation of mutations within virus subtypes suggests that FIV has been
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present in domestic cats for a significant period of time, especially when
compared to the relative short evolution of HIV.142,150 FIV prevalence varies
greatly depending on geographic location and other variables of the tested
cat populations. Among clinically healthy cats, the prevalence of FIV may
be as low as 1% or less as observed in central European countries and the
United States, or as high as 30% as reported in Japan and Australia.14,273

The seroprevalence rates in sick cats appear to be several times higher than
those in their healthy counterparts and reflect the disease-inducing poten-
tial of FIV.13,15 Age and gender also markedly affect FIV prevalence. Most
infections are acquired after one year of age, and prevalence increases up
to approximately 10 years of age and then remains stable or tends to
decline as the mean lifespan of a domestic cat is about 15 years.274 Viruses
similar to FIV have been documented in several nondomestic felids such
as lions, panthers, and bobcats.269,275–282 The large genetic diversity observed
for lentiviruses among different nondomestic felids and between non-
domestic feline lentiviruses and FIV, however, do not support the likeli-
hood that nondomestic feline lentiviruses contribute significantly to the
circulation of FIV in domestic cats. There is little evidence that FIV is 
transmissible to any other species including humans13 with the exception
of a recent single report describing experimental FIV infection of non-
human primates (cynomolgus macaques).262

Precise modes of natural FIV transmission among domestic cats are
not yet clear. Nevertheless, strong epidemiologic evidence implies that
biting and fighting may be the predominant route of transmission (Table
III). The importance of this route of transmission is corroborated by 
observations of the highest prevalence of infection in rural feral cat 
populations and urban areas containing a high density of freely roaming
cats, as in Japan, and a higher prevalence of infection in adult
tomcats.13,15,270,273,283–287,288 In fact, one epidemiologic study revealed that a
pattern of increased FIV infection in orange cats compared to nonorange
cats correlated with the pattern of more aggressive behavior also exhibited
by orange cats.289 In addition, evidence of virus in saliva harvested from
infected cats290 and an infection experiment involving virus inoculation by
simulating biting further substantiate that transmission by this route is
highly effective.13

Early epidemiologic and experimental infection studies refuted the
possibility of naturally occurring vertical transmission of FIV.2,13,291 However,
later experimental inoculation studies confirmed virus transmission to
newborn kittens from queens either acutely or chronically infected with
different FIV isolates.19,20,292–294 Such transmission appeared to occur via in
utero294 and postnatal routes,19,20,293,295 although intrapartum transmission
has also been implicated.19 Interestingly, recent studies provided evidence
of vertical transmission resulting in occult infection of kittens character-
ized by the presence of viral DNA in tissues in the absence of replicating
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virus in peripheral blood, as well as absence of antiviral antibody apart from
maternal antibody.206,296,297 Although these occult infections resulting from
vertical transmission were considered regressive or transient as reported by
one study,296 the duration of persistence of this type of infection has not
been thoroughly examined. These covert or occult infections resemble pre-
viously described restricted FIV infections that were detectable only by PCR
amplification of viral DNA from blood or tissues and that resulted either
from inoculation with extremely attenuated viruses192 or from persistent
but nontraumatic contact between naive and infected cats.298 Furthermore,
similar sequestered virus infections in the absence of antibody have been
reported for SIV infection299,300 and implicated in particular human popu-
lations at high risk for HIV infection.301,302 Collectively, these findings
suggest the possibility that the incidence of natural FIV infection by verti-
cal transmission may be underestimated, since diagnostic assays focus on
antibody or virus in peripheral blood only.

Detection of virus in semen of infected cats has been observed303,304

and experimental infection by artificial insemination has also been
reported.305,306 Numerous experimental studies have shown the feasibility
of infection by the vaginal route16–18,21–23,307–311 and demonstrated the utility
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TABLE III
Comparison of FIV and HIV-1 Infection Properties In Vivo

Property FIV HIV-1

Transmission Blood (bite wounds), vertical (?) Blood, vertical, sexual
(natural)

Transmission Blood (bite wounds), vertical, Not applicable
(experimental) vaginal and rectal mucosa

Cell tropism CD4 T-cells, CD8 T-cells, B cells, CD4 T-cells, macrophages
macrophages, dendritic cells, dendritic cells, microglia
microglia follicular dendritic follicular dendritic cells
cells CD4+CD25+ T-cells, thymocytes, CD8 T-cells and
thymocytes, megakaryocytes others (?), CD4+CD25+

T-cells (?)
Tissue tropism Blood, lymphoid tissues, Blood, lymphoid tissues,

gastrointestinal tract, CNS gastrointestinal tract, CNS
genital tract, liver, kidney genital tract

Host range Restricted to felids Restricted to humans and
some nonhuman primates

Immunopathology Lymphoid follicular hyperplasia Same as FIV
(early) and CD8a+blow T-cell
subset expansion, followed by
lymphoid depletion, CD4
T-cell depletion, cytokine
dysregulation, and AIDS



of this feline animal model for examination of mucosal transmission and
viral pathogenesis. Although these observations and experimental studies
suggest the possibility of sexual transmission of FIV, definitive observations
of natural transmission by this route so far have not been reported.

5. VIRUS INFECTION AND HOST RESPONSES

Virus Infection in Cell Culture

Primary feline PBMC activated by concanavalin A (ConA) and specific
feline IL-2-dependent T-cell lines, including FET-1 cells,242 MYA-1 cells,312

FCD4E cells,201 104C-1 cells,227 and MCH5–4 cells,211 have proven to be
highly permissive for propagation of biological and specific molecularly
cloned isolates of FIV. As described in the section discussing FIV receptor
usage, productive virus replication in these cell types results from expres-
sion of feline CXCR4 and CD134 cell surface molecules that has been con-
firmed, at least for activated feline PBMC and 104C-1 cells (Table II).32,227

Established feline adherent cell lines, including CrFK cells and G355-5
cells, as well as feline IL-2-independent lymphoid cell lines such as 3201
cells, MCH5-4DL, and 104-C1DL, have been used for propagation of
CD134-independent isolates.13,25,42,211 Feline IL-2-independent lymphoid
cell lines (FL-4 cells) chronically infected with FIV isolate FIV-Petaluma
were also generated for production of virus for use in whole killed virus
vaccines and diagnostics.242

Assays used to confirm virus replication and production in vitro have
included FIV p24Gag antigen capture ELISAs, RT assays, indirect immuno-
fluorescence or immunocytochemical assays for viral structural proteins,
and PCR assays for viral nucleic acids. Quantitative real-time PCR assays for
both FIV RNA and DNA have been developed for quantitation of viral
nucleic acids of different isolates in either cell culture supernatants,
plasma, or cells.11,157,190,212,309,313–316 The appearance of virus-induced cyto-
pathic effects (CPE) consisting of syncytium, giant cell formation, and cell
lysis (Table II) in feline PBMC and T-cell lines may be PBMC donor and
FIV isolate-dependent and has proven less dependable for use as a marker
of virus infection in these cell types.1,212,317,318 In contrast, infection of
adherent cell lines CrFK and G355-5 and IL-2-independent lymphoid cells
lines (3201, MCH5-4DL, 104-C1DL) with CD134-independent FIV isolates
may result in prolific CPE that is most consistently observed in CrFK cells
and which may serve as a indicator of infection for these iso-
lates.13,32,211,238,241,242,248 CD134-independent FIV strains have been selected by
extensive cell culture passage of biological isolates and mimic CD4-
independent HIV-1 isolates that are also extremely cytopathic and efficient
for replication in established T-cell lines in vitro.73
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Virus Localization in the Host

Most knowledge regarding acute FIV infection and virus localization
and dissemination has been derived from experimental inoculation studies
using both biological and molecularly cloned FIV isolates. Factors that may
affect virus localization and distribution during the acute phase of infec-
tion are virus pathogenicity, virus tropism, titer of virus inocula, presence
of virus-infected cells in the inocula, route used for virus infection, and age
of host. Experimental studies testing highly pathogenic and attenuated FIV
isolates, viruses inoculated by parenteral or mucosal routes, and cell-free
or cell-associated virus inocula have been reported. However, careful exam-
ination of effects imposed by each of these variables on viral distribution
and ultimate disease, as well as mechanisms for these effects, has yet to be
described. Regardless, reports so far describe a virus distribution pattern
for pathogenic FIV isolates in vivo that is similar to that reported for HIV-
1 (Table III).319–321

