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We report a first-principles study on ethyl acetate neutral hydrolysis in which we focus on the activation energy 
variation resulting from the conformational effect in the transition state. We use the conformers of ethyl formate, 
ethyl acetate, ethyl fluoroacetate, and ethyl chloroacetate as the ester models and one water molecule with a 
one-step reaction mechanism. We also consider the long-range interaction and the surrounding water in the form 
of PCM. Our results show that the various conformers yield a significant range of activation energy. Moreover, 
the gauche conformer has lower activation energy than the trans conformer. The activation energy in its own 
right is lowered by the halogen atoms. Finally, we remark that the long-range correction and PCM stabilize the 
transition state geometry but raise the activation energy.
1. Introduction

It is commonly known that neutral hydrolysis of an ester is generally 
slow. For instance, the rate constants (in 1/s) of methyl acetate and 
ethyl acetate are an order of 10−9 [1] and 10−10 [2] respectively. An 
ester (R CO2 R′) with a long chain also has low rate constant such 
as achetylcholine [R=CH3, R′=C2H4N+(CH3)3] with a rate constant of 
an order of 10−9 [3]. The rate constant is higher when halogenated 
substitution is introduced to the ester. For instance, the alkyl- and aryl-
substituted trifluoroacetates (with R′=CnH2n+1, 𝑛 = 3, 4, and 5) has an 
order of 10−6 [4], chloromethyl chloroacetate has an order of 10−5 [5], 
while ethyl trifluorothiolacetate (CF3COSC2H5) has a rate constant with 
an order of 10−3 [6].

Even though it is slow, the neutral hydrolysis is part of the measured 
rate constant. The measured rate constant, 𝑘m, is
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𝑘m = 𝑘0 + 𝑘a + 𝑘b

where the first term is the rate constant of neutral hydrolysis and the 
last two terms are the rate constant of the acid- and base-induced hy-
drolysis, respectively. Since 𝑘0 is experimentally difficult to obtain, it is 
common to apply some extrapolation technique [7]. Following an ar-
gument presented by Wolfenden and Yuan [3], neutral hydrolysis of 
an ester might emerge as the predominant factor at an elevated tem-
perature. If it is the case, neutral hydrolysis cannot be ignored and 
becomes important, especially when one is interested to study biochem-
istry based on the achetylcholine hydrolysis.

However, the mechanism of neutral hydrolysis of an ester is not fully 
understood [8] and its theoretical study is very limited [9]. One way to 
respond to this challenge is by using a computational approach where 
a reaction is modeled and studied under first-principles calculations. 
A common modeling approach is to involve water molecules that act as 
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(i) Isolated reactant is state 1a; Transition State (TS) is state 1b; isolated product is state 1c.
(ii) Abbreviation Et, W, and Ca are used as molecule names throughout the manuscript.

Scheme 1. The one-step reaction model in this study.
Table 1

Selected ester models based on Scheme 1. The R′-group is always C2H5.

R Ester (Label) Reaction product

H Ethyl formate (Et1) Ca1 + Ethanol
CH3 Ethyl acetate (Et2) Ca2 + Ethanol
CH2F Ethyl fluoroacetate (Et3) Ca3 + Ethanol
CH2Cl Ethyl chloroacetate (Et4) Ca4 + Ethanol

a bifunctional acid-base catalyst [10, 11, 12, 13], to model the aqueous 
as a reaction field [14, 15], or to combine both methods [8, 16].

The study of neutral hydrolysis of an ester becomes interesting. It 
can be a model for acomputational study of the cholinergic hypothesis. 
The hypothesis involves the depletion of acetylcholine molecules that 
may lead to Alzheimer’s disease [17, 18]. Acetylcholine belongs to the 
ester family and has conformers [19, 20, 21, 22, 23]. The conformation 
affects its stability and activity [24, 25, 26, 27].

In this article, we report our finding on the conformational effect 
of the ester neutral hydrolysis. All aforementioned theoretical studies 
showed the importance of a transition state, but none has explored the 
different arrangement of atoms in the transition states. It is because 
most theoretical studies so far concern on the methyl acetate family 
as the ester models, hence no conformer in the transition state. A con-
former is likely to exist in an ester with an R or R′ group that has two 
or more C atoms, such as ethyl acetate. There are two previous works 
on ethyl acetate (the trans conformer) neutral hydrolysis, which are 
reported by Schmeer and Sturm [12] and Yamabe et al. [14]. The for-
mer used two H2O molecules, one of which served as the nucleophilic 
reagent and the other as the acid-base catalyst, and was calculated with 
Hatree-Fock method. The later used one H2O molecule and considered 
Onsager’s model as the water surrounding and was calculated with den-
sity functional theory method. However, no conformational effect has 
been reported. To see the variation of conformational effect, we study 
conformers of four molecule from the ethyl acetate family: ethyl for-
mate, ethyl acetate, ethyl fluoroacetate, and ethyl chloroacetate as the 
ester models. We also consider the long-range interaction and surround-
ing water as solvent effect.

2. Methods

Reaction model. We carry out the one-step mechanism to model the neu-
tral hydrolysis as shown in Scheme 1. We use four ester models as listed 
in Table 1 and notations in Table 2.

The one-step mechanism is argued by Shi et al. [9] as favored if 
tetrahedal intermediates have a short lifetime and do not interconvert 
prior to breakdown. The one-step mechanism ensures one saddle point 
between an initial state (1a) and a final state (1c) since our concern is 
on the conformational effect at the saddle point (transition state, 1b). 
As da Silva et al. [8] reported, the usual method for searching state 1b

may not work for this kind of study; therefore, we take a great care in 
ensuring that the saddle point is computationally correct.

