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Background: Long non-coding RNAs (lncRNAs) are essential regulators for various human cancers. 
However, these lncRNAs need to be further classified for cancer. In the present study, we identified novel 
competing endogenous RNA (ceRNA) network for bladder cancer (BC) and explored the gene functions of 
the ceRNA regulatory network.
Methods: Differential gene expression analysis were performed on The Cancer Genome Atlas Urothelial 
Bladder Carcinoma (TCGA-BLCA) datasets to identify differentially expressed messenger RNAs (mRNAs), 
lncRNAs, and microRNAs (miRNAs). Based on the competing endogenous RNA (ceRNA) hypothesis, 
a lncRNA-miRNA-mRNA network was constructed using the StarBase database and visualization by 
Cytoscape software. Functional enrichment analyses of Gene Ontology and the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway were performed via R package ClusterProfiler. The protein-protein 
interaction network was constructed by STRING database and visualization by Cytoscape. Finally, we used 
CIBERSORT and the TIMER database to analyze the immune infiltrations for BC.
Results: The regulatory network was constructed via TCGA BLCA cohort. The differential expressions 
of lncRNA, miRNA, and mRNA were 186, 200, and 2,661, respectively. There were 106 lncRNA, 
miRNA, and mRNA included in the ceRNA network. In this network, Calcium Voltage-gated Channel 
Auxiliary Subunit Alpha2delta1 (CACNA2D1, P<0.001), domain containing engulfment adaptor1 
(GULP1, P=0.001), latent transforming growth factor beta binding protein 1 (LTBP1, P=0.006), myosin 
light chain kinase (MYLK, P=0.001), serpin family E member 2 (SERPINE2, P=0.002), spectrin beta 
non-erythrocytic 2 (SPTBN2, P=0.047), and hsa-miR-590-3p (P<0.001) significantly affected the 
prognosis of BC patients. Functional enrichment analyses showed that the biological functions included 
negative regulation of protein phosphorylation, cell morphogenesis, and sensory organ morphogenesis. 
Important cancer pathways of KEGG included parathyroid hormone synthesis secretion action, the notch 
signaling pathway, MAPK signaling pathway, the Rap1 signaling pathway, signaling pathways regulating 
the pluripotency of stem cells, and the transforming growth factor-β signaling pathway. Our findings 
demonstrated that the ceRNA network has important biological functions and a significant influence on 
the prognosis of BC.
Conclusions: The lncRNA-miRNA-mRNA network constructed in the present study could provide 
useful insight into the underlying tumorigenesis of BC, and can determine new molecular biomarkers for the 
diagnosis and therapeutical treatment of BC.
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Introduction

Each year, there are 74,000 newly diagnosed bladder cancer 
(BC) patients in the USA and 430,000 worldwide, making it 
the fourth and 11th most common cancer among males and 
females, respectively (1,2). BC is divided into non-muscle-
invasive BC (NMIBC) and muscle-invasive BC (MIBC). 
However, despite BC being the leading cancer type among 
all human cancers, most of BC patients are not well 
managed. According to an analysis of 2012 Surveillance, 
Epidemiology, and End Results Program data, 4,790 BC 
patients with high-grade NMIBC were diagnosed from 
1992 to 2002, but only 1 patient received the recommended 
treatment (3). Despite advances in BC therapeutic regimens 
(e.g., chemotherapy, surgical, and radiotherapy), only 
about 60% of MIBC patients have a 5-year survival. The 
underlying pathogenesis of BC may be responsible for this; 
however, it is not well understood (4).

Tumorigenesis is a complex process significantly related 
to various genetic mutations, epigenetic alterations and 
chromosomal translocations (5). Non-coding RNAs 
(ncRNAs) are coded by the genome, but most of ncRNAs 
cannot be translated to proteins (6). Despite not being 
translated into proteins, ncRNAs have an essential role 
in multiple biological processes (BPs) (7). Long ncRNAs 
(lncRNAs; >200 nt) may be the most critical regulator 
of gene expression, cell growth, cell differentiation, cell 
development, and chromatin dynamics (8). However, the 
biological functions of lncRNAs still be needed to be further 
classified (9). Thousands of lncRNAs have been found to 
have aberrant expression or mutations in multiple cancer 
types (10). Prensner et al. revealed that prostate cancer 
antigen 3, prostate cancer gene expression marker 1, and 
prostate cancer-associated ncRNA transcript 1 (PCAT-1)  
have been observed in prostate cancer (11). PCAT-1  
promotes prostate cancer cell proliferation via the 
upregulation of c-Myc in the post-transcriptional phase (12). 
The aberrant expression of lncRNAs have also been observed 
in breast cancer, lung cancer, colorectal cancer, and BC  
(13-16). The role of lncRNAs may differ in various cancers; 
even the same lncRNAs could have different biological 
functions in different cancers. The overexpression of MEG3 
could accelerate apoptosis and inhibit the proliferation of BC 