Early published experimental infection studies designed to examine
FIV localization in vivo used either intraperitoneal, intravenous, intramus-
cular,4,7,186,200,201,322–324 intrathecal, or bone marrow inoculation198 of specific
pathogen-free cats with various FIV isolates. Blood and tissues harvested
from infected cats were assayed for infection by virus isolation from PBMC,
viral nucleic acid detection by PCR or in situ hybridization, or viral antigen
detection by immunocytochemical analyses. Later reports described experi-
mental studies testing virus localization after virus mucosal delivery by
either vaginal, rectal, or oral/nasal routes,16,18,21,23,307,309,325 in addition to
either intraperitoneal or intravenous routes193,197,202,207,326–328 or intracranial
injection.329,330 Virus localization in systemic lymphoid and central nervous
system (CNS) tissues after FIV proviral DNA inoculation has also been
examined.331,332 Collectively, these studies revealed localization of virus in
PBMC and plasma, peripheral, and systemic lymphoid tissues, small and
large intestinal tracts, and CNS tissues within 10 to 21 days after inocula-
tion of the host, regardless of route of infection tested. In fact, one report
described virus detection in gastrointestinal mucosa and associated lym-
phoid tissue by 1 to 3 days after oral/nasal infection and rapid dissemina-
tion of virus to systemic lymphoid tissues, bone marrow, and PBMC within
7 to 10 days after infection.23 Similarly, virus was detected in vaginal mucosa
and spleen within 3 days after vaginal delivery of virus.23 However, virus
infection of vaginal mucosa has been examined in very few studies and was
observed only in those testing vaginal delivery of specific virus isolates (FIV-
B-2542 and FIV-PPR)16,23,309 and was not observed after vaginal infection
with other FIV isolates18,23 or after intravenous virus infection.207 Similar to
observations for the SIV animal model,299,333 experimental FIV infection by
mucosal routes generally required higher titered virus inocula than
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required by parenteral injection,16,309 and one study reported a higher effi-
ciency for infection with cell-free virus inocula compared to cell-associated
virus.334 Virus has also been detected in other nonlymphoid organs includ-
ing liver and kidney.4,200,207,332 Importantly, FIV infection of the CNS has
been well documented4,198,200,202,255,294,324,335,336 and utilized as an animal
model for HIV-1-induced neurologic deficits.210,324,329,330,332,337–344

Kinetics of virus emergence in blood and individual tissues has varied
depending on the route of inoculation, virus strain, and infectious titer of
virus inocula. Virus load in peripheral blood based on either virus isolation
from PBMC or plasma viral RNA quantitation, may peak anywhere from 14
to 56 days after experimental infection.4,11,21,191,200 Significant virus loads
during the acute stage of infection may also be observed in both periph-
eral and systemic lymph nodes, gastrointestinal tissues (predominantly
submucosa and lamina propria), spleen, thymus, and bone
marrow4,23,185,193,200,207 and will precede the appearance of peak viremia in
peripheral blood. These findings generally mimic virus distribution during
acute infection for both HIV-1 and pathogenic SIV isolates.319,321,345 It is
important to note the similar robust virus replication in gastrointestinal
mucosal lymphoid tissue (GALT) observed during early time points of
FIV,4,200,207 SIV,346,347 and HIV-1348–350 infection. Although virus has been
detected in the CNS during both acute and chronic phases of infection,
quantitative data describing virus load in specific CNS tissues has been
scarce. Virus loads in the PBMC and plasma generally decrease to lower set
points during chronic asymptomatic infection, although this finding may
be variable and dependent on virus strain pathogenicity17,212 and has not
been as well defined for experimental FIV infection as reported for exper-
imental SIV infection of rhesus macaques. FIV loads in individual tissues at
sequential time points spanning acute, chronic asymptomatic, and termi-
nal AIDS stages of disease also have not been well examined.

Similar to findings for HIV-1 and SIV infection,319–321,345,351 cellular
subsets targeted during the acute stage of FIV infection have included CD4
T-cells, monocytes, macrophages, mucosal dendritic cells, mature and
immature thymocytes, brain microglia and lymph node follicular dendritic
cells (FDC) (Table III).4,193,194,197,199,201–204,207,208,307,327,338,352,353 As discussed in a
previous section of this chapter, FIV differs from HIV-1 by exhibiting a
broader tropism in vivo that also includes megakaryocytes,323 CD8 T-cells
and B-cells,186,193,197,201,307 although a few reports have described either HIV-
1 or SIV infection of CD8 T-cells.354,355 The variation in observations from
different reports regarding the frequency and stage of infection for which
virus or viral nucleic acid are detected in macrophages, CD8 T-cells, and
B-cells may relate to differences in virus isolates, routes used for virus infec-
tion, age of the host, and virus detection assays. However, several studies
report that either T-cells, or specifically CD4 T-cells, in both blood and
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tissues, are the predominant cell type harboring virus during the acute
stage of infection. Virus load in CD4 T-cell populations decrease over time
as the host progresses into chronic infection,4,194,201,207,208,307,352 while virus
loads in macrophages and B-cells appear to increase. The relationship of
stage of infection to virus load in other specific cell populations, including
CD8 T-cells, mucosal dendritic cells, lymph node follicular dendritic cells,
thymocytes, cells within the CNS, and other nonlymphoid tissues, has
received little examination so far, although one report revealed a decrease
in FIV-infected CD8 T-cells in lymphoid tissues by 10 weeks after infec-
tion.307 A recent report described FIV infection in vivo of CD4+CD25+
T-cells, a cell population reminiscent of immunosuppressive CD4 T 
regulatory (Treg) cells.356 This CD4+CD25+ Treg cell population isolated
from FIV-infected cats was shown in another recent report to coexpress cos-
timulatory molecules B7.1, B7.2, and CTLA4 and to be anergic and resis-
tant to clonal deletion.357 These findings warrant further investigation and
suggest that CD4+CD25+ Treg cells may serve as an important long-lived
reservoir for latent FIV in lymphoid tissues and currently are under exam-
ination as potential reservoirs for HIV-1 infection in vivo.

Clinical Disease

FIV infection results in progressive impairment of the immune system,
including loss of CD4 T-cells, inverted CD4:CD8 ratios, heightened sus-
ceptibility to infectious agents, disruption of immune cell function, and
deterioration of major lymphoid tissues and organs of the hosts.14,17,358

Observations from studies involving either experimental or natural infec-
tions,2,7–9,13,359–363 show that FIV disease course is very similar to that induced
by HIV-1 infection and can be similarly divided into four to five stages based
on type and severity of the clinical signs of infection. These stages of infec-
tion have been described as acute or primary, chronic asymptomatic, per-
sistent generalized lymphadenpathy (PGL), AIDS-related complex (ARC),
and feline AIDS (FAIDS). Notably, FIV and HIV-1 infection are usually asso-
ciated with a prolonged asymptomatic phase that can last 10 years or more
for infected humans and cats, and which constitutes most of the lifetime
of the infected cat.360,364 In contrast, pathogenic SIV isolates induce an
accelerated progression of immunodeficiency, resulting in death within 2
years of infection of rhesus macaques with a relatively short or absent
asymptomatic phase of infection.365,366

The acute phase begins 1 to 4 weeks after FIV infection and may span
a time period of 2 to 6 months. This stage of infection is characterized by
a transient peak in peripheral blood (plasma and PBMC) virus load that is
accompanied by a precipitous decline in CD4 T-cell counts and CD4:CD8
T-cell ratios. Depending on pathogenicity of virus isolate and age of the
host, clinical and hematological abnormalities may include generalized
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lymphadenopathy, mild pyrexia, dullness, depression, anorexia, and neu-
tropenia. Similar to findings for HIV-1 infection, FIV pathogenicity and
clinical prognosis correlate to virus replication and load and to severity of
clinical signs and hematologic deficits exhibited during the acute phase of
infection.11,21,185,191,192,212,313,367,368 Another property shared by FIV and HIV-1
acute infection369,370 relates to the effect of age of the host on severity of
clinical and hematologic disease at the time of infection. Multiple studies
have shown that severity of primary phase FIV-induced disease was
increased for neonatal kittens experimentally infected at birth.190,318,371–374

Primary FIV infection recedes as the host generates virus-specific
immune responses and as virus loads decrease. Concordant with emer-
gence of antiviral immune responses and reduced peripheral blood virus
loads is an increase in CD4 T-cell count and CD4:CD8 T-cell ratio, although
peripheral blood CD4 T-cells counts do not usually return to preinfection
concentrations. The infected cat enters a relatively asymptomatic phase of
FIV infection where control of virus load by host immune responses is pre-
sumed and may last for 5 to 6 years or for a significant proportion of the
remaining life span of the cat. However, long-term observation of both
experimentally and naturally infected cats has shown that peripheral blood
CD4 T-cell counts slowly but progressively decrease during the asympto-
matic phase and that clinical disease eventually becomes apparent.8,9

Careful observation of infected cats over time may reveal the reap-
pearance of PGL as an early manifestation of clinical disease that is asso-
ciated with vague signs of disease including recurrent fevers and weight
loss.9,13–15 After the appearance of PGL and other vague clinical signs,
infected cats generally progress into ARC, a phase characterized by the
development of chronic persistent infections with pathogens that are
usually self-limiting and involve the oral cavity, upper respiratory tract,
ocular tissues, skin, and other body sites. Progression from ARC to FAIDS
may be distinguished by infections with opportunistic pathogens, severe
wasting, neoplastic disorders including non-T-cell lymphomas, neurologic
disease, leukopenia, and anemia. Virus load increases and severe depletion
of peripheral blood CD4 T-cells are observed. Survival time is usually less
than a year after the onset of FAIDS.