DFT calculations. We perform the ground state calculation routines 
on the basis of density functional theory (DFT) [28, 29] and 6-
311++G(d,p) basis set that are integrated into the Gaussian 09 software 
2

Table 2

List of notations used throughout the manuscript.

Notation Meaning

XC1g B3LYP (gas phase)
XC2g CAM-B3LYP (gas phase)
XC1s B3LYP coupled with PCM (solvent)
XC2s CAM-B3LYP coupled with PCM (solvent)
R(X,Y) Bond length between X and Y atom (in Å)
A(X, Y, Z) ∠𝑋𝑌𝑍 (in degree)
Expr. Experimental value in gas phase
err.𝑛0 (XC𝑛g − Expr.)/Expr. (in %)
err.𝑛sg (XC𝑛s − XC𝑛g)/XC𝑛g (in %), 𝑛 = 1,2
err.21 (XC2g − XC1g)/XC1g (in %)
Δ21 XC2g − XC1g
Δsg XC𝑛s − XC𝑛g, 𝑛 = 1,2
range maximum − minimum value
rat.21 XC2g/XC1g
rat.𝑛sg XC𝑛s/XC𝑛g, 𝑛 = 1,2
rat.𝑘 ratio of maximum and minimum 𝑘(𝑇 )

[30]. For the exchange-correlation functional, we employ B3LYP [31]
and CAM-B3LYP [32] which have been integrated into the software as 
well. The former has provided good prediction in our previous studies 
on molecular orbital interaction problems [33, 34, 35, 36], excitation 
in solvent problems [37, 38], and reaction path coordinate to calculate 
the tunneling probability [39, 40, 41]. Meanwhile, the latter is needed 
to consider the correction of the long-range interaction in states 1a, 1b, 
and 1c. We consider the surrounding water as a perturbation to the sys-
tems of interest such that we can couple the DFT calculation with the 
polarized continuum model (PCM) calculation [42], which is also inte-
grated into the software. We use notations in Table 2 to simplify the 
writing of the exchange-correlation functionals and PCM coupling cal-
culations.

The Transition State Searching. We set up four steps, with the first three 
aiming to determine the correct geometry of [Et–W] complex in the 
transition state (state 1b in Scheme 1). Step one is to determine the 
electrophilic site where the water molecule may attack. We analyze the 
charge population by using NBO program [43] which is integrated into 
the Gaussian 09 software. Step two is to calculate the potential energy 
surface (PES) in the plane where the electrophilic site lies (see Fig. 1a). 
This is done by using partial optimization calculations where the dis-
tance of oxygen atom of water and the electrophilic site is fixed. The 
PES result provides a guide to construct the geometry of TS which be-
comes the input for step three: to perform TS optimization to predict 
the geometry of 1b, which is then followed by the intrinsic reaction 
coordinate (IRC) calculations. The correct TS geometries require one 
imaginary frequency to indicate that they are in the saddle point. Step 
four is to optimize the geometries at two minima predicted by IRC cal-
culations to confirm the molecular geometry in state 1a and 1c.

We perform the first three steps with XC1g. Once the geometry of 
transition state is determined (see Fig. 1b), we repeat step 3 and 4 with 
XC2g, XC1s, and XC2s.

Possible Transition State Conformers. Fig. 1–3 show the nomenclature we 
use throughout the manuscript. There are two configurations to form 
a conformer. First is the R′ part of the ester: C3 position with respect 
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Fig. 1. Molecular model of [Et – W] complex: (a) Initial position of H2O for the potential energy surface calculation to form the complex , C1–O3 distance is 3.00 Å. 
(b) The typical optimized geometry of the complex in the transition state. Atom C3 may be positioned at (1) trans or (2) gauche.

Fig. 2. Illustration of (a) ester, (b) carboxylic acid, and (c) alcohol for nomenclature used throughout the manuscript. Label (1) is for trans and (2) is for gauche 
conformation with respect to the position of C3. One H atom bound to C2 and three H atoms bound to C4 are shown to give the illustration the correct perspective.
Fig. 3. (a) Newman projection along C1–C4 bond. The “X” is the position of H 
atom in Et2 and of halogen atom in Et3 and Et4. (b) The eclipse conformation 
is defined when “X” is at “a”, “b”, or “c”; while in staggered ones are at “d”, 
“e”, or “f”.

to C2–O1–C1 plane, which are (1) trans and (2) gauche (Fig. 1 and 2). 
Second is the R part of the ester: Orientation of “X” with respect to O 
(Fig. 3) which gives eclipsed (“a”, “b”, or “c”) and staggered (“d”, “e”, 
or “f”). Based on these two configurations, we construct conformers of 
[Et–W] complex at state 1b, along with their corresponding molecules 
at state 1a and 1c.

For simplicity, we use the following notation “molecule label(R′ – 
R configuration)”. For examples: Et2(1-a) is ethyl acetate with a trans 
R′ and a staggered R conformation; Ct2(2) is acetic acid with a gauche 
conformation , Et3(2-d) is ethyl fluoroacetate with a gauche R′ and an 
eclipsed R conformation where F atom is at “d”.