and lung cancer cells (17). However, the overexpression of 
linc-RoR has been found to promote epithelial-mesenchymal 
transition (EMT), drug resistance, and invasiveness of breast, 
pancreatic, and hepatocellular cancer cells (18). One of the 
significant molecular mechanisms of lncRNAs is competing 
endogenous RNAs (ceRNAs), which act as sponges of 
microRNA (miRNA). The aberrant expression of miRNAs 
has also found in many cancer types (19,20). Furthermore, 
they are significant regulators of tumorigenesis, progression, 
tumor suppressor, and drug resistance for various cancer types 
(21-23). Therefore, lncRNAs and miRNAs play an essential 
role in tumorigenesis, progression, and resistance. However, 
interactions between lncRNAs, miRNAs, and messenger 
RNAs (mRNA) still be needed to further investigated in BC.

In the present study, we investigated the potential 
biological  functions and underlying pathological 
mechanisms of distinct lncRNAs, miRNAs, and mRNAs 
for BC using computational biology, further constructing 
a network to explore their relationship. The findings 
provide significant insight into the molecular mechanisms. 
Compared to Lyu et al. (24) and Wang et al. (25) studys, 
we not only investigated the Immune infiltration status 
between bladder cancer and normal tissue, we also explored 
the correlation expressed between the mRNA in BC ceRNA 
network and immune cells. Furthermore, we explored 
the immune cell types that significantly influence bladder 
cancer prognosis.

We present the following article in accordance with 
the MDAR reporting checklist (available at http://dx.doi.
org/10.21037/tau-21-81).

Methods 

Data preparation and differentially expressed gene analysis

Raw data of BC were collected from The Cancer Genome 
Atlas (TCGA) including transcriptome profiling and clinical 
data. Limma package (version 3.44.0) in R software (https://
www.r-project.org/) was used to analyze and identify 
differentially expressed RNAs (including DEmRNAs and 
DElncRNAs) and DEmiRNAs with thresholds of |logFC| 
>1.0 and false discovery rate (FDR<0.05). The package 
ggplot2 was used to construct the heatmap and volcano plot.
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Construction of the ceRNA network

We constructed a ceRNA network base on the ceRNA 
hypothesis. Relevant miRNA target genes were obtained 
from StarBase, and only the targets which supported by 
experiments, including luciferase reporter assay, Western blot, 
Northern blot, or quantitative reverse transcription polymerase 
chain reaction, those we defined as the target genes.  Only the 
DEmiRNAs were using to predict the target gene.

Biomarker screening and validation

The survival data of BC patients were extracted from 
TCGA. Subsequently, the RNAs identified in ceRNA 
network were selected for screening biomarkers. We used 
univariate Cox regression to screen prognostic RNAs 
(P<0.05), and prognostic RNAs with expression levels 
significantly relevant to patients’ overall survival (P<0.05) 
were selected as primitive biomarkers.

Cox risk regression establishment and validation

The raw data of lncRNAs, mRNAs, and miRNAs were 
transformed and normalized in a log2(cpm[x]+1) manner. 
Base on univariate Cox regression prognostic biomarkers, 
we performed multivariate Cox regression analysis 
combined with stepwise regression to establish a Cox 
risk model. We randomly selected half of the BC (n=404) 
samples to establish the risk model, another half of samples 
set and the total samples set were applied to validate the 
accuracy of the model. Finally, we identified the risk score 
as an independent prognostic factor from the clinical traits.

Protein-protein interaction analysis

DEmRNAs in the ceRNA network were used in the 
protein-protein interaction (PPI) network through the 
STRING (version 11.0) database (https://string-db.org/), 
with a confidence score >0.4.