FIV Immunodeficiency and Pathology

A gradual but progressive CD4 T-cell depletion that mimics primary
immune deficiency observed in HIV-1 AIDS is the hallmark of immuno-
deficiency associated with both experimental and natural FIV infection 
in cats.5–8,10,11,21,185,190,192,193,200,212,361,375 CD4 T-cell subset depletion has been
observed in peripheral blood and lymphoid tissues including
thymus,22,193,374 during both early and chronic stages of infection (Table III).
An increase in CD8 T-cell concentration is frequently associated with reduc-
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tion in CD4 T-cell counts and either contributes to, or largely accounts for,
lower CD4/CD8 T-cell ratios observed during acute and chronic infection
with either FIV or HIV-1. This elevation in the CD8 T-cell count is due to
an increase in a CD8a+blow subset that is concurrent with a reduction in
CD8a+bhigh of CD8 T-cells and involves lymphocyte populations from
peripheral blood, lymph nodes, and thymus.212,334,374,376–379 A similar expan-
sion of an CD8a+blow T-cell subset has also been observed in HIV-1 infec-
tion.380,381 Furthermore, this cell population has been shown to express
markers associated with lymphocyte activation and adhesion and to exhibit
antiviral activity311,376,379 comparable to a noncytolytic CD8 antiviral activity
previously described for HIV-1 infection.382,383

FIV-induced immunodeficiency is characterized by other defects that
are similar to those described for HIV-1 infection and include reduced pro-
liferative T-cell responses to mitogens, dysregulation of cytokine networks,
and humoral immune response deficits.14,17 Several studies have revealed
significantly reduced mitogen-induced blastogenic responses from T-cells
isolated from cats during acute and chronic FIV infection,8,309,384–387 a
finding that may result from virus-associated defects in T-cell growth and
proliferation, as well as defects in cell surface expression of receptors
required for transmission of antigen/mitogen signals.388 Although cytokine
responses in different lymphoid tissues harvested from cats acutely infected
with FIV have been shown to be heterogenous,389 findings from a number
of reports suggest that dysregulation of cytokines such as IL-10, tumor
necrosis factor (TNF)-alpha, IL-6, IL-1, and interferon gamma may play a
role in FIV-induced immune deficiency.307,389–395 Deficits in generation of
antibody responses to multiple antigens and specifically to T-cell-
dependent immunogens have also been reported for FIV-infected
cats.14,396–398 Bone marrow abnormalities that may result in neutropenia,
leukopenias, and pancytopenias,323,327,363,399 as well as deficits in neutrophil
and monocyte/macrophage function, may further impair immunologic
function in FIV-infected cats.203,400–402

Histologic lesions associated with FIV infection are predominantly
localized to lymphoid tissues including GALT for both early and later stages
of FIV infection, although severity of acute stage lesions is dependent on
virulence and titer of the infecting FIV isolate. Lymph node abnormalities
during the acute stage of infection include a mixture of follicular hyper-
plasia and lymphoid depletion resulting in loss of lymph node architecture
and medullary plasmacytosis.3,7,12,22,190,200,322,353,403 Lymphoid hyperplasia has
also been observed in other lymphoid tissues including spleen, bone
marrow, and mucosal-associated lymphoid tissue. Several studies have
shown the thymus to be a primary target during early FIV infection, with
pathologic changes that include thymic atrophy, thymitis, medullary B-cell
hyperplasia, and cortical involution.7,22,185,190,193,200,328,374 Lesions in the gas-
trointestinal tract have frequently been observed and include severe inflam-
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mation, necrosis, and villous atrophy.3,7,22,200,322 Brain and lung are non-
lymphoid tissues that also frequently exhibit pathologic changes. CNS
lesions have consistently included gliosis, glial nodules, and perivascular
cellular infiltrates and less frequently included inflammatory changes asso-
ciated with encephalitis and meningitis and neuronal abnormalities such
as neuronal stress and neuronal satellitosis.198,200,324,329,330,332,339,342,344 Giant
cell formation is a frequent lesion in SIV and HIV-1-associated neu-
ropathology but has only rarely been observed by histologic examination
of CNS tissues from FIV-infected cats.342,404 Pulmonary lesions associated
with FIV infection have consisted of inflammatory infiltrates suggestive of
pneumonia.200,322,332

Lymphoid depletion and involution within multiple lymphoid tissues
have been dominant and consistent findings in tissues harvested from cats
during the later stages of FIV infection.3,12,322 Neoplastic lesions, including
B-cell lymphomas and other sarcomas, have also been frequently observed
in later stages of both experimental and natural FIV infection.8,13,405–409 All
together, these histologic lesions of lymphoid hyperplasia frequently char-
acterized as B-cell hyperplasia mixed with severe lymphoid depletion, as
well as thymic atrophy and the severe inflammatory lesions observed in the
gastrointestinal mucosa, mimic pathological changes reported for both
HIV-1 and pathogenic SIV364,410–413 and further support the use of the FIV
animal for examination of HIV immunopathogenesis.

Mechanisms for either FIV or HIV-1-induced CD4 T-cell depletion and
dysfunction in vivo most likely involve multiple processes such as direct
cytolysis from virus infection or from virus-specific immune responses, and
indirect strategies including chronic immune activation, cellular dysregu-
lation, and inappropriate killing of uninfected bystander cells.364,414 In vitro
syncytia formation of FIV-infected cells has been well documented and is
due to viral envelope fusion with cellular membranes and associated with
specific cell types and FIV strains.224,238,245,248,311,415–417 Programmed cell death
or apoptosis has been hypothesized as one of several important mecha-
nisms involved in FIV/HIV-1 immunopathogenesis based on observations
of apoptotic cells in virus-infected cell cultures418–421 and in PBMC422–425 and
lymphoid and thymic tissues22,425,426 isolated from FIV-infected cats. Recent
reports have shown that binding of cell surface chemokine and virus 
receptor CXCR4 by FIV TM may trigger apoptosis.137,427 Although some
recent reports suggest that the Fas-TNF-a receptor pathway may be impor-
tant for FIV-induced apoptosis, mechanisms by which FIV uses this path-
way for apoptosis are not well understood and are currently under
investigation.419,425,428–431

A second probable pathway for FIV-induced apoptosis involves the B7-
CTLA4 pathway. Data from recent reports indicate that PBMC and lymph
node lymphocytes isolated from FIV-infected cell cultures in vitro or freshly
isolated from FIV-infected cats are down-regulated for expression of 

FIV AS A MODEL FOR HIV 179



costimulatory molecule CD28. These cells are instead up-regulated for
expression of T-cell costimulatory molecule CTLA4, a cell surface molecule
expressed on activated T-cells and reported to induce anergy in activated
T-cell subsets.432–435 Furthermore, these reports presented flow cytometric
analyses that verify induction of apoptosis in FIV-infected cultures by T-cells
that coexpress CTLA4 and B7 cell surface molecules and suggested that
CD4 T-cell depletion and lymph node apoptosis in vivo may partially result
from chronic B7-CTLA4-mediated T-cell interactions.357,432,434 Similarly,
reduced CD28 expression and increased CTLA-4 expression have been
observed in HIV-1 infection436–440 and hypothesized to promote immune
hyporesponsiveness and apoptosis through binding of CTLA4 with B7 cos-
timulatory molecules. Although mechanisms by which FIV infection
induces an increase in B7+CTLA4+ T-cell populations in vivo are not well
understood, chronic immune activation in the virus-infected host has been
hypothesized as one possible etiology for this effect. These observations
further illustrate similarities in FIV and HIV-1-associated disease and 
potential value of the FIV animal model for in vivo studies focused on
mechanisms of immunopathogenesis of lentivirus-induced acquired
immunodeficiency.

Immune Responses

Emergence of cellular and humoral host immune responses during
primary infection with either FIV or HIV-1 coincides with reduction in peak
peripheral blood virus loads.14,17,24 These responses are thought to be
important for controlling virus replication during acute and chronic stages
of infection based on CD8 T-cell and B-cell depletion studies involving SIV-
infected rhesus macaques.441–443 Regardless of robust virus-specific immune
responses, most infected hosts fail to eliminate the virus, leading to pro-
longed clinical latency, eventual immunologic exhaustion with subsequent
increasing virus loads, and AIDS. Currently, factors responsible for this
inability of host responses to effectively clear virus during primary infec-
tion are not well understood. Identification of such factors will be neces-
sary for understanding immunopathogenesis of lentiviral infections and
design of vaccines capable of inducing sterilizing immunity.

Based on experimental inoculation studies, antibodies to viral proteins
SU gp95, CA p24, and MA p14 are the first to appear in serum, usually
within 2 to 4 weeks after infection, and are quickly followed by the appear-
ance of antibodies to TM gp40, Gag precursor p50, and reverse transcrip-
tase.14,28,444,445 Lentiviral Gag proteins are highly expressed immunogenic
proteins and FIV-infected cats typically exhibit high titers of antibody spe-
cific for viral CA p24. Four B-cell epitopes have been mapped for FIV CA
using mouse monoclonal antibodies.446 However, evidence that CA-specific
antibodies function in either FIV or HIV-1 clearance has been scarce. Inter-
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estingly, a recent examination of serological responses in HIV-1-infected
patients undergoing prolonged antiretroviral therapy with structured treat-
ment interruptions (STIs) showed that kinetics of CA-specific antibody
responses revealed clear differences in patients’ immune functions.
Patients exhibiting rapid and large increases in CA antibody responses also
experienced significantly decreased viral set points.447 Antibodies specific
to CA have not been shown to express significant antiviral activity,448 but
may instead reflect enhanced virus-specific CD4 helper activity that is 
predictive of the capabilities of the host’s antiviral immune responses.447

Similar careful analyses of FIV Gag antibody responses have not been
reported but may be useful for characterizing the value of these responses
as markers that aid in distinguishing protective from nonprotective vaccine-
induced immune responses.

