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Reconstructing neuronal circuitry from parallel
spike trains
Ryota Kobayashi 1,2, Shuhei Kurita 3, Anno Kurth 4,5, Katsunori Kitano 6, Kenji Mizuseki 7,

Markus Diesmann 4,5,8, Barry J. Richmond 9 & Shigeru Shinomoto 10,11

State-of-the-art techniques allow researchers to record large numbers of spike trains in

parallel for many hours. With enough such data, we should be able to infer the connectivity

among neurons. Here we develop a method for reconstructing neuronal circuitry by applying

a generalized linear model (GLM) to spike cross-correlations. Our method estimates con-

nections between neurons in units of postsynaptic potentials and the amount of spike

recordings needed to verify connections. The performance of inference is optimized by

counting the estimation errors using synthetic data. This method is superior to other

established methods in correctly estimating connectivity. By applying our method to rat

hippocampal data, we show that the types of estimated connections match the results

inferred from other physiological cues. Thus our method provides the means to build a circuit

diagram from recorded spike trains, thereby providing a basis for elucidating the differences

in information processing in different brain regions.
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Over the past decade it has become possible to record from
much larger numbers of neurons than in the past1–5,
even though this number is still a mere shadow of the

total number of neurons present. The premise behind collecting
these large data sets is that this could lead to improvements in
correlating neuronal activity with specific sensations, motion, or
memory, and possibly lead to improvements in adaptation and
learning as well6–10.

Having such large data sets leads to difficulties in handling the
data and interpreting the results. There are two main approaches
to handle large amounts of recording data. In the first approach,
researchers have developed methods to reduce dimensionality
while minimizing the loss of information11–13.

The second approach, which we take here, is to use all of the
data to carry out mesoscopic neuroanatomy, that is, to reveal the
fine neuronal circuitry in which neural circuit computation is
carried out. From these high channel count recordings, one
should be able to estimate neuronal connectivity by quantifying
the degree to which firing from a given neuron is influenced by
the firing of neurons from which the index neuron is receiving
input14–30. For this purpose, we develop an analytical tool that
estimates neuronal connectivity in measurement units of post-
synaptic potentials (PSPs). In this study we also investigate how
much data are needed to reliably estimate the connections
between pairs of neurons. Because reconstructing connectivity is
not guaranteed to reflect anatomical connectivity31–33, we eval-
uate the accuracy of estimation by directly comparing the esti-
mated connections with the true connections, using synthetic
data generated by simulating a network of Hodgkin–Huxley
(HH)-type neurons or a large network of leaky integrate-and-fire
(LIF) neurons. Finally, we apply this method to spike trains
recorded from rat hippocampus. For the experimental data, we
compare our estimates of whether an innervating connection is
excitatory or inhibitory with the results obtained by manually
analyzing other physiological information such as spike wave-
forms, autocorrelograms, and mean firing rate.

Results
Estimating neuronal connections. To estimate neuronal con-
nectivity between each pair of neurons, we obtain the cross-
correlation (CC) by collecting spike times of a neuron measured
relative to every spike of a reference neuron (Fig. 1a). We explore
the CC for the evidence of a monosynaptic impact of a few
milliseconds using the generalized linear model (GLM). Here,
neuronal connectivity is detected by fitting a coupling filter, while
slow, large-scale wavy fluctuations that are often present in
recorded spike trains are absorbed by adapting the slow part of
the GLM. We call our method “GLMCC” (METHODS).

Criterion for the presence of connections. A neuronal connec-
tion is considered significant when the estimated parameter falls
outside the confidence interval of a given significance level for the
null hypothesis that the connection is absent. If the parameter
remains within the confidence interval, the state of the connec-
tion is undetermined (METHODS).

The number of pairs considered to be connected will depend
on the significance level α and on the strength of the correlation.
Estimation methods presume connections as if they were all
direct ones, causing strong indirect influences to be purported
direct connections. Neurophysiologists often try to avoid these
false positives (FPs) by shifting the significance level to small
values, that is, by moving α to very stringent levels. However,
being conservative about FPs means that existing connections
important for information processing will be missed, thereby
producing many false negatives (FNs).

To capture the manner in which the numbers of FPs and FNs
change with the level of conservatism used for estimating
connections, we applied our inference model to spike trains
obtained from a network of HH neurons, in which the true
anatomical connectivity is known. With this knowledge, we
searched for the optimal level of conservatism or the significance
level that may balance the conflicting demands for reducing FPs
and FNs.

Our simulation used a network of 1000 HH neurons consisting
of 800 excitatory and 200 inhibitory neurons (cf. Fig. 1b). In the
simulation, excitatory neurons innervated 12.5% of other neurons
with excitatory postsynaptic potentials (EPSPs). These excitatory
connections were log normally distributed34–37 (Fig. 1c). Inhibi-
tory neurons randomly innervated 25% of other neurons with
inhibitory postsynaptic potentials (IPSPs). These inhibitory
connections were normally (Gaussian) distributed38. We simu-
lated the network for a period representing 5400 s (90 min) with
step sizes of 0.01 and 0.001 ms for excitatory and inhibitory
neurons, respectively (METHODS). Our simulation reproduced
irregular neuronal firing and skewed distribution of firing rates,
which are consistent with balanced state network models39