Functional enrichment analysis

ClusterProfiler package in R was used for the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
and Gene Ontology enrichment analyses, including BP, 
cellular component (CC), and molecular function (MF). 
The ggplot2 and nrichplot packages were used to visualize 
the enrichment results.

Immune infiltration analysis

To explore the infiltration of immune cells into the tumor 
microenvironment, we used CIBERSORT to estimate the 
abundance profile of immune cells in 414 tumor samples, 
we only selected the P value of CIBERSORT algorithm 
less than 0.05 for the infiltration analysis, which followed by 
only 175 tumor samples. Furthermore, we used the TIMER 
database to explore the relationship between the significant 
influence on prognosis in DEmRNAs and immune cell 
infiltration in BC, and investigated the prognosis of immune 
cells in BC.

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Statistical analysis

The differential genes were identified via limma package in 
R software (https://www.r-project.org/). The threshold for 
screening significantly expressed genes was set as log fold 
change |logFC| >1 and false discovery rate FDR <0.05; 
The StarBase database was used to predict the miRNA 
target genes (http://starbase.sysu.edu.cn/), and the ceRNA 
network were visualization by Cytoscape software (vision 
3.8.1). The Kaplan-Meier method was used to perform the 
survival curves. Enrichment analysis (GO and KEGG) were 
used the cluterProfiler and enrichplot package; The PPI 
network was constructed via the STRING website with a 
confidence score >0.4; The CIBERSORT package in R and 
TIMER database (https://cistrome.shinyapps.io/timer/) 
were used to estimate the tumor infiltrating immune cells. P 
value <0.05 was seem as the significant difference.

Results

Differential expression of lncRNAs, miRNAs, and mRNAs

The differential expression analysis results showed 
that there were 59 downregulated and 129 upregulated 
lncRNAs, 121 upregulated and 79 downregulated 
miRNAs, and 1,726 downregulated and 935 upregulated 
mRNAs significantly expressed in the TGCA BC cohort, 
respectively (P<0.05) (Figure 1).

Construction of the ceRNA network

We further used the StarBase dataset to investigate the 
interaction of DElncRNAs, DEmiRNAs, and DEmRNAs. 
The results showed that 6 DEmiRNAs (has-mir-18a-

https://string-db.org/
https://www.r-project.org/
http://starbase.sysu.edu.cn/
https://cistrome.shinyapps.io/timer/
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Figure 1 Analysis of differential expression of long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and messenger RNAs (mRNAs) 
for The Cancer Genome Atlas bladder cancer cohort. (A,B) Heatmap and volcano plot of lncRNAs. (C,D) Heatmap and volcano plot of 
miRNAs (E,F). Heatmap and volcano plot of mRNAs. (G) Summary of all differential expression genes.
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5p, has-mir-347b-5p, has-mir-376c-3p, has-mir-590-
3p, has-mir-214-3p, and has-let-7c-5p), 5 DElncRNAs 
(AC093010.3, MAGI2-AS3, HCG11, LINC00958, and 
ACO74117), and 97 DEmRNA were included in the 
ceRNA network (Figure 2A). One subnetwork showed that 
the potential interaction between lncRNA and miRNA and 
mRNA, such as lncRNA HCG11 (HLA complex group 11)  
may act as a sponge for has-miR-376c-3p to regulated 
mRNA Calcium Voltage-gated Channel Auxiliary Subunit 
Alpha2delta1 (CACNA2D1) (Figure 2B). The findings 
indicated that DElncRNAs regulated mRNA expression via 
interaction with miRNAs.

Cox model analysis

To explore the association DElncRNAs, DEmiRNAs, and 
DEmRNAs with the prognosis of BC, we used lncRNAs, 
miRNAs, and mRNAs in the ceRNA network to perform a 
Cox regression analysis combined with stepwise regression 
to establish a Cox risk model. There were 404 patients with 
complete clinical information be enrolled in the prognosis 
analyzed. 