Only antibodies that bind to surface domains of the envelope are
thought to exhibit virus neutralizing activity,449 and accordingly, identifica-
tion of envelope B-cell epitopes is critical to the characterization of poten-
tially protective host immune responses. Multiple reports have identified
the V3 region of SU, carboxy terminal of SU, and a highly conserved PID
located within the ectodomain of TM as major immunodominant domains
of FIV envelope (Figure 3).14,133,252,254,450–454 Four or more linear B-cell epi-
topes have been mapped within the V3 domain of SU,254,453 and other SU
epitopes are localized within V4 and V5 domains.452,455,456 B-cell epitopes
within extracellular TM include the PID previously discussed, a second
domain within the extracellular membrane-proximal domain of TM that is
downstream of the PID, and a third domain within the intracytoplasmic
region of TM.452,453 In contrast, the tryptophan-rich motif within the extra-
cellular domain of TM that functions in virus fusion and infectivity was not
found to be immunogenic.457

Although the V3 immunodominant domain is the only FIV Env deter-
minant consistently shown to induce antibodies capable of neutralizing
virus in vitro,252–254 determinants within domains V4 and V5, including
residues 481 and 551, were also shown to confer broad neutralization resis-
tance (BNR) in primary isolates passaged in vivo (Figure 3).455,458–462 The
remaining FIV envelope linear epitopes mapped by binding assays are most
likely inaccessible for neutralization due to the complex oligomeric struc-
ture and extensive glycosylation of native FIV SU, a property shared with
HIV-1 SU.449,454,463 Expression of both neutralizing epitopes and tropism
determinants by the FIV hypervariable V3 domain is an important function
also described for the V3 domain of HIV-1 surface glycoprotein.14,17,24,73 It
is also significant that FIV SU linear epitopes, capable of inducing neu-
tralizing antibodies, are located within hypervariable regions of envelope
that may change in response to selective pressures in vivo.141

Importantly, an epitope encoded within the FIV extracellular 
membrane-proximal domain of TM (designated as the TM3 epitope) is

FIV AS A MODEL FOR HIV 181



similarly positioned to that of a HIV-1 epitope (2F5), which is recognized
by an extremely potent broadly neutralizing HIV monoclonal antibody
(Figure 3).463,464 Although feline antisera raised against this FIV TM epitope
was not shown to exhibit virus neutralizing activity in vitro,454 a peptide
vaccine based on this epitope was shown to be capable of inducing partial
immunity to FIV challenge.465 These observations suggest that this extra-
cellular membrane-proximal TM3 domain may encode a neutralizing
epitope conserved across multiple lentiviruses and may support further
investigation of this TM determinant in FIV vaccine design.

Neutralizing antibodies emerge in the host as peak peripheral blood
virus loads decline during primary infection and are thought to contribute
to control of virus load and replication in lentivirus infections including
HIV-1, SIV, and FIV.466 Control of infection by neutralizing antibody is also
based on CD8 T-cell and B-cell depletion studies of rhesus macaques
infected with either SIV or chimeric SIV/HIV-1 (SHIV) isolates441,443,467 and
on reports describing successful passive immunization of either neonatal
kittens or neonatal macaques with hyperimmune serum.468,469 However,
despite apparent successes observed recently with therapeutic administra-
tion of exogenous highly potent neutralizing antibodies in nonhuman
primate animal models,470 antibodies induced in the host by virus infection
have been consistently ineffective in virus clearance, particularly within
lymphoid tissue reservoirs. Furthermore, FIV and HIV-1 assay systems using
established cell lines, rather than primary lymphocytes for virus infectivity
or highly passaged viruses compared to primary strains directly isolated
from infected cats, generate significantly different data regarding neutral-
ization activity for identical serum samples.454,471–473 Notably, previous
studies have shown that both HIV-1 and FIV primary isolates are resistant
to neutralization by autologous sera, especially when primary PBMC are
used to assay infectivity.471,474 However, more recent findings regarding 
HIV-1 neutralizing antibody biology466 and use of more sophisticated
approaches for analysis of antibody activity have triggered renewed inter-
est and support for investigation of humoral immune responses in virus
control during acute and chronic HIV-1 infection and for HIV-1 vaccine
design. Similar investigations seem warranted in the FIV animal model,
especially for examination of antibody kinetics and specificity associated
with mucosal versus parenteral routes of virus exposure475 and for investi-
gation of epitopes conserved across different virus clades as vaccine
immunogens.476,477

Strong supporting data exist for CD8 T-cell-mediated suppression of
virus load in both HIV-1-infected patients and SIV-infected rhesus
macaques.24,383,442,478,479 Investigation of FIV-specific cellular immune
responses has previously been restricted by a deficiency of key feline-
specific reagents, including antibodies specific for feline cell surface
markers and cytokines, as well as a lack of knowledge of FIV T-cell epitopes.
However, recent peptide mapping of FIV-specific T-cell epitopes480,481 and
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established assays for FIV-specific CD4, CD8, and cytotoxic T-cell (CTL)
activity have now permitted some characterization of cellular immune
responses induced by either virus infection or vaccination.308,481–491 Fur-
thermore, a report showing that adoptive transfer of blood cells isolated
from FIV-vaccinated cats induced resistance in MHC-matched recipient
cats to FIV challenge infection, provides some evidence of the importance
of virus-specific cellular responses in virus clearance.488

Longitudinal examinations of cats experimentally infected with FIV
reveal virus-specific CTL activity in PBMC within 2 to 7 weeks after infec-
tion, time points in primary infection that coincide with rising virus 
loads and are similar to those reported for CTL emergence in HIV-1 
infection.24,475,482,490,492 Virus-specific CTL activity has also been detected 
in lymphocytes isolated from lymphoid tissues including systemic and
peripheral lymph nodes and spleen during the primary phase of infec-
tion.475,482,492 Assay for CTL activity during chronic stages of infection at 
47 and 127 weeks after virus exposure demonstrated persistence of cellu-
lar responses, although detection of antiviral CTLs were more consistent
from lymphoid tissues compared to peripheral blood.482,492 Activity specific
to FIV Gag rather than Env was more consistently observed in FIV-infected
cats described in these reports. However, currently described protocols
testing for FIV-specific CTL by chromium release assay are restricted by 
use of only two immunogens provided by vaccinia recombinant viruses, 
one of which expresses a Gag protein derived from isolate FIV-GL14
(subtype A) and the other expressing an Env protein encoded by FIV-
Petaluma (also subtype A). Therefore, lower Env-specific CTL activity 
may be partially attributed to deficient assay detection due to variability
within recently mapped Env-encoded T-cell epitopes,481 since cats described
in these reports were experimentally infected with FIV isolates distinct 
from FIV-Petaluma. Measurement of CTL responses to variable proteins
such as Env will require virus-specific reagents for optimal assay sensitivity.
Characterization of FIV-specific CTL responses will also call for assay of
activity against other viral proteins including RT, Rev, and Orf-A. Although
limited mapping of Env T-cell epitopes was previously reported,493 a recent
report481 described peptide mapping of FIV T-cell epitopes across all 
FIV genes using a feline interferon gamma ELISpot assay.489 These newly
identified epitopes will facilitate use of peptides for other FIV CD8 assays
and further characterize FIV CD8 responses to different FIV isolates, as 
well as examine the occurrence of FIV CTL epitope escape variants, a 
well-described trend in SIV and HIV infection.494–496 Another unique test
for FIV-specific CTL activity involved assay of perforin expression488,497 and
may also be useful for future examination of FIV-specific CD8 immune
responses.

Interestingly, a CD8a+ blow T-cell subset associated with antiviral activ-
ity in FIV-infected cats has actually been more carefully examined than the
topic of virus-specific CTL activity. This cell population has also been
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described for HIV infection380,381 and was initially distinguished for its
expansion in peripheral blood during the primary phase of FIV infection
and for a capacity to suppress virus replication in cultured PBMC by release
of a soluble factor in vitro.308,334,377,378,486,498 Significantly, appearance of this
cell population correlated with reduction of peak PBMC-associated virus,
suggesting possible antiviral activity in vivo as well as in vitro.308 Other FIV
infection studies have confirmed an expansion of this CD8a+blow T-cell
subset212,374 and also reveal expression of lymphocyte activation and adhe-
sion markers by this subset.376,499 However, these studies also show conflict-
ing data on the issue of a restriction of antiviral activity to the CD8a+blow

subset with some data suggesting that both CD8a+blow and CD8a+b- subsets
are capable of noncytolytic antiviral activity.311,379,492,499–502 A lack of agree-
ment is also apparent among studies regarding correlations between CD8
T-cell noncytolytic antiviral activity and either CD4 T-cell counts, clinical
disease in vivo, distribution patterns of this cell subset in blood and lym-
phoid tissues, or persistent expansion of the CD8a+blow subset throughout
the course of virus infection.212,308,376,379,503 More recent reports indicate that
CD8 antiviral activity production could be enhanced or induced in vitro 
by exposure to either virus-infected cells or to cells expressing an irrel-
evant antigen, but is not induced by mitogen activation.334,502,504 These
conflicting reports indicate that additional studies using standardized
methodologies will be needed for a more precise definition of this CD8 
T-cell antiviral activity. However, data generated from almost all studies
reported so far suggest that this noncytolytic CD8 antiviral activity is remi-
niscent of a still undefined secreted CD8 antiviral factor (CAF) previously
described for HIV-1 infection.382,383 Noncytolytic CD8 antiviral factors asso-
ciated with both HIV-1 and FIV infections, although not clearly defined,
have been hypothesized to be associated with the innate immune system.
Multiple factors proposed in previous reports to represent human CAF
include human b-chemokines RANTES, MIP-1a, MIP-1b, MCP-1, SDF-1,
and alpha defensins.478 These proteins, however, do not meet the criteria
of CAF definition,478 either due to their biochemical nature or because they
are not exclusively expressed by CD8 T-cells. Observation of CD8 T-cell 
antiviral activity in both HIV-1 and FIV infection confirms the importance
of this host immune response to lentivirus infection and provides another
opportunity for use of the FIV animal model for assessment of HIV-1
immunopathogenesis.