(Supplementary Fig. 1).
To illustrate the performance of estimating connections, we

sampled 20 neurons out of the entire population. Figure 2a shows
the estimated connection matrices obtained using different
significance levels, in reference to the true connectivity. Here we
have not considered weak excitatory connections whose EPSPs are
smaller than 1 mV, because the amount of spike recording is
insufficient for identifying connections of this level. The connec-
tion matrix is divided into four quadrants representing connec-
tions between inhibitory–excitatory, excitatory–excitatory,
excitatory–inhibitory, and inhibitory–inhibitory neurons. True
connections for the second and third quadrants are excitatory, and
those of the fourth and first quadrants are inhibitory. For
α ¼ 0:01, too many false connections were assigned to pairs of
neurons; there were 15 false connections (4.3%) in this sample. At
the other extreme, all FPs can be excluded by decreasing the
significance level (down to α ¼ 10�24). In the latter case most
existing connections are lost, and a large number of FNs arise; 22
among 32 existing connections (69%) are missed in this example.
The numbers of FPs and FNs for excitatory and inhibitory
categories are shown below for the connection matrices, indicating
that the total number of FPs and FNs may be minimized between
these extreme cases.

To balance the FPs and FNs simultaneously, we selected the
significance level that maximized the Matthews correlation
coefficient (MCC)27,40. The significance level was set to α ¼
0:001 (Fig. 2b). Although false connections remain, the neuronal
circuit was most accurately reconstructed with α ¼ 0:001. We
adopted α ¼ 0:001 throughout the following analyses.

Duration of spike recording. The necessary duration of spike
recording can be estimated even without fitting the statistical
model to the spike trains. This is because the distribution of the
connection parameter for the null hypothesis is obtained solely in
terms of the observation interval (T) and the firing rates of the
pre and postsynaptic neurons (λpre and λpost) (METHODS). The
confidence interval of the connection parameter (J) is

J ± ¼ ± c= Tτλpreλpost
� �1=2

; ð1Þ

where τ is the time scale of synaptic impact, which is chosen by
maximizing the model likelihood: τ ¼ 0:004 s for the simulation
data and τ ¼ 0:001 s for the rat hippocampal data. The coeffi-
cient c is given as 5.16 for α ¼ 0:001.
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We assume that connection parameter J is proportional to the
PSP, w mV41:

J ¼ aw: ð2Þ
The coefficient a is determined using synthetic data as a ¼ 0:39
for the EPSP and a ¼ 1:57 for IPSP. By combining this with Eq.
(1), the necessary duration of spike recording needed to
determine the likely presence of a connection of PSP is given as

T >
c2

τλpreλposta2w2
: ð3Þ

According to the coefficient a, which is larger for IPSP than for
EPSP, the inhibitory connection is detected more easily than the
excitatory connection, given the same PSP jwj. This is in conflict
with the results of some other studies16,42,43. The disagreement is
due to the difference in simulation models; in our simulation
model, the time scale of the inhibitory synapse is chosen to be
longer than that of the excitatory synapse on the basis of
physiological experiments44,45. Accordingly, the inhibitory
response is slower and has a larger integrated effect than the
excitatory response. Our GLMCC should be able to properly
detect the overall integrated effect (Supplementary Fig. 2).

To make reliable inference, in addition to the above relation, it
is also necessary to have collected a sufficiently large number of
spikes during the interaction time window on the order of a few
milliseconds. Here we require (METHODS):

Tλpreλpost > 10=τ ½s�1�: ð4Þ
Table 1 shows the results of several cases of firing rates and the
assumed PSPs using the α ¼ 0:001. Unsurprisingly, to detect a
weak connection for a low firing neuron requires gathering data
for a long period of time. Figure 3a shows the connections
estimated with different observation time windows, illustrating
how weak connections become visible as the recording duration
increases.

Estimating PSPs. We believe that our method is of particular
interest because it couches the connections in terms of PSPs for
the individual neuronal pairs. Figure 3b compares the estimated
PSPs (ŵ) against the true values (w) from the numerical simu-
lation. Here we represent ŵ ¼ 0 if the connection is unde-
termined, i.e., not significant. Thus, unconnected links (w ¼ 0)
that were classified as undetermined (true negatives) are placed at
the origin. Points lying on the nonzero x-axis are existing
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Fig. 1 Estimating neuronal connections. a Connectivity between neurons is estimated by fitting a generalized linear model (GLM) to the cross-correlation
(CC). Jij represents a coupling from the j-th neuron to the i-th neuron. Excitatory and inhibitory neurons are depicted as triangles and circles, and their
synaptic connections are colored magenta and cyan, respectively. Surrounding neurons may induce large-scale fluctuations in the CC (light green line).
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connections that were not detected. Points lying on the nonzero
y-axis are the functional or virtual connections that were esti-
mated for unconnected pairs. The points in the first and third
quadrants represent true positives, or existing connections whose
signs were correctly inferred as excitatory or inhibitory, respec-
tively. The points in the second and fourth quadrants are existing
connections whose signs were misclassified.

The number of nonzero connections increases with the
recording duration. Existing connections with large PSP ampli-
tude tend to be detected with the signs correctly identified (points
in the first and third quadrants). There are also virtual
connections assigned for unconnected pairs (nonzero y-axis).
The number of such FPs is larger than the expected number of
statistical errors (Fig. 2a). This implies that the false connections
may not be mere statistical fluctuations, but rather that they may
reflect the functional connectivity indirectly connected via other
unobserved neurons.