Chemical Kinetic Calculations. Our interest quantity is the activation en-
ergy. The activation energy is expressed in term of the standard Gibbs 
activation energy, Δ‡𝐺◦ that is the total energy difference between state
1b and 1a. The total energy of a state is the total electronic energy with 
a correction from Gibbs free energy. The former is the results of DFT 
calculations while the latter is the results of force constant calculations 
which is integrated into the software. We extend the usefulness of Δ‡𝐺◦

to calculate the rate constant 𝑘(𝑇 ) based on the transition-state theory 
[44],

𝑘(𝑇 ) =
𝑘𝐵 𝑇

ℎ𝑐◦
exp

[
Δ‡𝐺◦

𝑅𝑇

]
(1)

with 𝑘𝐵, ℎ, 𝑅 are the constant of Boltzmann, Planck, and molar gas, 𝑐◦ is 
the molecule’s concentration from the reactant to the transition state 
(which we assume to be 1), and 𝑇 is the temperature (which we assume 
to be the room temperature, 298.15 K).
3

3. Results and discussion

3.1. On the ground state structures

The effect of long-range correction. We use Et2(1-a), W, Ca2(1), and 
ethanol to investigate the effect of the long-range correction on their 
ground state structures. The reason is that these molecules are experi-
mentally well studied.

Table 3 resumes geometrical parameters from the experiment and 
our DFT calculations (gas phase). The important value here is the per-
centage error with respect to the experimental value (err.). The error in 
general is about less than 1% which corresponds to an order of 10−3 Å 
or 0.1◦. This implies both exchange-correlation functionals are excellent 
to study the ground state structures of the molecules of interest.

Table 4 lists the charge population at some selected atoms. The num-
ber of charges does not change significantly after the long-range correc-
tion is applied to the calculation. Since the charge population is directly 
related to the electronic structures of the molecule, the long-range cor-
rection does not significantly change the geometrical and electronic 
structures of the molecule of interest. Therefore, we can conclude that 
the electrophilic site clearly is at C1 for all exchange correlation func-
tional cases. A water molecule, which has a nucleophilic site at its O3 
atom, favorably attacks C1 atom. This makes the starting point of the 
hydrolysis mechanism shares similarity with that of base-induced es-
ter hydrolysis (Fig. 1a). This analysis becomes our bases on selecting 
the PES calculation, which we carry in 𝑦𝑧-plane where O1, C1, and O3 
atoms lie. Fig. 4 shows the PES calculations where the expected en-
trance of water molecule is at (𝑧, 𝑦) = (1.0, 0.0) and it has the highest 
barrier.

We also present the charge population at C1 and C4 for all esters in 
Table 5. These two atoms are close to halogen atom in Et3 and Et4. The 
long-range correction does not change significantly for the charge pop-
ulation at C4, but it does at C1 in Et3 molecules. The Δ21(C1) average 
is 0.033 e hence it makes the trend linear: the heavier halogen atom at 
C4, the more negative the C1 and the more positive the C4. This trend 
is understandable by considering that (1) the electronegativity of F and 
Cl (Et3 and Et4, respectively) is higher than C (Et2) and (2) the valence 
electrons of F is 2p while those of Cl is 3p.

The significant difference between XC1g and XC2g is the calculated 
total electronic energy (𝐸). Fig. 5 shows the energy level diagram of 
four molecules in Table 3. The diagrams clearly show that the long-
range correction consistently increases 𝐸. Except water (Fig. 5b), 𝐸
increases more than 2 eV; it is almost 4 eV in the case of Et2 (Fig. 5a). 
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Table 3

Selected geometrical parameters of ethyl acetate, water, acetic acid, and ethanol in the ground state.

Parameter Expr. DFT DFT + PCM

XC1g err.10 XC2g err.20 XC1s err.sg XC2s err.sg

(a) Ethyl acetate, Et2(1-a) (Expr. from [46])
R(C1,C4) 1.508 1.508 0.0 1.501 −0.5 1.505 −0.2 1.498 −0.2
R(C1,O1) 1.203 1.207 0.3 1.203 0.0 1.214 0.6 1.210 0.6
R(C1,O2) 1.345 1.351 0.5 1.343 0.2 1.343 −0.6 1.335 −0.6
R(C2,C3) 1.515 1.515 0.0 1.509 0.4 1.514 −0.1 1.508 −0.1
R(O2,C2) 1.448 1.450 0.1 1.440 −0.6 1.456 0.4 1.445 0.4
A(O1,C1,C4) 125.4 125.5 0.1 125.5 0.1 125.3 −0.2 125.3 −0.2
A(C4,C1,O2) 110.8 111.0 0.2 111.3 0.4 111.5 0.4 111.7 0.4
A(C3,C2,O2) 123.8 123.4 −0.3 123.2 −0.5 123.3 −0.1 123.0 −0.1
A(O2,C2,C3) 108.2 107.6 −0.5 107.6 −0.6 107.6 0.0 107.6 0.0
A(C1,O2,C2) 117.3 116.6 −0.6 116.5 −0.7 117.4 0.7 117.3 0.7

(b) Water (Expr. from [45])
R(O3,H) 0.958 0.962 0.5 0.960 0.3 0.964 0.2 0.962 0.2
A(H1,O3,H2) 104.5 105.0 0.5 105.5 0.9 104.5 −0.5 104.9 −0.6

(c) Acetic acid, Ca2(1) (Expr. from [45])
R(C1,C4) 1.520 1.504 −1.1 1.498 −1.5 1.501 −0.2 1.495 −0.2
R(C1,O3) 1.214 1.205 −0.7 1.200 −1.1 1.212 0.5 1.207 0.6
R(C1,O1) 1.364 1.359 −0.4 1.350 −1.0 1.351 −0.6 1.343 −0.5
R(C4,H) 1.100 1.088 −1.1 1.087 −1.2 1.087 0.0 1.086 0.0
A(C4,C1,O3) 126.6 126.2 −0.3 126.2 −0.4 125.9 −0.2 125.9 −0.2
A(C4,C1,O1) 110.6 111.5 0.8 111.7 1.0 111.9 0.4 112.1 0.4