6. FIV VACCINE DEVELOPMENT

A safe efficacious vaccine that prevents the spread of HIV will be essen-
tial to arresting the spread of the AIDS epidemic. Studies with nonhuman
primates and SIV and chimeric SHIV isolates have demonstrated that 
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live-attenuated viruses are highly effective;505–507 however, such vaccines
maintain a low level of pathogenicity.508–510 Other vaccine trials in the rhesus
macaque animal model have described noninfectious DNA vaccines that
control viremia and suppress clinical disease but do not induce sterilizing
immunity against SIV/SHIV infection.511–513 FIV vaccine research and 
development have been fairly well supported due to the value of this animal
model for HIV vaccine development and to the significance of FIV as a
natural pathogen in cats. A wide variety of vaccine approaches have been
examined, although efforts have concentrated on particular vaccine
methods including whole killed virus (WKV)-based vaccines, DNA vaccines,
and viral protein subunit vaccines.514 A commercial FIV vaccine (Fel-O-Vax
FIV, Fort Dodge Animal Health), containing whole killed viruses repre-
senting two distinct FIV subtypes, was approved by the USDA in 2002 
for use in the domestic pet cat population and is one of only two com-
mercial lentiviral vaccines currently in use, including a live attenuated EIAV
vaccine widely used in China.515,516 However, use of this FIV WKV vaccine
is still not widely accepted due to significant issues including interference
of vaccine-induced antiviral antibodies with commercial FIV diagnostic
assays517 and the potential of vaccine-induced enhancement of virus 
infection.485,518–520

FIV WKV and Fixed-Cell Vaccines

FIV immunization studies based on conventional WKV or fixed virus-
infected cell (FC) vaccines have produced a diverse array of experimental
findings. Vaccine efficacy for different and identical FIV WKV-based vac-
cines has varied greatly, most likely due to modifications of vaccine inacti-
vation procedure, producer cell types used, vaccination schedule, vaccine
adjuvants, vaccine doses, routes of challenge, and variability in virulence 
or subtypes of challenge FIV isolates.514 WKV-based vaccine studies have
reported both complete or partial protection against challenge with homol-
ogous and sometimes heterologous FIV isolates and have also described
vaccine-induced enhancement of FIV infection. Interestingly, enhance-
ment of challenge virus infection has been more frequently associated with
FC vaccines prepared with autologous feline lymphocytes.485,518,519 In con-
trast, FC and WKV vaccines based on virus-infected cell lines have proven
efficacious, although protection may be considerably reduced against chal-
lenge with either heterologous or more virulent FIV isolates.487,521–526 The
current commercial FIV WKV vaccine is composed of two isolates includ-
ing FIV-Petaluma subtype A and FIV-Shizuoka subtype D, specifically to
broaden virus-specific immune responses, and has demonstrated improved
protection against multiple subtypes when compared to single subtype
WKV vaccines.487,527 Use of a FIV WKV vaccine as a booster to a priming
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immunization with a recombinant canarypoxvirus (ALVAC)-based FIV
vaccine also improved protective responses against challenge with isolates
distinct from the vaccinating strains.528 Duration of WKV and FC vaccine-
induced protection has been another concern, with some vaccine studies
revealing a breakthrough in vaccine-induced protection a year after vacci-
nation despite boostering the primary immunization.529,530 Another
concern relates to differences in WKV or FC vaccine-induced protection
observed against similar challenge viruses but delivered by different routes
of exposure, including parenteral and mucosal delivery.526 Collectively
these findings suggest that WKV vaccines demonstrate significant potential
for development of lentivirus vaccines, but that multiple issues including
WKV vaccine-induced enhancement still require attention for achievement
of optimal protection.

Conclusions regarding neutralizing antibodies as immune correlates
of vaccine protection frequently varied in early reports describing WKV and
FC FIV vaccines.525,531–533 Nonetheless, other early studies, as well as more
recent reports, present findings that suggest a correlation between appear-
ance of virus neutralizing antibodies and WKV and FC vaccine-induced pro-
tection.487,522,523,526,534,535 WKV and FC vaccines have also induced potent
cellular immune responses that are thought to be important correlates of
protection.484,487,497,535–537 The current commercial FIV WKV vaccine con-
taining inactivated whole viruses of subtypes A and D, elicited strong 
cellular responses against both vaccine strain viruses and moderate 
neutralizing antibody activity, particularly when commercial Fort Dodge
vaccine adjuvant FD-1 was supplemented with human IL-12. In fact, the
commercial dual subtype FIV WKV vaccine administered with human IL-
12 provided broad protection against homologous and heterologous virus
challenges containing in vivo-derived FIV inoculum.487,497 However, the
actual contribution provided by cellular and humoral immune responses
to protection induced by this vaccine approach is still not clear and may
ultimately require immune cell depletion studies for determination.
Despite reports of FIV WKV and FC vaccine efficacy, acceptance of this
vaccine approach in the veterinary community is restricted by concern of
vaccine antibody interference with FIV antibody-based diagnostics.517 Fur-
thermore, exploration of WKV vaccines in the SIV and SHIV animal model
has been extremely limited and was discouraged by early studies showing
SIV WKV vaccine-induced protection resulted from immune responses to
cellular antigens in vaccine preparations, rather than to viral antigens.538,539

However, renewed enthusiasm for vaccines that induce strong neutralizing
antibody responses466 has lent increased support for multiple modality
vaccine approaches that include WKV as a component. Inclusion of a WKV
vaccine as a component is expected to enhance and broaden virus-specific
humoral immune responses induced by other vaccine components such as
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live viral vectors and DNA.540,541 The sizable body of data already generated
for FIV WKV and FC FIV lends strong support for use of the feline animal
model for further investigation of WKV and FC vaccine approaches for
HIV-1.

FIV Subunit and Peptide Vaccines

Various FIV subunit vaccine approaches have been tested including
SU (primarily V3 and C2 epitopes), TM and Gag peptides,465,480,483,493,524

recombinant SU proteins generated from bacterial expression plasmids
administered as single immunogens,542,543 or in combination with recom-
binant SU proteins expressed from vaccinia462,472 or baculovirus vector
systems,544,545 and immunoaffinity-purified SU from FIV-infected cell
lysates.531 Absence of protection against FIV challenge, observed with many
of these frequently highly immunogenic subunit approaches, recapitulates
findings reported for subunit vaccine approaches in the nonhuman
primate model.546 However, partial protection against challenge infection
was revealed in a few reports describing immunization with either
immunoaffinity-purified SU531 or SU proteins conjugated to autologous ery-
throcytes via biotin-avidin-biotin bridges,547 although immune correlates of
protection were not determined. As described in the section on immune
responses, a FIV peptide vaccine based on an extracellular TM3 epitope,
similarly positioned to that of the highly neutralizing HIV-1 2F5 epitope,
was also shown to be capable of inducing partial immunity to FIV chal-
lenge.465 Vaccine-induced enhancement of FIV challenge virus infection
has also been observed, with a subunit approach consisting of coimmu-
nization of a bacterially expressed full-length envelope protein with either
SU or SU-TM vaccinia recombinant proteins.462 However, coinoculation of
recombinant SU proteins, with a plasmid expression vector encoding the
FIV NC protein, abrogated vaccine-induced enhancement of challenge
infection that was observed for vaccination with recombinant SU alone543

and actually improved vaccine efficacy in another study.545 Loss of vaccine-
induced enhancement and increased vaccine efficacy associated with
coinoculation of NC expression plasmid with recombinant SU were
hypothesized to result from a plasmid DNA adjuvant effect based on altered
cytokine expression profiles and the absence of FIV NC-specific immune
responses associated with this approach. All together, these data do not
support use of vaccines consisting of single viral protein subunits. Instead,
these findings suggest that FIV may provide another vaccine model for
testing peptides encoding broadly reactive neutralizing epitopes as com-
ponents of a multiple modality vaccine that also includes immunogens for
induction of cellular responses, a balanced vaccine approach currently of
interest in HIV-1 vaccine design.466,548
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FIV DNA Vaccines

Assessment of other vaccine approaches, including DNA vaccines,
attenuated virus vaccines, and live attenuated viral or bacterial vectors for
expression of FIV antigens, is still somewhat limited at this time. FIV DNA
vaccine approaches, based on deletion mutants of FIV provirus plasmids,
have shown considerable efficacy when challenged with less virulent FIV
isolates.174,314,331,549 DNA vaccines, including either defective proviruses or
SU and TM expression cassettes along with feline cytokine expression
vectors, have shown particular promise in limited studies.314,549–551 Extremely
low or absent humoral immune responses observed with FIV DNA vaccines
may partially result from failure to incorporate codon optimization of viral
structural genes encoded by these vaccine plasmids, a process found criti-
cal for improved immunogenicity of HIV-1 DNA vaccines that do not coex-
press the viral Rev protein.552 DNA vaccine efficacy has been observed
despite low antibody responses and may be attributed in some measure to
strong virus-specific CTL responses,553 despite the lack of a clear correla-
tion between measured CTL activity and DNA vaccine-induced protec-
tion.314 Unfortunately, DNA vaccine-induced protection has proven to be
reduced or negligible against more pathogenic isolates.314,523 Moreover,
DNA vaccines encoding envelope genes used without cytokine adjuvants
have been associated with enhancement of challenge virus infection.554–556