Training cohort showed that the high-risk patients had 
a shorter overall survival, the test cohort and all samples 
cohort also revealed that high-risk patients had a worse 
prognosis. (Figure 3A,B,C). These models predicted the 

correct rates of 1-year overall survival [area under the curve 
(AUC) for all samples cohort: 0.688, training cohort AUC: 
0.719, test cohort AUC: 0.659], 3-year overall survival (AUC 
for all samples cohort: 0.697, training cohort AUC: 0.75, 
test cohort AUC: 0.655), and 5-year overall survival (AUC 
for all samples cohort: 0.714, training cohort AUC: 0.788, 
test cohort AUC: 0.639), respectively (Figure 3D,E,F). 
The results of survival status of 3 cohorts showed in Figure 
3G,H,I. These results showed that our model can be a good 
predictor for BC prognosis. There were six DEmRNAs 
[CACNA2D1: P<0.001, domain containing engulfment 
adaptor1 (GULP1): P=0.001, latent transforming growth 
factor beta binding protein 1 (LTBP1): P=0.006, myosin 
light chain kinase (MYLK): P=0.001, serpin family E 
member 2 (SERPINE2): P=0.002, spectrin beta non-
erythrocytic 2 (SPTBN2): P=0.047] and 1 DEmiRNA (hsa-
miR-590-3p: P<0.001) with the significant influence on 
BC patients’ prognosis in our risk model (Figure 4). The 
overexpression of CACNA2D1, GULP1, LTBP1, MYLK, 
SERPINE2, and SPTBN2 led to poor BC prognosis, but 
the overexpression of hsa-miR-590-3p appeared to be a 
favorable biomarker. We used univariate and multivariate 
analyses to determine the association between risk scores 
and clinical features. The findings indicated that this 
risk model was an independent predictive factor for BC 
prognosis (Figure 5).

BA

Figure 2 Competing endogenous RNA network constructed based on the significant differential expression of long non-coding RNAs, 
microRNAs, and messenger RNAs (StarBase).(A). The subnetwork at left bottom of ceRNA network (B).
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Expression levels of individual genes of risk model between 
tumor and normal tissue

Compared to normal samples, hsa-miR-590-3p and SPTBN2 
(P<0.001) were significantly upregulated in tumor samples 
(Figure 6A,B). The findings indicated that SERPINE2 
(P<0.001), CACNA2D1 (P<0.001), GULP1 (P<0.001), 
LTBP1 (P<0.001), and MYLK (P<0.001) were significantly 
overexpressed in normal samples than BC samples (Figure 
6C,D,E,F,G). These results indicated that these genes may 
also be a diagnostics biomarker for BC patients.

Functional enrichment analysis

We explored the potential biological functions of ceRNA. 

The findings indicated that the top 5 BPs of DElncRNAs, 
DEmiRNAs, and DEmRNAs were the negative regulation 
of protein phosphorylation, positive regulation of cell 
projection organization, regulation of cell morphogenesis, 
ameboidal-type cell migration, and negative regulation 
of phosphorylation. The top 5 CCs were voltage-gated 
calcium channel complex, I band, Z disc, cell-substrate 
junction, and collagen-containing extracellular matrix. The 
top 5 MFs were cytokine binding, actin binding, DNA-
binding transcription repressor activity, RNA polymerase 
II-specific DNA-binding transcription repressor activity, 
and protein self-association (Figure 7A,B,C). The results 
of the KEGG pathway analysis indicated that the top 
10 pathways of DEmRNAs were parathyroid hormone 
synthesis, secretion and action, the notch signaling pathway, 

Train Test All

1.00

0.75

0.50

0.25

0.00

10

8

6

4

2

0

14
10
8
6
4
2
0

14
10
8
6
4
2
0

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0 1 2 3 4 5 6 7 8 9 10

0 50 100 150 200 0 50 100 150 200 0 100 200 300 400

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S
ur

vi
va

l p
ro

ba
bi

lit
y

S
ur

vi
va

l t
im

e 
(y

ea
rs

)

S
ur

vi
va

l t
im

e 
(y

ea
rs

)

S
ur

vi
va

l t
im

e 
(y

ea
rs

)

S
ur

vi
va

l p
ro

ba
bi

lit
y

S
ur

vi
va

l p
ro

ba
bi

lit
y

S
en

si
tiv

ity

S
en

si
tiv

ity

S
en

si
tiv

ity

1-Specificity 1-Specificity 1-Specificity

AUC at 1 years: 0.719 
AUC at 3 years: 0.75 
AUC at 5 years: 0.788

Dead 
Alive

Dead 
Alive

Dead 
Alive

AUC at 1 years: 0.659 
AUC at 3 years: 0.655 
AUC at 5 years: 0.639

AUC at 1 years: 0.688 
AUC at 3 years: 0.697 
AUC at 5 years: 0.714

Time (years)