Figure 3c demonstrates the way individual connections emerge
by increasing the recording duration. Here the abscissa is the
observation window (T) multiplied by the firing rates of the pre
and postsynaptic neurons (λpre and λpost) so that all data are
organized into a unified formula (inequality (3)). The values of
Tλpreλpost for the excitatory connections tended to be smaller than
those of inhibitory connections, because the firing rates of
excitatory neurons were typically lower than those of inhibitory
neurons.

Excitatory–inhibitory (E–I) dominance index. The probability
of misassigning individual connectivity for unconnected pairs
tends to be higher than the statistical significance level, because
their firing is generally correlated with each other due to indirect
interactions through unobserved neurons. Nevertheless, excita-
tory and inhibitory characteristics of individual neurons can be
inferred with a lower error rate, because we can refer to multiple
connections for each neuron.

We define an excitatory–inhibitory (E–I) dominance index as

dei ¼
ne � ni
ne þ ni

: ð5Þ

where ne and ni represent the numbers of identified excitatory
and inhibitory connections projecting from each neuron,
respectively. The E–I dominance indexes computed for 2
networks of 80 neurons each are plotted against firing rates of
neurons (Fig. 4a). In this case, excitatory and inhibitory
characteristics of individual neurons were well-identified based
on E–I dominance indexes. Inhibitory neurons typically exhibited
higher firing rates in comparison to excitatory neurons. The firing
irregularity measured using the local variation (Lv) of interspike
intervals46,47 is plotted against firing rate. Spiking of inhibitory
neurons tended to be more regular (smaller Lv) than that of
excitatory neurons.

If we can record many spike trains in parallel for a long time,
many excitatory and inhibitory neurons may be correctly
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Fig. 2 Selecting the significance level. a The connection matrices are estimated with different levels of conservatism against making false positives (FPs),
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Data file

Table 1 Duration of spike recording required for verifying neuronal connections

Firing rates EPSP: 5 mV EPSP: 1 mV EPSP: 0.5 mV IPSP: 1 mV IPSP: 0.5 mV

(10, 10) Hz T > 2min T > 30min T > 2 h T > 2 min T > 7 min
(10, 5) Hz T > 3min T > 1 h T >4 h T >4min T > 10 min
(5, 5) Hz T > 7min T > 2 h T >8 h T > 7 min T > 30min
(10, 1) Hz T > 20min T > 5 h T > 20 h T > 20min T > 1 h
(5, 1) Hz T > 30min T > 10 h T >40 h T >40min T > 2 h
(1, 1) Hz T > 3 h T > 50 h T > 200 h T > 3 h T > 10 h

In the first column, the two numbers in the bracket represent the firing rates of pre and postsynaptic neurons, or post and presynaptic neurons. This table is obtained with the synaptic time scale τ = 1 ms,
which was selected for rat hippocampal data
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identified according to dei > 0 and dei < 0, respectively. Figure 4b
illustrates the manner in which the ratio of such correct
identification depends on the total number of spike trains and
the duration of observation.

Real spike trains. We apply our method to spike trains recorded
from the hippocampal CA1 area of a rat while it was exploring a
square open field (hc-3 data sets in Collaborative Research in
Computational Neuroscience (CRCNS))48. Figure 5a displays
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NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12225-2 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:4468 | https://doi.org/10.1038/s41467-019-12225-2 |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


the connections obtained with different observation time win-
dows, demonstrating that more connections become visible as
the recording duration increases, similar to the results seen with
synthetic data. The connection matrix is divided into four
quadrants according to the putative classification performed by
manually analyzing waveforms, autocorrelograms, and mean
firing rates49–51. We observe that connections in the third,
fourth, and first quadrants of the connectivity matrix repre-
senting excitatory–inhibitory, and inhibitory–inhibitory, and
inhibitory–excitatory zones, respectively, are detected in a
relatively short observation window. This is consistent with
our formula (3), given that inhibitory neurons typically fire at
high rates, though inhibitory neurons are not necessarily a
uniform population52. Connections in the second quadrant,
representing the excitatory–excitatory zone, only appear
after increasing the observation time window, and the
estimated connection pattern remains sparse; more connections
might have been identified if the observation period had been
even longer. However, the estimated connection pattern is
consistent with the finding using intracellular recording in vitro
that inter-pyramidal connections in the hippocampus CA1 are
sparse53.

Figure 5b shows CCs of several neuron pairs (see Supplemen-
tary Fig. 3 for all the detected pairs). Here, we have excluded spike
records at an interval of ± 1 ms in the cross-correlogram, because
near-synchronous spikes were not detected in the experiment due
to the shadowing effect54. The CCs become less noisy as the
observation time increases, and some connections resolved (8–7,
13–3, 14–7, and 15–8). Some real spike trains exhibited large-

scale wavy fluctuations (13–11), which may suggest that these
neurons are under the influence of brain activity with lagged
phases or perhaps they were responding to some unidentified
external stimulus. Our method absorbs these fluctuations by
adapting the slow part of the GLM (demonstrated as light green
lines in Fig. 5b), and succeeds in detecting a tiny impact by fitting
coupling filters (lines colored magenta, cyan, and gray, respec-
tively represent excitatory, inhibitory, and undetermined connec-
tions in Fig. 5b).