FIV Vaccines Using Live Viral and Bacterial Vectors

Mixed results regarding efficacy have been reported for the few FIV
vaccines utilizing either live viral or bacterial vectors. Immunization of 
cats with a replication-defective adenovirus type 5 expressing FIV Env was
poorly immunogenic and failed to induce protection against FIV chal-
lenge.557 A vaccine composed of Venezuelan equine encephalitis (VEE)
virus replicon particles engineered to express the FIV matrix/capsid region
of Gag and full length Env also failed to induce protection against FIV 
challenge, although the vaccine elicited both humoral and cellular
responses.558 A combination vaccine using priming inoculations with a
feline herpes virus (FHV) vector expressing the FIV gag gene and a FHV
vector expressing FIV env and booster inoculations with a FIV FC vaccine
also failed to protect immunized cats from FIV challenge infection.521 In
contrast, partial protection against FIV challenge was observed for cats
immunized with live attenuated Salmonella typhimuriaum aroA strains
expressing FIV CA and truncated SU encoding hypervariable regions
V3–V5, although correlates of protection were not defined.559 Partial pro-
tection against challenge was also observed by vaccination of cats with a
recombinant canarypoxvirus (ALVAC)-based FIV vaccine used alone or in
combination with a FIV FC vaccine.528 Furthermore, a single oral immu-
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nization of cats with a live recombinant Listeria monocytogenes strain, which
both expresses FIV Gag and delivers an FIV truncated Env-expressing
plasmid, was found to confer protection by reduction of virus load and
virus-induced disease after FIV challenge.560 The limited number of FIV
vaccine studies utilizing live viral vectors is surprising, given the interest
and success of multiple modality vaccines consisting of live recombinant
viral vectors and DNA expression plasmids recently observed for the
SIV/SHIV animal models.513

FIV Attenuated Virus Vaccines

Attenuated live virus vaccines have been extensively examined in the
SIV/SHIV animal models due to consistent efficacy shown by these viruses
for inducing protection against challenge with highly pathogenic SIV and
SHIV isolates.505–507,561 A widely used vaccine based on an attenuated strain
of equine lentivirus EIAV has protected 75 million horses and donkeys over
the past 30 years in China.515,516 Studies describing efficacious molecularly
cloned attenuated EIAV and CAEV vaccine viruses have also been
reported.562,563 Examination of attenuated FIV vaccines has been limited
but shown that this approach is also effective for the feline AIDS animal
model. The FIV-Petaluma virus variant used in the commercial FIV WKV
vaccine was recently shown to establish a low-level infection of cats without
induction of apparent FIV-associated disease.316 Furthermore, infection
with the attenuated FIV-Petaluma variant protected against infection with
a different pathogenic FIV isolate (FIV GL8), although of the same subtype.
Complete protection was conferred by this attenuated FIV against FIV GL8
delivered by the intraperitoneal route and partial protection was demon-
strated against challenge by a mucosal route. Complete protection was also
imparted against wild-type FIV challenge by inoculation of cats with infec-
tious molecularly cloned FIV deletion mutants including a LTR mutant
encoding a deletion of the AP-1 site564 and a vif-deleted provirus (FIV-Dvif)
administered as a DNA vaccine.174,331 Lastly, superinfection of domestic cats
with either nonpathogenic lion or puma nondomestic feline lentiviruses
has been shown to confer resistance to infection with pathogenic domes-
tic FIV.565 Immune correlates were not apparent from any of these attenu-
ated FIV vaccine studies. In fact, the substantial genetic variation observed
between domestic and nondomestic feline lentiviruses argues against initial
control of challenge virus infection driven by epitope-specific immune
responses and instead suggests currently undetermined resistance factors
or mechanisms possibly associated the innate immune system. An impor-
tant limitation of attenuated lentiviral vaccines is the concern for long-
term safety as demonstrated by experiments performed by Ruprecht and
coworkers, which showed that a SIV nef deletion mutant may cause fatal
AIDS-like disease in newborn macaques and may become pathogenic after
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long-term infection of adult macaques.508–510 Regardless of whether attenu-
ated lentivirus vaccines will ever be safe enough for general use, examina-
tion of these viruses in animal model systems, including FIV, offers an
important opportunity to identify and fully characterize immune responses
and undefined host resistance factors that confer protection against path-
ogenic virus infection or disease.

Critical Issues for FIV Vaccine Development

FIV vaccine development faces critical issues that are very similar or
identical to those facing HIV-1 vaccines. Characterization of immune cor-
relates of protective immunity for any of the FIV vaccine approaches exam-
ined so far has been elusive, a situation that is common to all lentivirus
vaccines including those for SIV and SHIV, and must be addressed for suc-
cessful HIV-1 vaccine design in the future.566 Vaccine-induced enhance-
ment of pathogenic virus challenge has been consistently observed with FIV
and EIAV vaccine approaches,567 involving either WKV, FC, or protein sub-
units/peptides and for FIV, was thought to result from enhancing anti-
bodies that might be specific to epitopes within Env hypervariable regions
V3–V5 or to the PID epitope.462,568,569 However, vaccines using recombinant
Env proteins with regions V3–V5 deleted were shown to remain capable of
inducing enhancement of challenge infection.569 Occurrence of FIV DNA
vaccine-induced enhancement of challenge virus infection despite negligi-
ble antibody responses, also suggested mechanisms other than enhancing
antibodies, such as lymphoid activation.554,555 A very recent report described
enhancement of challenge virus infection after vaccination of rhesus
macaques with an attenuated recombinant varicella-zoster virus vaccine
expressing SIV Env.570 Vaccine-associated enhancement in this study cor-
related with appearance of robust anamnestic virus-specific CD4 proli-
ferative responses in the absence of strong CD8 responses and again
suggested that immune activation may play a role in vaccine-induced
enhancement along with cellular responses skewed against CD8 T-cells.
These findings suggest major concerns for clinical testing of HIV-1 vaccines
for which less than optimal CD8 responses are already predicted and vali-
date use of the FIV animal model for characterization of this potentially
devastating complication of HIV vaccine use. A third issue of importance
for both future and the current commercial FIV vaccine design as well as
future commercial HIV-1 vaccines, concerns interference of vaccine-
induced antibodies with FIV diagnostics. All lentivirus diagnostic assay
systems utilize seropositivity as a marker for virus infection. PBMC virus iso-
lation and plasma viral RNA detection systems using PCR, although spe-
cific, are not sufficiently sensitive to detect all virus infections or currently
feasible as routine diagnostic assays. Future HIV-1 vaccine design will even-
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tually need to address this issue for which the FIV animal model may prove
most useful.

7. FIV AND ANTIVIRAL THERAPIES

Relatively soon after the initial isolation and characterization of FIV,
considerable efforts were focused on characterizing this lentivirus as 
an animal model for antiviral therapies for HIV-1. These studies were
encouraged by similarities between FIV and HIV-1 RT in amino acid
sequence, structure and physical properties, catalytic activities, and suscep-
tibility to multiple nucleoside analogs, including AZT, 3TC, 9-(2-
phosphonomethoxyethyl)adenine (PMEA) and (R)-9-(2-phosphonyl-
methoxypropyl)-2,6-diaminopurine {(R)-PMPDAP)},571–575 as discussed
earlier in this chapter. Conversely, FIV has proven relatively resistant to
therapies including nonnucleoside RT inhibitors and protease inhibitors
used in highly active antiretroviral therapy (HAART) protocols for HIV-1-
infected patients.96,109,110,576 Nevertheless, ongoing studies are evaluating
protease inhibitors in vivo that show activity against proteases of multiple
lentiviruses in vitro, as well as drugs that target lentiviral TM fusion domains
conserved across different lentiviruses. Identification of such compounds
will be important for design of efficacious HAART protocols for FIV infec-
tion and continued development of FIV as a model for HIV-1 antiviral drug
therapy.

Examination of FIV susceptibility to AZT in vitro resulted in the first
description of emergence of an AZT-resistant lentivirus through virus
passage in cell culture104 and led to a rigorous examination of multiple
drug-resistant FIV RT mutants that arise in vitro.108,577–579 Although FIV resis-
tance to AZT did not map to homologous residues within AZT-resistant
HIV-1 RT mutants, both FIV and HIV-1 do share a similar determinant
(M184 in the YMDD active site of the RT palm subdomain) for suscepti-
bility to nucleoside analog 3TC.106,107 Accordingly, a Met-to-Thr mutation
in the YMDD motif of RT has been observed in 3TC-resistant mutants for
both FIV and HIV-1. Studies assessing drug-resistant FIV mutants in vivo
have been very few but have revealed attenuation of an AZT-resistant FIV
when inoculated into cats.111 These findings recommended the potential
use of this model for characterizing pathogenesis of other FIV variants resis-
tant to drugs, targeting domains conserved between lentiviral enzymatic
proteins.