(d) Ethanol (Expr. from [45])
R(C2,C3) 1.512 1.517 0.3 1.511 −0.1 1.517 0.0 1.511 0.0
R(C3,H) 1.090 1.093 0.2 1.091 0.1 1.093 0.0 1.092 0.1
R(C2,H) 1.100 1.099 −0.1 1.097 −0.3 1.097 −0.2 1.095 −0.2
R(C2,O2) 1.431 1.431 0.0 1.422 −0.6 1.438 0.5 1.430 0.5
R(O2,H1) 0.971 0.962 −1.0 0.960 −1.2 0.963 0.2 0.962 0.2
A(C2,C3,H) 110.0 110.5 0.5 110.4 0.4 110.8 0.3 110.7 0.3
A(C3,C2,H) 111.0 110.1 −0.8 110.2 −0.8 110.4 0.2 110.4 0.2
A(C3,C2,O2) 107.8 108.0 0.2 107.9 0.1 108.4 −0.4 108.3 0.4

Table 4

The charge population (in unit e) at selected atoms in ground state from NBO calculations.

Atom DFT DFT + PCM

XC1g XC2g Δ21 XC1s Δsg XC2b Δsg

(a) Ethyl acetate, Et2(1-abc)
O1 −0.600 −0.609 −0.009 −0.650 −0.050 −0.659 −0.009
O2 −0.575 −0.580 −0.005 −0.571 0.004 −0.576 −0.005
C1 0.809 0.822 0.013 0.826 0.017 0.840 0.014
C2 −0.034 −0.039 −0.005 −0.034 0.000 −0.039 −0.005
C3 −0.590 −0.598 −0.008 −0.593 −0.003 −0.602 −0.009
C4 −0.668 −0.677 −0.009 −0.672 −0.004 −0.682 −0.010

(b) Water
H1 0.457 0.460 0.003 0.477 0.020 0.480 0.020
O3 −0.913 −0.920 −0.007 −0.953 −0.040 −0.960 −0.040

(c) Acetic acid, Ca2(1)
O1 −0.696 −0.703 −0.007 −0.697 −0.001 −0.704 −0.001
O3 −0.595 −0.604 −0.009 −0.643 −0.048 −0.652 −0.048
C1 0.799 0.811 0.012 0.817 0.018 0.830 0.019
C4 −0.679 −0.688 −0.009 −0.682 −0.003 −0.693 −0.005

(d) Ethanol
H1 0.455 0.459 0.004 0.473 0.018 0.477 0.018
O2 −0.743 −0.748 −0.005 −0.776 −0.033 −0.781 −0.033
C2 −0.023 −0.027 −0.004 −0.024 −0.001 −0.029 −0.002
C3 −0.592 −0.600 −0.008 −0.596 −0.004 −0.605 −0.005
While our results show the dominance of the long-range interaction 
in the individual molecule, the increasing 𝐸 compensates each other, 
hence the net energy of the product and the reactant (reaction energy) is 
relatively constant. The reaction energy is +0.08 eV and +0.10 eV from 
XC1g and XC2g calculations, respectively. The long-range correction 
insignificantly raises the value by 0.02 eV.

The effect of surrounding water. We also provide the results of DFT cou-
pled with PCM in Table 3 (geometry), Table 4 (charge population), and 
Fig. 5 (level energy diagram). The geometry does not change (most val-
4

ues of err. are less than 0.5%) with respect to the calculation in the 
gas phase. The number of charge changes at some atoms by an order 
of 10−2 e and this is significantly changes the frontier molecular orbital 
wave functions as we have encountered in our previous studies [37, 
38]. The perturbation from surrounding waters stabilizes the individ-
ual molecule in such a way that the net energy does not change. The 
reaction energy is 0.10 eV and 0.12 eV with XC1s and XC2s, respec-
tively. The long-range correction improves the value by 0.02 eV, which 
is exactly the same value in the gas phase case.
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Table 5

Charge population from NBO calculation at C1 and C4 of the conformers in the ground state.

Conformer C1 C4

XC1g XC2g Δ21 XC1g XC2g Δ21

Et1(1) 0.664 0.673 0.009 0.116 0.120 0.004
Et1(2) 0.661 0.670 0.009 0.117 0.122 0.005

Et2(1-a) 0.809 0.822 0.013 −0.668 −0.677 −0.009
Et2(2-a) 0.808 0.821 0.013 −0.668 −0.677 −0.009

Et3(1-a) 0.769 0.805 0.036 −0.447 −0.458 −0.011
Et3(1-b) 0.770 0.801 0.031 −0.421 −0.436 −0.015
Et3(1-c) 0.770 0.801 0.031 −0.421 −0.436 −0.015
Et3(2-a) 0.768 0.804 0.036 −0.447 −0.459 −0.012
Et3(2-b) 0.769 0.801 0.032 −0.422 −0.437 −0.015
Et3(2-c) 0.769 0.800 0.031 −0.421 −0.435 −0.014

Et4(1-a) 0.792 0.781 −0.011 0.006 0.002 −0.004
Et4(1-b) 0.786 0.783 −0.003 0.006 0.002 −0.004
Et4(1-c) 0.786 0.783 −0.003 0.006 0.002 −0.004
Et4(2-a) 0.791 0.781 −0.010 0.006 0.001 −0.005
Et4(2-b) 0.786 0.782 −0.004 0.006 0.002 −0.004
Et4(2-c) 0.785 0.782 −0.003 0.006 0.002 −0.004
Fig. 4. Potential energy surface of water molecule attacking the electrophilic 
site of ethyl acetate according to Fig. 1a scenario.