In Fig. 5c, we plotted the E–I dominance index (dei) and the
firing irregularity (Lv) against the firing rate. The E–I dominance
index is roughly consistent with the putative excitatory and
inhibitory neurons. The irregularity of the putative excitatory
neurons tended to be higher (larger Lv) than that of the inhibitory
neurons, similar to what we observed with the simulation data.
The good separation of the putative excitatory and inhibitory
neurons in these plots implies that we can classify recorded cells
into excitatory and inhibitory neurons reliably without having to
rely on their waveforms, as the E–I dominance index, firing
irregularity, and firing rate are obtained solely from the
spike times.

We also attempted to analyze a set of spike trains recorded
simultaneously from multiple regions including CA1 and the
Entorhinal Cortex (EC). Figure 5d demonstrates a matrix of
estimated connections among excitatory and inhibitory neurons
in CA1 and EC. Though the number of inter-regional connec-
tions was small in this sample data, our analysis method is
generally applicable to any set of spike trains, irrespective of the
recorded areas.
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Fig. 5 Neuronal circuits reconstructed from real spike trains in vivo. a Neuronal connections estimated from spike trains recorded from the hippocampal
CA1 area of a rat. Estimations were made with observation time windows of 600, 1800, and 5400 s (10, 30, and 90min) for neurons whose firing rate is
>0:5 [Hz]. In each connection matrix, the x-axis indicates reference neurons. The connection matrix is partitioned into groups of putative excitatory and
inhibitory neurons defined manually according to other physiological cues such as waveforms. b Cross-correlations of several pairs of neurons computed at
different time windows. The slow part of the GLM adapted to the data is depicted as a light green line. The coupling filter is separately depicted in magenta,
cyan, or gray, for the excitatory, inhibitory, or undetermined, respectively. Corroborated connections are indicated by arrows. c E–I dominance index (dei)
and firing irregularity (Lv) are plotted against the firing rates for putative excitatory and inhibitory neurons. Neurons with >1 connection with firing rate and
>0:1 [Hz] are plotted in the E–I dominance index. d Estimated connections among neurons in CA1 and Entorhinal Cortex (EC). The connection matrix is
partitioned into putative excitatory and inhibitory neurons in CA1 and EC. One EC unit, whose excitatory or inhibitory characteristic was not determined by
the manual analysis, is put in the gap (gray) between excitatory and inhibitory groups. In the network graph shown in the second panel, excitatory- and
inhibitory-dominated connections are depicted in magenta and cyan, while connections of mixed characteristics are depicted in gray. Source data are
provided as a Source Data file
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Comparison with other methods. We compared our method
with the conventional CC method16 and the jittering method25 by
applying these methods to synthetic and biological data. With the
synthetic data, we can compare the performance of inferring
connectivity with the true connectivity (Fig. 6a). Here, we have
not shown excitatory connections smaller than 1 mV in the true
connectivity matrix as in Fig. 2a, because they are unlikely to
be detected in a 90 min recording. The relative performance of
the analysis methods is unchanged even if the smaller EPSPs are
included. The conventional CC analysis tended to produce a
number of FPs, revealing a vulnerability to fluctuations in cross-
correlograms. In contrast, the jittering method avoided making
FPs, but missed many existing connections, in particular for
inhibitory connections. This result may have occurred because
the decrease in the firing rate induced by an inhibitory interaction
is slower than an impulsive response to an excitatory stimulus;
the jittering method count spikes in each bin and tends to
overlook a slower modulation in the firing rate. The number of
false connections was 88, 27, and 13, respectively for the con-
ventional CC method, the jittering method, and the GLMCC
method, indicating the superiority of the present method. We also
examined the manner in which the number of errors varies with
the firing rate of neurons, and found that the estimation error
increases with the firing rates (Supplementary Fig. 4).

We also compared the connections estimated from the real
biological data recorded from the hippocampus of a rat (Fig. 6b).

The conventional CC method and jittering method suggested
many (false) excitatory connections from putative inhibitory
neurons to other neurons. In the GLMCC, most of detected
inhibitory connections in hippocampal data are from inhibitory
to inhibitory or from inhibitory to excitatory neurons, consistent
with low FPs and FNs in inhibitory connections in synthetic data
by this method.

Testing with large-scale simulations. We have tuned the
GLMCC method using synthetic data of a network of 1000 HH
neurons and assessed the estimation performance. We have also
tested the method with simulation data of different inhibitory
connectivities and those generated by LIF neurons29, and con-
firmed that the method estimates the connectivity accurately for
these data as well (Supplementary Fig. 5). In the original simu-
lation, 1000 HH neurons are densely connected with excitatory
neurons innervating EPSPs to 12.5% of other neurons. However,
the effective connectivity is rather sparse, because the EPSPs are
log normally distributed and the majority of them are weak.
Accordingly, the number of effective connections each neuron
receives is not large in this network size.

Considering the realistic situation in which each neuron is
receiving strong connections from a number of neurons, we
carried out simulations of a larger scale network consisting of
10,000 LIF neurons using the NEST simulator55 (Supplementary
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Fig. 6 Comparison of estimation methods. a Connections estimated using the conventional cross-correlation method, the jittering method, and our GLMCC
method, in reference to the true connectivity of the synthetic data (used in Fig. 3). For the GLMCC and the true connectivity, the size of each square is
proportional to the PSP amplitude, while for the first two methods, the estimated connections are represented in equal size, because they do not estimate
the PSP. b Neuronal connections estimated from spike trains recorded from the hippocampus of a rat (used in Fig. 5d). Source data are provided as a
Source Data file
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Note 1 and Supplementary Tables 1, 2, and 3). By performing
simulations of different connection densities, we examined the
manner in which the number of false estimates varies with the
number of connections. Figure 7 demonstrates the proportions of
FPs and FNs counted for each pair of neurons, indicating the
stable estimation of the GLMCC method and its superiority to
other existing methods. Sample connectivity matrices are
presented in Supplementary Fig. 6.