Examination of FIV susceptibility to nucleoside analogs AZT, PMEA,
and (R)-PMPDAP in vitro has been complemented by a variety of in vivo
studies that illustrate the value of this animal model for HIV-1 antiviral drug
development and assessment of drug efficacy. Studies testing the merit of
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AZT as monotherapy for either reducing virus load, improving CD4:CD8
T-cell ratios, or clinical status in both experimental primary infection and
chronic natural infection with FIV have produced somewhat mixed results.
Altogether, however, investigations have revealed fairly limited efficacy for
AZT used as a single therapeutic regimen for FIV infection, as previously
found in HIV-1 infection, and frequently reported side effects such as
anemia that are also observed in human patients.580–587 Furthermore, a
single report examining combination therapy of AZT and 3TC for cats
either acutely or chronically infected with FIV described only slightly
improved efficacy compared to AZT treatment alone.588 In contrast, nucle-
oside analog PMEA and its derivative (R)-PMPDAP have proven very effi-
cacious as antiviral therapies for FIV infection both in vitro and in vivo by
significantly reducing virus load and improving CD4:CD8 T-cell
ratios.572,573,575,581,589,590 Combination therapy consisting of AZT, 3TC, and a
third nucleoside analog abacavir also blocked FIV replication in a syner-
gistic manner in vitro.591 These observations suggest that this drug combi-
nation or combinations including PMEA may warrant future assessment as
HAART protocols using the FIV animal model.

A shortage of HIV-1 protease inhibitors that effect FIV replication due
to differences in substrate specificity displayed by FIV PR and HIV-1 PR90–95

has hampered use of the FIV animal for analysis of combination drug pro-
tocols used in HAART protocols for HIV-1-infected patients. However,
attempts to identify a protease inhibitor universally active against multiple
lentivirus PRs revealed that a statine-based inhibitor LP-13096 and a C2-
symmetric competitive inhibitor identified as TL-393,592 were both capable
of inhibiting PR expressed by HIV-1, SIV, and FIV. Interestingly, compari-
son of crystal structures of FIV PR and HIV-1 PR in complex with TL-3
reveals differences in the position of the flaps in FIV PR and HIV-1 PR,
whereas complexes of FIV PR and HIV-1 PR with inhibitor LP-130 are
nearly identical in conformation.593 Recent reports have shown TL-3 to
inhibit FIV and HIV-1 replication and to be active against protease
inhibitor-resistant HIV-1 mutants in vitro.93,592 Furthermore, TL-3 treatment
of FIV-infected cats reduced virus load and disease, including clinical neu-
rologic dysfunction and severe acute phase immunodeficiency.343,594 These
findings support further testing of TL-3 in combination drug protocols for
FIV infection both in cell culture systems and in vivo. Assessment of com-
bination protocols with TL-3 may be particularly warranted for testing a
proposed hypothesis that therapy with compounds broadly reactive against
proteases of multiple lentiviruses will less likely be associated with emer-
gence of protease inhibitor-resistant virus mutants in vivo.

Recent preliminary studies have also described testing synthetic pep-
tides targeted to determinants within the FIV TM ectodomain, such as the
heptad repeat 2 (HR2) domain595 and the membrane-proximal tryptophan-
rich region138,416 (Figure 3) as antiviral therapeutics. Previous studies
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showed that HIV-1 peptides derived from the HR1 and HR2 regions are
potent inhibitors of HIV-1 infection and function by blocking virus-
mediated cell fusion.596 Similarly, the membrane-proximal tryptophan-rich
region immediately downstream of HR2 within the TM ectodomain has
also been shown to be important for virus-induced fusion and infectivity
for both HIV-1 and FIV.34,137,597 Testing of combination FIV therapies that
include nucleoside analogs, protease inhibitors such as TL3, and Env
peptide inhibitors now proven active against FIV has not yet been reported
but looks promising for further development of the FIV model for HAART
therapies for HIV-1.

Various other antiviral approaches have shown activity against FIV
replication either in vitro or in vivo but have been examined in a limited
fashion. Strategies previously shown to successfully target the FIV Rev 
regulatory system in vitro include a ribozyme directed to the FIV RRE
element598 and small molecule intervention using 1,8-diaminooctane that
blocks the formation of hypusine required by eIF-5A, a cellular factor
required for HIV-1 Rev function.166 Cytokines and cellular growth factors
including recombinant human interferon-alpha2, human interferon-
omega, human interferon-tau, recombinant human GM-CSF, IL-16, and
recombinant human insulin growth factor-1, demonstrated limited success
as treatment for FIV infection either in cell culture systems or in infected
cats.328,394,599–603 However, cytokines as adjunctive therapy to HAART therapy
are currently under evaluation in HIV-1-infected patients604 and may be
worthy of similar examination in the FIV model, where mechanisms 
may be experimentally characterized. Cytokines may be useful both as
immune reconstitution therapeutics and for activating expression of latent
reservoir viruses for subsequent elimination by antiviral drugs. In conclu-
sion, animal models such as FIV and SIV provide opportunities for exam-
ination of tissues and cell subset reservoirs for virus in hosts undergoing
HAART therapy as reported for HIV-1-infected patients232,605 and, more
importantly, characterization of viral mechanisms for persistence within
these reservoirs.

8. FIV AS A VIRAL VECTOR

Advances in characterization of FIV molecular virology have facilitated
development of FIV vectors as vehicles for gene transfer in both dividing
and nondividing cells.606,607 FIV vector development has equally contributed
significantly to the body of knowledge regarding viral determinants of FIV
gene expression, virus packaging, and integration. Lentiviruses provide
unique vector systems that allow reliable integration of foreign genes into
chromosomal DNA of nondividing cells. Although cumulative data gener-
ated for HIV-based vectors suggest that safe and effective primate lentivirus
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vectors will be possible, concern over the clinical use of gene vectors
derived from a pathogenic human retrovirus (HIV-1) may restrict the use
of such vectors. FIV has provided the first nonprimate lentivirus vector
system capable of gene transfer efficiency comparable to that observed with
HIV-based vectors.608 Development of lentivirus vectors based on FIV has
received continued support due to the apparent lack of FIV replication
competence in human cells, resulting from restriction of FIV LTR pro-
moter activity. Although cell culture-adapted variants of FIV are capable of
utilizing human chemokine receptor CXCR-4 for infection of human
cells,260 FIV LTR-directed gene expression and virus production are abro-
gated in human cells.415 Lack of cross-reactivity of FIV proteins with those
of HIV is another potential advantage for use of FIV-based vectors. As dis-
cussed above, FIV virion structure and genomic organization are typical of
other lentiviral genomes except for the absence of specific accessory and
regulatory genes such as vpr, vpu, nef, and tat and the presence of a pol-
encoded dUTPase. The less complicated FIV genome provides another
advantage for use of this vector system. FIV vectors systems infect human
primary cell types from a broad array of tissues, including brain, eye, airway,
hematopoietic system, liver, muscle, and pancreas.607 These and other
factors have promoted enthusiasm for FIV vector systems for gene therapy
in human disease.

The first FIV vector described was derived from FIV molecular clone
34TF1038 and documented that FIV-based vectors were capable of trans-
ducing nondividing human cells.260 Subsequent studies reported by other
research groups described biology and cell tropism for similar but modi-
fied FIV vector systems also based on FIV 34TF10.225,609,610 All FIV vector
systems described to date use three plasmids: a transfer vector for encod-
ing the gene of interest, a packaging vector for expression of structural and
enzymatic genes, and a plasmid for expression of the vesicular stomatitis
virus (VSV)-G envelope protein for pseudotyping of vector particles.606 A
chimeric FIV LTR, composed of a human cytomegalovirus (hCMV) imme-
diate early gene promoter replacing the FIV U3 element and fused to the
R/U5 LTR domains, is found in all FIV transfer vectors and is necessary
for FIV vector production from human cells. As stated earlier, studies
focused on optimization of FIV vectors system have mapped specific repli-
cation domains that include encapsidation determinants,44,45 a central poly-
purine tract, and a central termination sequence that generates a central
DNA flap in the preintegration complex.46 Data from these studies revealed
a divergence in sequence between the FIV cPTT and the FIV 3¢ PTT, and
also showed that the FIV cPTT and 3¢ PTT are not entirely purine. 
These findings uncovered differences between FIV and HIV-1 reverse trans-
cription and have been incorporated into FIV vector design. Vector 
optimization studies have also characterized class I FIV integrase mutants
that prevent the integrase reaction but do not perturb other Gag/Pol 
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functions.125,607,611 These integrase mutants may be incorporated into 
preclinical gene therapy studies in animals for providing control vectors
that identify tissues with a requirement for vector integration for gene
expression. Finally, FIV vectors have been further modified by deleting
noncoding and nonstructural FIV sequences as well as specific gag
sequences for construction of minimal vectors with reduced cytotoxicity,
yet efficient gene transfer.609,612 Continued FIV vector design studies will
contribute to further understanding of the FIV life cycle and FIV molecu-
lar virology, as well as facilitate development of optimal lentiviral vector
systems. Additional studies will also be required to fully characterize and
compare relative efficiencies, as well as biosafety of FIV with primate
lentivirus vectors.