3.2. On the transition state structure

The typical optimized geometry of [Et–W] complex at the saddle 
point is presented in Fig. 1b. All results have one imaginary frequency 
as it is required for a TS structure. All imaginary frequencies belong to 
the normal mode involving the motion of H1 between O2 and O3. The 
geometry provides us some possible conformers of the [Et–W] complex. 
Our calculations determine more than one optimized conformer of each 
[Et–W] complex: two for [Et1–W] and [Et2–W] and three for [Et3–W] 
and [Et4–W]. Optimization calculations always end up with water in 
the positive 𝑧-axis in the gauche conformation and orientate CH3 at C4 
to either the (a) staggered or (d) eclipsed conformation.

The IRC calculations ensure the optimized geometries of [Et–W] are 
at the correct transition state according to Scheme 1. Fig. 6 shows the 
IRC calculation results (only two extreme cases plotted for [Et3–W] and 
[Et4–W]). All transition state geometries lead exactly to state 1a and
1c. Therefore, Fig. 1b is indeed the typical geometry at state 1b.

Table 6, 7, 8, and 9 display four important geometrical parameters 
of [Et–W] in the transition state. They are the distance of C1–O2 (𝑅1), 
O3–H1 (𝑅2), C1–O3 (𝑅3), and O2–H1 (𝑅4), respectively. The favorable 
condition for hydrolysis is the elongation of 𝑅1 and 𝑅2 with respect to 
the state 1a and a short distance of 𝑅3 and 𝑅4. In case of Et2, using 
XC1g, 𝑅1 and 𝑅2 significantly elongate to 33.2% and 27.8%, respec-
tively. 𝑅1 and 𝑅2 in all [Et–W] complexes are 1.73 Å and 1.19 Å on 
average, respectively. Since C O in gas phase experimentally 1.48 Å 
[45], all [Et–W] complexes show a tendency to cleavage Et forming Ca 
and ethanol. Meanwhile, 𝑅3 and 𝑅4 determine the stability of transi-
tion state geometry: the shorter the values, the stronger the interaction 
5

between Et and W in [Et–W] complexes, which implies more stable ge-
ometry. In that sense, the most stable conformation is gauche (in case of 
[Et1–W] and [Et2–W]) and eclipsed with a halogen atom at “e” position 
(in case of [Et3–W] and [Et2–W]).

The effect of long-range correction and surrounding water. The value of 
err.21 and err.sg in Table 6, 7, 8, and 9 show the effect of the long-
range correction and the surrounding water. Overall, the effect is more 
significant in [Et–W] complex (state 1b) than in individual molecules of 
Et and W (state 1a) and Ca and alcohol (state 1c). The significant effect 
of the long-range correction is on 𝑅1 and 𝑅3. Both parameters involve 
C O bond. When we consider the ground state analysis (Fig. 5), the 
results show a tendency of XC1s significantly affecting molecules with 
C O bond. It explains qualitatively as to how XC1s raises 𝐸 of ethyl 
acetate almost twice as much as the acetic acid and ethanol (see Fig. 5): 
ethyl acetate has two C O bonds, acetic acid has one O C O, and 
ethanol only has one C O.

We extend the discussion on [Et2–W] geometry in the transition 
state. Our results are comparable with the work of Yamabe et al. [14]. 
Table 10 resumes the comparison between these two works. Overall, 
our results are far from the results of [14]. In the water surrounding 
model, it is clear that PCM and Onsager’s model yields a significant 
difference in geometry. The difference can be understood as follows. 
Both PCM and Onsager’s model create a cavity to simulate the reaction 
field, but the method to make the cavity is completely different.

3.3. On the conformational effect

We evaluate the conformational effect on geometry based on the 
value of range in Table 6, 7, 8, and 9. The wider the range means the 
more significant the conformer variation of the complex. In our case, 
the overall range is in an order of 10−2 Å. Furthermore, we find two 
trends. First, the range is wider in the presence of a halogen atom (Et3 
and Et4). Second, the long-range correction and the surrounding water 
significantly affect the ranges of 𝑅1 and 𝑅2 of [Et1–W] and [Et2–W]. 
These two trends imply that the conformer of ethyl acetate has a signif-
icant effect when it is forming a complex with water in the transition 
state. Accordingly, the figure 10−2 Å is a significant range for this study.

The difference in geometry directly affects the activation energy 
(Δ‡𝐺◦) as displayed in Table 11. We highlight three points from the 
table as follows.

First of all, there is a general trend of Δ‡𝐺◦ in the presence of the 
halogen atom in esters. This result is consistent with the charge pop-
ulation at C1 of ester in the ground state (Table 5) and 𝑅3 (Table 6). 
Charge population at C1 is more negative in the presence of halogen 
atom (Et2 versus Et3 and Et4), so it provides more charges to form a 
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Fig. 5. Energy level diagram of molecules in Table 3, for (a) ethyl acetate, (b) water, (c) acetic acid, and (d) ethanol. The calculated energy by XC1g is set to be the 
reference.