Discussion
We have presented a method for reconstructing neuronal cir-
cuitry from multichannel extracellular neuronal recordings. This
method, based on a combination of the GLM and CC, can bal-
ance the antagonistic demands for reducing FPs and FNs when
estimating neuronal connectivity. Our method is tolerant of the
large variations in firing activity that often occur in vivo. As a
critical part of the method, we show a framework for estimating
the necessary duration of the spike recordings so that any likely
neuronal connections are detected. The duration is presented in
terms of the firing rates of the pre- and postsynaptic neurons, and
the presumed PSP.

It would be ideal to be able to estimate individual connections
using intracellular or patch clamp recordings where the post-
synaptic current caused by presynaptic neuronal firing can be
measured, as is done with recordings from the rat cortex34,37.
While those methods can reliably detect synaptic connections,
they are limited because only a few neurons can be recorded
simultaneously.

With the recent increase in parallel high channel count
extracellular recordings from anaesthetized and behaving animal
subjects1,2, it is possible to estimate the connection strength
between a number of neurons20,28. Several strong analytical
methods for estimating connections from spike trains have been
developed, including the CC analysis14,15,18,21 and the
GLM8,19,23,27,29. While CCs have been used to estimate neuronal
connectivity, this classical CC analysis becomes unreliable when
there are large fluctuations in the data. One approach to solving
this problem has been to jitter the time stamps of spikes25,28. We
tested the performance of the conventional CC method and the
jittering method in estimating connectivity using synthetic data,
and found that our GLMCC performed better than conventional
methods (Fig. 6).

Another approach has been to apply GLM to parallel spike
trains. However, the size of the computation increases as the
recording time increases. Because the number of neuronal pairs
increases by the square of the number of spike trains (e.g., 10,000
pairs should be examined for 100 parallel spike trains), compu-
tation for estimating individual connections of each pair should
be modest. Our analysis can be conducted with a reasonable

computation time with amounts of data that can reasonably be
collected, as our GLM analyses the CC for a time window of 100
ms rather than the entire spike trains. Our GLMCC may also
adapt to wavy fluctuations in CC, making it tolerant to large-scale
fluctuations that are often attendant on real spike trains in vivo
(cf. Fig. 5b). There could also be fluctuations on an even longer
time scale. There are several methods for processing such non-
stationarity, including the state-space models56,57 or the Gaussian
process58. Such slow fluctuations may induce variation in the CC
amplitude, but they would not appear in the averaged cross-
correlogram cðtÞ in an interval of 100 ms in our framework.

In general, biological data are accompanied with large non-
stationary fluctuations; neuronal firing rate may change according
to behavioral contexts, and it might even occur that each neuron
may appear or disappear due to unstable recording. To examine
whether our method may have provided consistent estimation for
neuronal connections, we split the recordings in half and com-
pared estimated connections from each half (Supplementary Fig.
7). We found that the estimated connections exhibited significant
overlap between the first and second halves. Thus, our inference
method provides consistent data, not only for synthetic data, but
also for experimental data. It is interesting to test our estimation
with the information of biological connectivity, which is obtained
by the latest experimental techniques such as the intracellular
current injection59 or optogenetic control60.

Because recording time is limited, a possible restriction on
inferring connectivity could be that there is not enough data.
Here we made estimates on the duration of spike recordings
needed so that any likely neuronal connections would be detected
(cf. Table 1). It should be noted that the limit given in Eq. (3) or
Table 1 is not due to a limitation of our method, but it is an
essential limitation caused by the sparse firing itself. Even if a
given neuron fired several times with each spike occurring shortly
after the firing of an index neuron, such evidence may not be
sufficient to confirm the presence of a synaptic connection. Thus,
enough data are needed so that spike co-occurrence becomes
statistically significant28.

When we applied our method to data recorded from the rat
hippocampus we identified connections for four types of
pairs including excitatory–excitatory, excitatory–inhibitory,
inhibitory–inhibitory, and inhibitory–excitatory. These numbers
were consistent with those identified physiologically51, supporting
the efficacy of our method. Typically, the pyramidal neurons have
low background firing rates and interneurons have higher firing
rates. Our analysis (cf. inequality (3)) indicates that the necessary
recording duration is inversely proportional to the product of the
firing rates of the pre and postsynaptic neurons. Thus, connec-
tions between neurons firing at high frequencies can be detected
with a relatively short observation duration. In contrast, for
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neurons with low firing rates, data will have to be collected for
much longer periods, and we expect that excitatory–excitatory
connections will be detected only if there is a relatively long
recording period. The consequences of this have been seen with
experimental data; for instance, synapses that connect with
inhibitory interneurons were frequently detected, and connec-
tions between excitatory neurons were rarely detected20,61. The
hippocampal data analyzed in this study (Fig. 5a) conforms to
this pattern, and our analysis provides insight into how this
happens. Our approach and method provide a means for esti-
mating a map of neuronal connections from high channel count
simultaneous recordings. We presume, based on anatomical dif-
ferences, that these maps will have different structures in different
functional brain regions. Having a reliable technique for esti-
mating the maps offers the opportunity to identify these different
structures, thereby providing a basis for understanding the var-
iations in information processing that arises from differences in
anatomy and connected structures.