Patients (increasing risk socre) Patients (increasing risk socre) Patients (increasing risk socre)

P<0.001 P<0.001 P<0.001

risk Train

ris
k 

Tr
ai

n

ris
k 

Te
st

ris
k 

A
ll

risk Test risk AllHigh risk

High risk
Low risk

High risk
Low risk

High risk
Low risk

102
102

98
102

200
204

61
75

67
84

128
159

27
35

31
45

58
80

21
29

35
51

14
22

18
20

29
38

14
15

21
26

11
18

11
7

16
11

7
11

8
7

12
9

5
4

5
4

8
5

3
4

5
4

4
2

3
2

4
2

3
1

2
1

2
1

2
0

2
1

2
1

2
1

2
1

1
0

0
0

0
0

0
0

0
0

High risk High riskLow risk Low risk Low risk

Time (years) Time (years)

Time (years) Time (years) Time (years)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

A B C

D E F

G H I

Figure 3 Constructions of a risk model base on the genes of competing endogenous RNA network. Kaplan-Meier curves of the risk model 
in train cohorts (A), test cohorts (B), all samples cohorts (C); the ROC curves of 1-, 3- and 5-year in Train cohorts (D), test cohorts (E), all 
samples cohorts (F); the distribution of survival status in train cohorts (G), test cohorts (H), All samples cohorts (I), red and green represents 
of dead and alive, respectively, and the dotted lines indicate the median risk scores between low-risk and high-risk groups.



1292 Huang et al. ceRNA regulatory network of bladder cancer

  Transl Androl Urol 2021;10(3):1286-1301 | http://dx.doi.org/10.21037/tau-21-81© Translational Andrology and Urology. All rights reserved.

the mitogen-activated protein kinase signaling pathway 
(MAPK), the Rap1 signaling pathway, focal adhesion, axon 
guidance, signaling pathways regulating the pluripotency 
of stem cells, the transforming growth factor-β (TGF-β) 
signaling pathway, the phospholipase D signaling pathway, 
and the tumor necrosis factor (TNF) signaling pathway 
(Figure 7C,D). The PPI network of the ceRNA network’s 

messenger RNA is shown in Figure 8. 

Immune infiltration analysis

The results of the immune cell abundance profile of 
individual BC samples are shown in Figure 9A. The 
relationship between various immune cells and other immune 

P<0.001 P=0.001

P=0.001P=0.006

P=0.047

P=0.002

P<0.001

Time (years) Time (years) Time (years)

Time (years)Time (years)Time (years)

Time (years)

Time (years) Time (years) Time (years)

Time (years)Time (years)Time (years)

Time (years)

A B C

D E F

G
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the overall survival of MYLK; (F)The overall survival of SERPINE2; (G) the overall survival of SPTBN2. CACNA2D1, Calcium Voltage-
gated Channel Auxiliary Subunit Alpha2delta1; GULP1, domain containing engulfment adaptor1; LTBP1, latent transforming growth 
factor beta binding protein 1; MYLK, myosin light chain kinase; SERPINE2, serpin family E member 2; SPTBN2, spectrin beta non-
erythrocytic 2.
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cells showed that macrophages (M0), neutrophils, and resting 
mast cells had a negative relationship with naïve B cells and 
T-cell CD4 memory activation (Figure 9B). Compared to 
tumor samples, normal samples had significantly higher naïve 
B cells, B cell memory, and monocyte cell infiltration, but 
significantly lower macrophage (M0) infiltration (Figure 9C).  
The prognostic role of immune cells for BC showed that 
higher naïve B cells and T-cell CD4 memory activation 
had a better prognosis for BC, but higher infiltration of 
macrophages (M0), resting mast cells, and neutrophils 
led to poor BC prognosis (Figure 10). The results showed 
that immune cells may have a significant influence on BC 

prognosis via the regulation of other immune cell infiltration. 
Further, we explored the immune infiltration of our risk 
model’s messenger RNA (mRNA), and the results showed 
that all mRNA were positive correlation with Macrophages, 
while MYLK, SERPINE2, and SPTBN2 had a negative 
correlation with B cell infiltration (Figure 11).