Fig. 6. Reaction path calculations based on the optimized geometry of [Et–W] complexes for the case of (a) Et1, (b) Et2, (c) Et3, and (d) Et4 with the conformations 
are shown in the legend. The peak of path is the saddle point which is the transition state (1b), to the left is the initial state (1a) and to the right is the final state 
(1c). The energy reference is the 1a of each system, so the height corresponds to the energy barrier of each reaction with 𝑑 as the difference in energy barrier 
between two different conformers. (Table 11 lists the complete value of energy barrier for all reactions of interest.)
covalent bond with O3 from H2O (shorter 𝑅3). The elongation of 𝑅1
(Table 6) supports the C1–O3 bonding formation and directly deter-
mines the value of Δ‡𝐺◦. There is an exception in “d” conformation, 
where 𝑅1 is shorter, making the Δ‡𝐺◦ higher than the other confor-
mations. However, the overall trend is the presence of a halogen atom 
lowers Δ‡𝐺◦, which corresponds to the higher 𝑘(𝑇 ). This is in line with 
other esters [4, 5, 6] as mentioned in the introduction. Furthermore, 
a heavier halogen atom raises 𝑘(𝑇 ) which agrees with the result by 
6

Schmeer and Sturm [12]. This part of results is important in our study 
because it justifies our calculation method.

Secondly, a comparison among results in the table shows the effect 
of the long-range correction and the surrounding water. The former’s 
effect alone (err.21) is less than 1% on average, while the latter’s effect 
(err.sg) is more than 7% on average. Even though err.21 in this work 
is insignificant, the exchange-correlation functional is still an impor-
tant factor. As we see in Schmeer and Sturm [12], the use of Hatree-
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Table 6

Distance of C1–O2 in the transition state (𝑅1 , in Å).

Conformer DFT DFT + PCM

XC1g XC2g err.21 XC1s err.sg XC2b err.sg

(1) [Et1–W]
(1) 1.715 1.663 −3.0 1.664 −3.0 1.615 −2.9
(2) 1.720 1.668 −3.0 1.677 −2.5 1.626 −2.5

range 0.004 0.005 0.013 0.012

(2) [Et2–W]
(1-a) 1.791 1.727 −3.6 1.746 −2.5 1.668 −3.4
(2-d) 1.793 1.726 −3.7 1.759 −1.9 1.680 −2.7

range 0.001 0.001 0.012 0.012

(3) [Et3–W]
(1-f) 1.764 1.703 −3.5 1.677 −4.9 1.619 −5.0
(1-d) 1.695 1.640 −3.2 1.654 −2.4 1.602 −2.3
(1-e) 1.712 1.654 −3.4 1.659 −3.1 1.607 −2.8
(2-f) 1.764 1.701 −3.6 1.690 −4.2 1.630 −4.1
(2-d) 1.699 1.644 −3.2 1.665 −2.0 1.612 −2.0
(2-e) 1.713 1.654 −3.4 1.671 −2.5 1.617 −2.3

range 0.069 0.063 0.035 0.028

(4) [Et4–W]
(1-f) 1.771 1.706 −3.7 1.692 −4.5 1.627 −4.6
(1-d) 1.687 1.636 −3.0 1.642 −2.6 1.595 −2.5
(1-e) 1.712 1.654 −3.4 1.657 −3.2 1.607 −2.8
(2-f) 1.771 1.704 −3.8 1.705 −3.7 1.639 −3.8
(2-d) 1.690 1.637 −3.1 1.653 −2.2 1.604 −2.0
(2-e) 1.717 1.659 −3.4 1.673 −2.6 1.619 −2.4

range 0.084 0.070 0.062 0.044

Table 7

Distance of O3–H1 in the transition state (𝑅2 , in Å).

Conformer DFT DFT + PCM

XC1g XC2g err.21 XC1s err.sg XC2b err.sg

(1) [Et1–W]
(1) 1.236 1.232 −0.3 1.263 2.2 1.245 1.1
(2) 1.227 1.221 −0.4 1.248 1.8 1.231 0.7

range 0.009 0.010 0.015 0.014

(2) [Et2–W]
(1-a) 1.228 1.224 −0.4 1.268 3.2 1.257 2.6
(2-d) 1.225 1.223 −0.2 1.258 2.7 1.245 1.8

range 0.004 0.001 0.011 0.011

(3) [Et3–W]
(1-f) 1.210 1.203 −0.6 1.251 3.4 1.237 2.8
(1-d) 1.234 1.229 −0.4 1.252 1.5 1.235 0.5
(1-e) 1.261 1.256 −0.4 1.267 0.5 1.247 −0.7
(2-f) 1.208 1.205 −0.3 1.238 2.5 1.226 1.7
(2-d) 1.227 1.221 −0.5 1.241 1.2 1.225 0.4
(2-e) 1.256 1.250 −0.5 1.256 0.0 1.236 −1.1

range 0.053 0.052 0.029 0.021

(3) [Et4–W]
(1-f) 1.203 1.200 −0.2 1.238 2.9 1.231 2.6
(1-d) 1.231 1.223 −0.6 1.248 1.4 1.231 0.6
(1-e) 1.268 1.258 −0.8 1.280 1.0 1.252 −0.5
(2-f) 1.201 1.201 0.0 1.226 2.1 1.219 1.5
(2-d) 1.227 1.221 −0.5 1.239 1.0 1.224 0.2
(2-e) 1.261 1.252 −0.7 1.267 0.5 1.243 −0.7

range 0.066 0.058 0.054 0.033
Fock method resulted in 58.74 kcal/mol and 64.47 kcal/mol of Δ‡𝐺◦.1

Furthermore, the method to model the water surrounding is also im-
portant. The use of Onsager’s model by Yamabe et al. [14] resulted in 

1 Schmeer and Sturm [12] used two waters and has one intermediate state 
and two transition states in the reaction path. The calculations were in the gas 
phase.
7

47.90 kcal/mol. The difference in Δ‡𝐺◦ is expected since the geometry 
is also different (see Table 10).