9. FELINE LENTIVIRUSES OF NONDOMESTIC CATS

Incidence

The initial observation of infection of nondomestic cats with a feline
lentivirus613 was subsequently confirmed by multiple reports revealing
either virologic or serologic evidence of infection in both captive and free-
ranging populations of several nondomestic feline species.269,275–282 Species-
specific feline lentivirus isolates have since been characterized for lions
(FIV-Ple), leopards (FIV-Ppa), pumas/courgars (FIV-Pco), and pallas cats
(FIV-Oma).277,614–617 Nondomestic feline lentivirus infection of free-ranging
nondomestic felids is worldwide and includes lion and leopard populations
within Africa; cougar populations in southern and western United States,
Canada, and South America; cheetahs in Africa; and Pallas cats in central
Asia.269,275,278,281,282,613 Interestingly, the prevalence of feline lentivirus infec-
tion in specific nondomestic cat populations, including lions in the
Serengeti National Park and Ngorongoro Crater of east Africa and Kruger
National Park of South Africa and cougars within the Snowy Mountain
Rage in Wyoming, is quite high ranging from 58% (cougars) to 90%
(lions).277,281,282,618 Despite evidence of endemic infection of free-ranging
lion and cougar populations, overt disease has not been associated with
lentivirus infection in these populations.619,620 This apparent lack of viru-
lence, along with the significant genetic diversity observed among feline
lentiviruses, suggests that FIV-Pco and FIV-Ple are ancient viruses that have
adapted to their hosts282,615,618 and may be comparable to African SIV iso-
lates that are similarly nonpathogenic for their natural hosts.621,622

Genomic Diversity

Characterization of a molecularly cloned FIV-Oma proviral genome
revealed genomic organization similar to that of domestic cat FIV iso-
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lates.614 However, current knowledge of genomic diversity of nondomestic
FIV isolates is based primarily on phylogenetic analyses focused on viral
sequences generated from endemic FIV-Ple- and FIV-Pco-infected cat pop-
ulations. Although lentiviruses infecting nondomestic cats are clearly
related to domestic cat FIV, comparison of amino acid and nucleotide
sequences derived from the highly conserved pol gene of nondomestic
(lion, cougar, and pallas cat) and domestic feline FIV isolates reveals con-
siderable variation, ranging from 21 to 30% differences in nucleotides and
19 to 45% in amino acids.269,277,614,615,618 These data indicate that divergence
between domestic and nondomestic cat lentiviral genomes is similar to that
observed between HIV-1 and HIV-2. Furthermore, significant genomic
diversity reported for cougar FIV-Pco isolates gathered from North and
South America defined two principal clades and 15 divergent subclades 
for this nondomestic FIV.282,615 Genetic divergence measured for the two
FIV-Pco clades was similar to the diversity that distinguishes domestic cat
FIV from FIV-Ple isolates. Similarly, analyses of FIV-Ple isolates from lion
populations within the Serengeti Reserve and Ngorongoro Crater in south-
eastern Africa identified three phylogenetic clades exhibiting genetic diver-
sity also similar to that which separates domestic cat FIV from FIV-Pco.277,618

Sequence diversity within the conserved pol genes derived from both FIV-
Pco and FIV-Ple isolates is greater than that reported for the few pol
sequences available for domestic cat FIV. In fact, this pol gene variation is
similar to diversity measured for the more variable env genes used to define
unique domestic cat FIV clades. These findings provide additional support
to the theory that nondomestic feline lentiviruses are ancient viruses that
have existed within cougar and lion species much longer than FIV in
domestic cats.

Additional findings from phylogenetic analyses of endemic FIV-Pco-
and FIV-Ple-infected cat populations include evidence of vertical transmis-
sion (Pco)282,615 and possible coinfection of different subtypes within a
single host (Pco and Ple).615,618 A recent report examining a large free-
ranging lion population that included 13 prides within the Serengeti
National Park revealed the presence of all three FIV-Ple subtypes widely 
dispersed within the population. Infection with the three FIV-Ple sub-
types within the same pride and possibly within the same host was also
observed.618 Furthermore, a high incidence (43%) of coinfection with two
to three FIV-Ple subtypes within individual animals was reported, although
the alternative possibility of infection with subtype-recombinant viruses was
not ruled out. Significant genomic divergence between different FIV-Ple
subtypes, most notable between subtype C and the two other subtypes (A
and B), was also observed for this population of lions. Monophyletic clus-
tering of FIV-Ple sequences was observed for only one of the prides under
study.
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Findings described above for lion populations within Serengeti
National Park contrasted with those generated from a study of a smaller
population of wild cougars located in a mountain range in southeast
Wyoming.282 These animals supported an overall FIV-Pco prevalence rate
of 58% and a remarkable 100% rate of infection for all adult animals.
Although analysis of both pol and env sequences confirmed the presence
of two distinct FIV-Pco lineages within this infected cougar population,
sequence diversity between the lineages was low and evidence of coinfec-
tion of a single host with viruses of distinct lineages was not found. Impor-
tantly, investigation of the evolution of both FIV-Pco pol and env sequences
within this cougar population over time revealed mean rates of 1 to 3% per
10 years, a rate considerably less than rates of 0.3 to 1% per year reported
for HIV.623–626 Collective observations generated so far from phylogenetic
analyses of nondomestic FIV isolates suggest that these lentivirus infections
provide unique opportunities to evaluate virus dynamics and viral sequence
evolution in a natural host for a nonpathogenic lentivirus.

Infection and Replication of Nondomestic Feline Lentiviruses

The extent of genetic divergence described so far between domestic
and nondomestic feline FIV isolates would suggest that infection and repli-
cation of nondomestic isolates may not be possible in domestic cats or in
primary lymphocytes isolated from domestic cats. Reports of in vitro repli-
cation properties of nondomestic feline lentiviruses are scarce and have
been restricted by the inability of some nondomestic FIV isolates such as
cougar FIV-Pco, to replicate in domestic cat primary lymphocytes.269,617

However, some nondomestic FIV isolates including FIV-Ple and FIV-Oma
have been shown to replicate in domestic cat lymphocytes and some feline
cell lines including CrFK cells (FIV-Oma) and a feline lymphoid cell line
(3201 cells) (FIV-Ple).275,617 FIV-Pco was also shown to replicate in 3201
cells.617 Although characterization of receptor usage for nondomestic feline
lentiviruses has not yet been reported, these current findings for in vitro
growth properties suggest that nondomestic FIV isolates may also be
capable of infecting and replicating in vivo in domestic cats. Rare, isolated
cases of naturally occurring cross-species transmission of domestic cat FIV
to nondomestic cats have been reported, which involved a cougar and a
wild-caught Tsushima cat belonging to a subspecies of leopard cats located
in Japan.279,615 Experimental transmission studies have also confirmed the
infectivity of both FIV-Pco and FIV-Ple in domestic cats627,628 and revealed
that establishment of persistent FIV-Ple viral infection is possible in the
absence of FIV-associated disease. Moreover, prior infection of domestic
cats with either FIV-Pco or FIV-Ple appears to impart some resistance to
challenge with pathogenic domestic cat FIV based on lower challenge virus
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loads and higher CD4 counts measured for FIV-Pco- and FIV-Ple-infected
domestic cats compared to naive cats after exposure to domestic cat FIV.565

Additional studies with rigorous measurement of virus load and careful
examination of viral immunopathogenesis over extended time periods will
be needed to characterize nondomestic feline lentivirus infection of the
domestic cat as a model for HIV infection.

10. OUTLOOK FOR THE FIV ANIMAL MODEL

Significant progress has been made in the development of antiviral
drug regimens for HIV-1, although complete elimination of the virus from
the host and full restoration of immunocompetency are still not possible.
However, a commercial safe and efficacious vaccine for HIV-1 is still not
available and is unlikely in the near future, despite exhaustive efforts in
HIV-1 vaccine development that began 20 years ago immediately after the
initial characterization of HIV-1.566 Several serious issues that must be
resolved for future vaccine success include identification of immune cor-
relates of protection against either lentivirus infection or virus-associated
disease. The apparent difficulty of addressing this question was predictable
since virus elimination has not been observed during natural infection with
immunodeficiency-inducing lentiviruses, even when strong virus-specific
cellular and humoral immune responses have been detected in the
infected host. Vaccine-induced protection against pathogenic challenge
has been difficult to achieve in both the SIV and FIV animal models, and
when observed, has been inconsistent. An additional complication is pre-
sented by the specter of vaccine-induced immune responses that prove
detrimental rather than protective as reported for FIV and more recently
in the SIV animal model. The complication of virus strain diversity has
barely been addressed by vaccine design in animal models and surely poses
a major complication for HIV-1 vaccine success in the future. Successful
resolution of these obstacles in vaccine development, and most particularly
the lack of understanding of why some vaccines such as attenuated viruses
are sometimes protective, absolutely requires continued examination of
viral pathogenesis and host immune responses in animal models including
both nonhuman primate and nonprimate lentivirus animal models. Eluci-
dation of pathogenic mechanisms used by these immunodeficiency-
inducing lentiviruses during the earliest stages of virus exposure and 
virus-host interactions will be critical for design of vaccines that will have
any potential for sterilizing immunity, if such a goal is possible. Similarly,
a far more precise understanding of viral mechanisms for immunodefi-
ciency will also be necessary for design of therapies of immune reconsti-
tution in both acutely and chronically HIV-1-infected hosts, which can only
be gained through experimental animal model studies.
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Significant progress in characterization of FIV infection has been
accomplished in the past 10 years, especially regarding molecular charac-
terization of viral proteins, FIV receptor usage, and virus tropism and local-
ization in vivo. Progress in development of FIV vectors for gene therapy
has also been accomplished and has contributed considerably to the mole-
cular characterization of FIV. Continued efforts in FIV vaccine and broad-
based antiviral therapeutic development has demonstrated the strong
potential of the FIV model for investigation of novel vaccine approaches
and antiviral drugs. Lastly, similarities observed for host cell targets for virus
infection and immunodeficiencies associated with FIV and HIV infection
in vivo offer strong support for use of this animal model for crucial studies
focused on mechanisms of immunopathogenesis of lentivirus-induced
acquired immunodeficiency.
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