Discussion

With the exception of protein-coding gene mutations and 
aberrant expression, the mutations and dysregulation of 
ncRNAs, in particular lncRNA, appear to have an essential 
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role in cancer’s progress and prognosis. Many genome-
wide associated studies of tumor samples have found that 
lncRNAs are significantly related to multiple cancer types. 
The aberrant expression and mutations of lncRNA can 
enhance tumorigenesis and metastasis, but several lncRNAs 
can act as tumor suppressors. Combined with miRNAs 
and target genes, lncRNA-miRNA-mRNA can serve as a 

comprehensive network that regulates gene expression. It 
can also act as diagnostic and prognostic biomarkers, and 
even as therapeutic targets for various cancer types.

To date, several lncRNAs, such as Urothelial Cancer 
Associated 1 (UCA1), HOX Transcript antisense RNA 
(HOTAIR), and Imprinted Maternally Expressed Transcript 
(H19), have been observed in BC (26). The overexpression 
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of UCA1 can promote chemoresistance via regulation of 
the Wnt signaling pathway, and it may act as a potential 
urine diagnostics biomarker for BC (26). Shang et al. found 
that HOTAIR was overexpressed in BC samples compared 
with normal samples, and the overexpression of HOTAIR 
enhances tumor cell proliferation and induces resistance to 
doxorubicin, and appears to be an adverse biomarker for 
BC (27). In their research, Ariel et al. found that H19 was 
overexpressed in BC patients, resulting in a greater risk of 
BC recurrence (28). The potential functions of lncRNAs in 
BC requires further investigation.

In the present study, we comprehensive analyzed the 

regulatory network comprising lncRNAs, miRNAs, and 
mRNAs in a TCGA BC cohort. In total, 188 DElncRNAs, 
200 DEmiRNA, and 2,661 DEmRNA were selected to 
construct the ceRNA network. Finally, 6 DEmiRNAs (has-
mir-18a-5p, has-mir-347b-5p, has-mir-376c-3p, has-mir-
590-3p, has-mir-214-3p, and has-let-7c-5p), 5 DElncRNAs 
(AC093010.3, MAGI2-AS3, HCG11, LINC00958, and 
ACO74117), and 97 DEmRNA were used for further 
analysis.

 Potential mechanism of lncRNAs in regulating tumor’s 
progress are under research; many lncRNAs regulate gene 
expression by acting as miRNA sponges (29). We used the 
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StarBase database to explore the ceRNA regulatory network 
of BC, and the results showed that AC093010.3, MAGI2-
AS3, LINC00958, HCG11, and ACO74117 interacted with 
has-mir-18a-5p, has-mir-347b-5p, has-mir-214-3p, has-mir-
376c-3p, has-mir-590-3p, and has-let-7c-5p, respectively. 

We further used the ceRNA network to construct a 
model for predicting the prognosis of BC patients. The 
model (total, test, training) indicated that a high risk 
of BC led to poor outcomes for BC patients. Further 
analysis of the risk factors and other clinical features of BC 
prognosis showed that risk scores were an independent 
factor for predicting BC prognosis. The overexpression of 
CACNA2D1, GULP1, LTBP1, MYLK, SERPINE2, and 
SPTBN2 led to poor BC prognosis, but the overexpression 
of hsa-miR-590-3p appeared to be a favorable biomarker. 
Interestingly, Hayashi et al. showed that the downregulation 
of GULP1 could lead to cisplatin resistance (30). This 
indicates that the overexpression of CULP1 may act as 
a protector for BC. The overexpression of CACNA2D1 

led to radioresistance non-small cell lung cancer stem-like 
cells (31). Cai et al. found that LTBP1 was overexpressed 
in esophageal squamous cell carcinoma (ESCC), and that 
the overexpression of LTBP1 was a promotor for ESCC 
progression via EMT and cancer-associated fibroblast 
transformation (32). Zhong et al. revealed that circular 
RNA MYLK acts as a ceRNA to accelerate the process of 
BC via regulating the Vascular Endothelial Growth Factor 
AVEGFA/Vascular Endothelial Growth Factor receptor 
2 signaling pathway (33). Several studies have indicated 
SERPINE2 as a promotor for cancer progression (34,35). 
Du et al. showed that the overexpression of has-mir-590-3p 
could enhance chemoradiotherapy sensitivity for colorectal 
cancer (36). Based on these studies, we can conclude that 
DElncRNAs, DEmiRNAs, and DEmRNAs play a key 
role in tumorigenesis, tumor progression, and therapeutic 
response.