Lastly, the range of Δ‡𝐺◦ displays the effect of conformation. In 
XC1g, the range is 0.72, 1.07, 2.64, and 3.47 kcal/mol for Et1, Et2, Et3, 
and Et4 case, respectively. These figures give a significant ratio between 
the highest and the lowest 𝑘(𝑇 ) of each case. Since 𝑘(𝑇 ) is an expo-
nential function of negative Δ‡𝐺◦ [see Equation (1)], 0.72 kcal/mol 
(in gas phase) corresponds to 3 times increment of the rate con-
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Table 8

Distance of C1–O3 in the transition state (𝑅3 , in Å).

Conformer DFT DFT + PCM

XC1g XC2g err.21 XC1s err.sg XC2b err.sg

(1) [Et1–W]
(1) 1.780 1.731 −2.8 1.779 −0.1 1.711 −1.2
(2) 1.773 1.724 −2.8 1.771 −0.1 1.702 −1.3

range 0.007 0.008 0.008 0.009

(2) [Et2–W]
(1-a) 1.841 1.780 −3.3 1.859 1.0 1.776 −0.3
(2-d) 1.838 1.780 −3.2 1.859 1.1 1.775 −0.3

range 0.002 0.001 0.001 0.001

(3) [Et3–W]
(1-f) 1.775 1.714 −3.4 1.763 −0.7 1.692 −1.3
(1-d) 1.760 1.707 −3.0 1.756 −0.2 1.686 −1.2
(1-e) 1.829 1.771 −3.2 1.792 −2.0 1.717 −3.1
(2-f) 1.774 1.717 −3.2 1.757 −1.0 1.686 −1.8
(2-d) 1.755 1.701 −3.1 1.752 −0.2 1.681 −1.2
(2-e) 1.824 1.766 −3.2 1.789 −1.9 1.712 −3.1

range 0.074 0.070 0.040 0.035

(4) [Et4–W]
(1-f) 1.775 1.716 −3.3 1.759 −0.9 1.690 −1.5
(1-d) 1.749 1.695 −3.1 1.739 −0.5 1.671 −1.4
(1-e) 1.835 1.772 −3.4 1.808 −1.5 1.724 −2.7
(2-f) 1.774 1.718 −3.2 1.754 −1.2 1.687 −1.8
(2-d) 1.746 1.694 −3.0 1.736 −0.6 1.670 −1.4
(2-e) 1.832 1.773 −3.3 1.806 −1.4 1.726 −2.6

range 0.088 0.079 0.072 0.055

Table 9

Distance of O2–H1 in the transition state (𝑅4 , in Å).

Conformer DFT DFT + PCM

XC1g XC2g Δ21 XC1s Δsg XC2b Δsg

(1) [Et1–W]
(1) 1.187 1.185 −0.2 1.169 −1.6 1.181 −0.3
(2) 1.195 1.194 −0.1 1.180 −1.2 1.192 −0.1

range 0.008 0.009 0.011 0.012

(2) [Et2–W]
(1-a) 1.190 1.187 −0.3 1.158 −2.7 1.163 −2.0
(2-d) 1.192 1.187 −0.4 1.165 −2.3 1.171 −1.3

range 0.002 0.000 0.007 0.008

(3) [Et3–W]
(1-f) 1.212 1.213 0.1 1.181 −2.5 1.191 −1.8
(1-d) 1.193 1.192 −0.1 1.180 −1.1 1.193 0.0
(1-e) 1.167 1.166 −0.1 1.167 0.1 1.182 1.4
(2-f) 1.213 1.210 −0.2 1.175 −3.1 1.200 −0.9
(2-d) 1.199 1.199 0.0 1.199 0.0 1.200 0.1
(2-e) 1.170 1.170 −0.0 1.170 −0.0 1.190 1.7

range 0.046 0.048 0.032 0.018

(4) [Et4–W]
(1-f) 1.218 1.215 −0.2 1.191 −2.2 1.195 −1.7
(1-d) 1.197 1.199 0.2 1.186 −0.9 1.199 −0.0
(1-e) 1.160 1.163 0.2 1.156 −0.4 1.176 1.1
(2-f) 1.218 1.213 −0.5 1.200 −1.5 1.204 −0.7
(2-d) 1.200 1.201 0.1 1.193 −0.6 1.204 0.3
(2-e) 1.164 1.166 0.1 1.164 0.0 1.181 1.3

range 0.058 0.053 0.044 0.028

Table 10

Result comparison on [Et2–W] in the transition state.

Parameter Ref. [14] XC1s err. XC2s err.

𝑅1 1.790 1.746 −2.4 1.668 −6.8
𝑅2 1.203 1.268 5.4 1.257 4.4
𝑅3 1.802 1.859 3.2 1.776 −1.5
𝑅4 1.221 1.158 −5.2 1.163 −4.7

Here err. is the error percentage with respect to the value from Ref. [14].
8
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Table 11

The standard Gibbs activation energy (in kcal/mol) from various [Et–W] conformers.