Methods
Estimating neuronal connectivity. Here we describe our GLM analysis, the basis
of validating connections and selecting the significance level, and the method of
estimating the PSP.

GLMCC. To discover neuronal connections between a pair of neurons, we devise a
GLM that detects short-term synaptic impacts in the CC (as schematically depicted
in Fig. 1a and as real cross-correlograms of rat hippocampal data in Fig. 5b). We
designed the GLMCC as

cðtÞ ¼ exp aðtÞ þ J12f ðtÞ þ J21f ð�tÞð Þ; ð6Þ
where t is the time from the spikes of the reference neuron, and aðtÞ represents
large-scale fluctuations produced outside of the pair of neurons. Jij represents
neuronal connection from the jth neuron to the ith neuron. The time profile of the
synaptic interaction is modeled as f ðtÞ ¼ expð� t� d

τ Þ for t > d and f ðtÞ ¼ 0
otherwise, where τ is the typical time scale of synaptic impact and d is the
transmission delay. The connection parameter Jij of our GLMCC can be derived
from a model of the original interaction process between neurons (Supplementary
Note 2).

Given an underlying rate cðtÞ, the probability for spikes to occur at ftkg ¼
ft1; t2; � � � ; tNg is obtained theoretically as62,

pðftkgjθÞ ¼
Y

k
cðtkÞ exp �

Z W

�W
cðtÞ dt

� �
; ð7Þ

where θ ¼ fJ12; J21; aðtÞg, representing a set of parameters that characterize cðtÞ.
To detect short-term synaptic impacts of a few ms hidden in large-scale

fluctuations in the CC, we make aðtÞ adapt to the slow part of the fluctuations. This
may be done by providing a prior distribution that penalizes a large gradient of
aðtÞ:

pðθÞ / exp � 1
γ

Z W

�W

da
dt

� �2

dt

" #
; ð8Þ

where γ is a hyperparameter representing the flatness of aðtÞ; aðtÞ is nearly
constant if γ is small, or is otherwise rapidly fluctuating. We selected the
hyperparameter using the ABIC (Akaike Bayesian Information Criterion)63 so that
c(t) fits the experimental CCs, and adopted the mean value: γ ¼ 5 ´ 10�4 [ms�1].
For the connection parameters J12 and J21, we have assumed uniform priors.

The posterior distribution of a set of parameters θ ¼ fJ12; J21; aðtÞg, given the
spike data ftkg, is obtained from Bayes’ rule as

pðθjftkgÞ ¼ pðftkgjθÞpðθÞ
pðftkgÞ

: ð9Þ

The parameters are determined with the maximum a posteriori (MAP) estimate,
that is, by maximizing the posterior distribution or its logarithm:

log pðθjftkgÞ ¼
X

k
log cðtkÞ �

Z W

�W
cðtÞ dt

� 1
γ

Z W

�W

da
dt

� �2

dt þ const:

ð10Þ

The MAP inference for θ ¼ fJ12; J21; aðtÞg was performed efficiently using the
Levenberg–Marquardt method (Supplementary Note 3).

Statistical test for determining connectivity. We determine the presence of a neu-
ronal connection by disproving the null hypothesis that a connection is absent.

Namely, we conclude that a connection is likely present if the estimated parameter
is outside the confidence interval for the null hypothesis; otherwise, the presence of
a connection is undetermined. The null hypothesis is that two neurons generate
spikes at their baseline firing rates independently of each other. According to
Poisson statistics, the variance of the number of spikes generated in a time interval
Δ after the spike of a reference neuron is equal to its mean. The mean spike number
is obtained by multiplying the intensity cð0Þ by an interval Δ,

n ¼ cð0ÞΔ: ð11Þ
Assuming that the connection J is small, the average number of spikes caused

by a neuronal connection during an interval Δ is approximated as

δn ¼ cð0ÞJτð1 � e�Δ=τÞ: ð12Þ
The condition that the synaptic interaction produces a significant impact on the
CC is jδnj>zα

ffiffiffi
n

p
, where zα is a threshold for the normal distribution (zα ¼ 2:58 for

α ¼ 0:01 and zα ¼ 3:29 for α ¼ 0:001). In terms of the estimated connection
parameter Ĵ , this condition is given as

ĵJj> zα
Δ1=2

τð1� e�Δ=τÞ �
1

ðcð0ÞÞ1=2
: ð13Þ

Here, Δ1=2=ðτð1� e�Δ=τÞÞ on the right-hand side of this inequality is dependent on
Δ but it takes the lowest value 1:57τ�1=2 at Δ ¼ 1:26τ. Thus we have the following
inequality:

ĵJj> 1:57zαðτcð0ÞÞ�1=2: ð14Þ
The typical duration of spike recording needed for the connectivity inference

(inequality (3)) is obtained from Eq. (14) by approximating cð0Þ ¼ Tλpreλpost,
where T is the total duration of recording.