We not  on ly  exp lored  the  prognos t i c  ro le  o f 
DElncRNAs, DEmiRNAs, and DEmRNA but also 

Figure 8 Protein-protein interaction network of competing endogenous RNA messenger RNA.
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investigated their underlying potential BP in BC. The 
results of the functional enrichment analysis demonstrated 
that DElncRNAs, DEmiRNAs, and DEmRNAs had several 
biological functions and were involved in several significant 
pathways, such as the negative regulation of protein 
phosphorylation, the notch signaling pathway, the MAPK 
signaling pathway, the Rap1 signaling pathway, the TGF-β 
signaling pathway, and the TNF signaling pathway. Some of 
these functions or signaling pathways have been approved 

that played the critical role in several cancer types (37-41).
In addition to the dysregulation of lncRNAs, miRNAs, 

and mRNAs, tumorigenesis, tumor progression, and 
therapeutic response are also significantly influenced by the 
tumor microenvironment. We explored the relationship 
between DEmRNA, which significantly affects BC 
prognosis, and immune cell infiltration. The results showed 
that naïve B cells and T-cell CD4 memory activation were 
tumor suppressors, but macrophages (M0), resting mast 
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Figure 9 Analysis of immune infiltration for BC. (A) Results of immune cell abundance profile of individual BC samples. (B) Relationship 
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cells, and neutrophils as tumor promotors for BC. There 
are significant differences in immune cell infiltrates between 
normal and tumor samples. Of these, DEmRNAs influenced 
BC prognosis via the regulation immune cell infiltration in 
BC. At steady state, the immune system can recognize and 
kill specific molecules expressed on tumor cells membranes, 
these up-expressed or down-expressed heterogeneous 
molecules can activate and increase the immune cells 
infiltration in the tumor microenvironment (42). In our 
study, up-regulation of SPTBN2 in bladder cancer can 
increased the abundance of macrophages cells and lead 
to poor prognosis of BC patients. A down-regulation of 
SERPINE2, CACNA2D1, GULP1, LTBP1, and MYLK in 
bladder cancer can reduced the abundance of macrophages 
cells and lead to poor prognosis of BC patients, and reduced 
the abundance of T-cell CD4 memory activation while lead 
to better prognosis. Expression of mRNAs in bladder cancer 
was altered via the ceRNA mechanism, and then influenced 

the immune cells infiltration in tumor microenvironment. 
The combined effect of these regulatory mechanisms leads 
to the dynamic development of bladder cancer tumors.

The limitation of our study is that absence of validation 
by experiments. 

Conclusions

We constructed a lncRNA-miRNA-mRNA regulatory 
network by selecting DElncRNAs, DEmiRNAs, and mRNAs 
via comprehensive bioinformatics analysis. We found that 
CACNA2D1, GULP1, LTBP1, MYLK, SERPINE2, 
SPTBN2, and has-miR-590-3p could act as prognostic 
and diagnostic biomarkers for BC. LncRNA-HCG11 may 
influence BC via interacting with has-miR-590-3p and has-
mir-376c-3p. Further studies are needed to determine the 
role of regulatory modules in the tumorigenesis, tumor 
progression, and therapeutic response of BC.

Figure 10 Immune cell types that significantly and marginally influence bladder cancer prognosis. (A) B cells naïve; (B) macrophages M0; (C) 
mast cells resting; (D) neutrophils; (E) T cells memory activated.
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Figure 11 Relationship between messenger RNAs that significantly affect bladder cancer patients’ prognosis and immune cell infiltration. (A) 
CACNA2D1; (B) GULP1; (C) LTBP1; (D) MYLK; (E) SERPINE2; (F) SPTBN2. CACNA2D1, Calcium Voltage-gated Channel Auxiliary 
Subunit Alpha2delta1; GULP1, domain containing engulfment adaptor1; LTBP1, latent transforming growth factor beta binding protein 1; 
MYLK, myosin light chain kinase; SERPINE2, serpin family E member 2; SPTBN2, spectrin beta non-erythrocytic 2.
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