Conformer DFT DFT + PCM

XC1g XC2g err.21 XC1s err.1sg XC2b err.2sg

(1) Et1 + W → [Et1–W] → Ca1 + ethanol
(1) 52.93 53.29 0.7 56.77 7.3 56.78 6.5
(2) 52.21 52.44 0.4 55.67 6.6 55.81 6.4

range 0.72 0.85 1.10 0.96

(2) Et2 + W → [Et2–W] → Ca2 + ethanol
(1-a) 53.52 54.01 0.9 57.64 7.7 57.92 7.2
(2-d) 52.45 53.05 1.1 56.18 7.1 56.95 7.3

range 1.07 0.97 1.46 0.97

(3) Et3 + W → [Et3–W] → Ca3 + ethanol
(1-f) 53.42 53.89 0.9 57.93 8.4 57.72 7.1
(1-d) 54.86 54.35 −0.9 58.47 6.6 57.72 6.2
(1-e) 53.46 53.37 −0.2 57.80 8.1 57.13 7.0
(2-f) 52.80 53.02 0.4 56.90 7.8 56.87 7.3
(2-d) 53.67 53.53 −0.3 56.95 6.1 56.52 5.6
(2-e) 52.22 52.44 0.4 57.79 10.7 56.35 7.5

range 2.64 1.91 1.58 1.37

(4) Et4 + W → [Et4–W] → Ca4 + ethanol
(1-f) 53.10 53.57 0.9 57.57 8.4 57.28 6.9
(1-d) 55.28 54.91 −0.7 59.48 7.6 58.42 6.4
(1-e) 52.76 52.93 0.3 56.42 6.9 56.69 7.1
(2-f) 52.48 52.57 0.2 56.62 7.9 56.13 6.8
(2-d) 54.83 54.43 −0.7 58.12 6.0 57.43 5.5
(2-e) 51.81 51.96 0.3 55.83 7.8 56.19 8.1

range 3.47 2.96 3.66 2.29

Table 12

The rate constant at 298.15 K in natural logarithmic value.

Conformer DFT DFT + PCM

XC1g XC2g rat.21 XC1s rat.1sg XC2b rat.2sg

(1) Et1 + W → [Et1–W] → Ca1 + ethanol
(1) −59.88 −60.49 −0.61 −66.36 −6.48 −66.38 −5.89
(2) −58.66 −59.05 −0.39 −64.50 −5.84 −64.74 −5.69

rat.𝑘 3.37 4.20 6.40 5.14

(2) Et2 + W → [Et2–W] → Ca2 + ethanol
(1-a) −60.87 −61.70 −0.83 −67.83 −6.95 −68.30 −6.60
(2-d) −59.07 −60.08 −1.01 −65.36 −6.30 −66.66 −6.58

rat.𝑘 6.09 5.05 11.75 5.14

(3) Et3 + W → [Et3–W] → Ca3 + ethanol
(1-f) −60.71 −61.50 −0.79 −68.32 −7.61 −67.96 −6.46
(1-d) −63.14 −62.27 0.86 −69.23 −6.09 −67.96 −5.69
(1-e) −60.77 −60.62 0.15 −68.10 −7.33 −66.97 −6.35
(2-f) −59.66 −60.03 −0.37 −66.58 −6.92 −66.53 −6.50
(2-d) −61.13 −60.89 0.24 −66.66 −5.54 −65.94 −5.05
(2-e) −58.68 −59.05 −0.37 −68.08 −9.40 −65.65 −6.60

rat.𝑘 86.13 25.12 14.15 10.09

(3) Et4 + W → [Et4–W] → Ca4 + ethanol
(1-f) −60.17 −60.96 −0.79 −67.71 −7.54 −67.22 −6.26
(1-d) −63.84 −63.22 0.62 −70.93 −7.09 −69.14 −5.92
(1-e) −59.59 −59.88 −0.29 −65.77 −6.18 −66.22 −6.35
(2-f) −59.12 −59.27 −0.15 −66.11 −6.99 −65.28 −6.01
(2-d) −63.08 −62.41 0.68 −68.64 −5.55 −67.47 −5.06
(2-e) −57.99 −58.24 −0.25 −64.77 −6.79 −65.38 −7.14

rat.𝑘 349.57 145.33 473.66 47.71
stant (at 298.15 K), 1.07 kcal/mol corresponds to 6 times increment, 
2.64 kcal/mol corresponds to 86 times increment, and 3.47 kcal/mol 
corresponds to 350 times increment. Table 12 tabulates these results 
and clarifies the effect of conformation. Overall, the long-range correc-
tion and the surrounding water narrow the range, but the figures are 
still significant. Meanwhile, the gauche conformation has the highest 
𝑘(𝑇 ) and the halogen atom prefers in “e” position (staggered conforma-
tion, see Fig. 3).
9

4. Conclusion

We have reported the conformation in transition state significantly 
affects the activation energy of ethyl acetate neutral hydrolysis. The 
gauche conformers tend to have higher rate constant than the trans 
ones. This leads to the significant ratio between the lowest and the 
highest rate constant: from 3 to 350 times, or from 4 to 145 times after 
long-range correction (all in the gas phase). We argued that one must 
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take the conformers into the consideration to study the ester neutral 
hydrolysis. Furthermore, the halogenated ethyl acetate has higher rate 
constant and the halogen atom prefers in the staggered conformation. 
The halogenation effect from our calculations is in agreement with ex-
perimental data for other ester variant. Finally, we also presented the 
long-range interaction and PCM to model the surrounding water stabi-
lize the transition state geometry but raise the activation energy from 
5.5% to 8.1%.
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