Another requirement is that spike trains should contain a sufficiently large
number of spikes to make a reliable inference. A typical number of spikes
contained in the CC in the interaction time window is Tλpreλpostτ. By requiring this
to be >10, we obtain the inequality (4).

Selecting the significance level. Although we obtained the confidence interval of the
connection parameter Jij at the given value above, the probability of assigning
spurious connectivity to anatomically disconnected pairs is higher than the
threshold, because spike trains are correlated. Such spurious connections or FPs
may be reduced by decreasing the significance level. However, this operation may
cause the vast majority of existing connections to be missed, thus producing a huge
number of FNs. Thus, the significance level should be chosen so that these con-
flicting demands (of reducing FPs and FNs) are optimally balanced.

As we can directly count FPs and FNs in simulation data, we may select a
significance level such that the performance of the inference is maximized. As a
measure for assessing the performance of connectivity inference, we adopt the
MCC40 defined as

MCC ¼ NTPNTN�NFPNFNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNTPþNFPÞðNTPþNFNÞðNTNþNFPÞðNTNþNFNÞ

p ;

where NTP, NTN, NFP, and NFN represent the numbers of true positive, true
negative, FP, and FN connections, respectively.

Because there are excitatory and inhibitory connections, we may obtain two
coefficients for individual categories. To evaluate the quality of inference in terms
of a single measure, here we take the macro-average MCC that gives equal
importance to these categories (Macro-average)64:

MCC ¼ MCCE þMCCI

2
: ð15Þ

In computing the coefficient for the excitatory category MCCE , we classify
connections as excitatory or other (disconnected and inhibitory); for the inhibitory
category MCCI , we classify connections as inhibitory or other (disconnected and
excitatory). Here we evaluate MCCE by considering only excitatory connections of
reasonable strength (EPSP > 1 mV), as EPSPs distribute log-normally and there
are a number of weak connections that are hard to detect in several hours.

Estimating PSPs from GLM connection parameters. We translate the GLM con-
nection parameters Jij into biological PSPs wij mV. This relation is obtained by
numerically simulating a network of neurons interacting through known connec-
tions fwijg and by applying the GLM to their spike trains to estimate the con-
nection parameters fJijg. Regarding synaptic connections wij for which Jij was
verified in the correct signs, we assume a proportional relation as in Eq. (2):

Jij ¼ awij:

The coefficient a is determined by applying regression analysis to the synthetic
data. We obtained a ¼ 0:39 for EPSP and 1:57 for IPSP, respectively.

When we newly estimate connection parameters Ĵ ij from spike trains, they can
be translated into PSPs using the relation:

ŵij ¼ Ĵ ij=a: ð16Þ
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Figure 3b compares the estimated PSPs ŵij with the original PSPs values wij of a
model neural network.

In our numerical simulation, synaptic connectivity is given in terms of
conductance. Thus we have to translate conductance into PSP. The translation rule
is described in Supplementary Note 4 and Supplementary Fig. 8.

Details of existing methods. Here we describe the details of the conventional CC
method and the jittering method, which were compared with the present GLMCC
method in estimating synaptic connectivity.

The CC method estimates the deviation in the cross-correlogram at short time-
lags16. The synaptic connection is detected if the spike count is outside the
confidence interval for a null hypothesis that two spike trains are independent
stationary Poisson processes. The cross-correlogram was constructed by counting
the number of spikes in an interval [−50, þ50] ms with a bin size of Δ ¼ 1 ms. The
confidence interval is given by ½�ncc � zα

ffiffiffiffiffiffi
�ncc

p
; �ncc þ zα

ffiffiffiffiffiffi
�ncc

p �, where �ncc ¼
λpreλpostTΔ is the expected number of spikes; λpre and λpost are the firing rates of the
pre- and postsynaptic neurons, respectively; and zα is the threshold for the normal
distribution. We have chosen the significance level α ¼ 0:01.

The jittering method was introduced to avoid false detection caused by large
fluctuations in the background cross-correlogram20,25. Here we adopted the
parameters in the original method. Namely, we generated surrogate data sets by
randomly perturbing or jittering the original data in a uniform interval of
[−5,þ5] ms to estimate a global band at an acceptance level of 99%. An excitatory
or inhibitory monosynaptic connections was identified if the original cross-
correlogram at a bin size of 1 ms protruded the band anywhere in the region
[1, 4] ms.

A network of HH-type neurons. We ran a numerical simulation of a network of
1000 HH-type neurons interacting through fixed synapses. Of them, 800 excitatory
neurons innervate to 12.5% of other neurons with EPSPs that are log-normally
distributed34,35,37, whereas 200 inhibitory neurons innervate randomly to 25% of
other neurons with IPSPs that are normally distributed. Simulated spike trains and
the connectivity matrix (EPSPs and IPSPs) are available on figshare65.

Neuron models. For excitatory pyramidal cells, we adopted HH-type models
developed by Destexhe et al.66. The membrane potential V obeys the equation:

Cpyr
m

dV
dt

¼ �IL � INa � IK � IM � Itot; ð17Þ

where Cpyr
m is the membrane capacitance, IL ¼ gpyrL ðV � Epyr

L Þ is the leak current,
INa ¼ gpyrNam

3hðV � Epyr
Na Þ is the Naþ current, IK ¼ gpyrK n4ðV � Epyr

K Þ is the
delayed-rectifier Kþ current, IM ¼ gpyrM pðV � Epyr

K Þ is the muscarinic potassium
current, and Itot is the total input current from the other neurons. The gating
variables x 2 fm; h; n; pg are described by the kinetic equation:

dx
dt

¼ αxðVÞð1 � xÞ � βxðVÞx; ð18Þ

where αx and βx are the activation and inactivation functions, respectively. The
activation and inactivation functions and the parameter values are summarized in
Table 2.

For inhibitory interneurons, we adopted the HH-type models developed by
Erisir et al.67. The membrane potential V obeys the equation:

Cinh
m

dV
dt

¼ �IL � INa � IK1
� IK2

� Itot; ð19Þ

where Cinh
m is the membrane capacitance, IL ¼ g inhL ðV � Einh

L Þ is the leak current,
INa ¼ g inhNam

3hðV � Einh
Na Þ is the Naþ current, IK1

¼ g inhK1
n41ðV � Einh

K Þ and IK2
¼

g inhK2
n22ðV � Einh

K Þ are the delayed-rectifier Kþ current due to Kv1.3 and
Kv3.1–Kv3.2 conductance, respectively, and Itot is the total input current. The
gating variables x 2 fm; h; n1; n2g follow the kinetic equation (18), with the
activation and inactivation functions prescribed by the original paper67. The
parameter values are summarized in Table 2.

Synaptic connections. Each neuron receives synaptic currents induced by the firing
of other neurons. Excitatory synaptic currents are mediated by 2-amino-3-(5-
methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid (AMPA) and N-methyl-D-aspartate
(NMDA) receptors, whereas inhibitory synaptic currents are mediated by γ-ami-
nobutyric acid (GABA)-A receptors. The total input current to the ith neuron is
given by

Iitot ¼
X

j:Pyramidal cells
IijAMPA þ IijNMDA

� �
þ
X

j:Interneurons
IijGABA þ Ibg: ð20Þ

where IijAMPA, I
ij
NMDA, and IijGABA, respectively represent the synaptic currents given

by the AMPA, NMDA, and GABA receptors, and Ibg represents the background
current.

For AMPA-mediated current, we adopted the depressing synapse model
proposed by Tsodyks et al.44

IijAMPA ¼ gijAMPAwjðtÞðVi � EAMPAÞ; ð21Þ

τAMPA
ina

dwjðtÞ
dt ¼ �wjðtÞ þ UAMPArjðtÞ

P
kδðt � tjk � dAMPAÞ; ð22Þ

τAMPA
rec

drjðtÞ
dt

¼ �rjðtÞ þ 1 � wjðtÞ; ð23Þ

where gijAMPA is the maximal AMPA conductance, Vi is the membrane potential of
the postsynaptic neuron, tjk is the kth spike time of the presynaptic neuron, and
dAMPA is the synaptic conduction delay. For each connection, the conduction delay
is drawn from a uniform distribution between 0 and 2 ms. wj and rj represent the
fraction of synaptic resources in the effective and recovered states, respectively. The
AMPA parameter values are summarized in Table 3.

For NMDA-mediated current, we adopted the first-order kinetic equation
proposed by Destexhe et al.68

IijNMDA ¼ gijNMDArjðtÞf ðViÞðVi � ENMDAÞ; ð24Þ

drjðtÞ
dt ¼ αNMDATðt � tpre � dNMDAÞð1� rjðtÞÞ � βNMDArjðtÞ; ð25Þ

f ðViÞ ¼ 1:0þ 0:28½Mg2þ�e�0:062Vi
	 
�1

; ð26Þ
where [Mg2þ]= 1.0 mM is the extracellular magnesium concentration, tpre is the
last spike time of the presynaptic neuron, dNMDA is the conduction delay drawn
from a uniform distribution between 0 and 2 ms, and TðtÞ represents the
transmitter concentration in the cleft. When a spike occurs in a presynaptic
neuron, a transmitter pulse is induced such that TðtÞ ¼ 1 mM for a short period
(1 ms) and the concentration returns to TðtÞ ¼ 0. The NMDA parameter values
are summarized in Table 3.

For GABA-A-mediated current, we adopted the depressing synapse model
proposed by Tsodyks et al.44

IijGABA ¼ gijGABAwjðtÞðVi � EGABAÞ; ð27Þ

τGABAina
dwjðtÞ
dt ¼ �wj þ UGABArjðtÞ

P
kδðt � tjk � dGABAÞ; ð28Þ

τrec
drjðtÞ
dt

¼ �rjðtÞ þ 1� wjðtÞ: ð29Þ

where dGABA is the conduction delay drawn from a uniform distribution between 1
and 3 ms. The GABA parameter values are summarized in Table 3.

We ran a simulation of a network consisting of 800 pyramidal neurons and 200
interneurons interconnected with a fixed strength. Each neuron receives 100
excitatory inputs randomly selected from 800 pyramidal neurons and 50 inhibitory
inputs selected from 200 interneurons.

Table 2 Parameters for pyramidal neurons and interneurons

Neuron models

Cpyr
m , Cinh

m [μF cm�2] 1.0, 1.0
gpyrL , ginhL [mS cm�2] 0.045, 0.1
gpyrNa , g

inh
Na [mS cm�2] 50.0, 112.0

gpyrK , gpyrM , ginhK1 , g
inh
K2 [mS cm�2] 5.0, 0.07, 0.224, 224.0

EpyrL , EinhL [mV] −80.0, −70.0
EpyrNa , E

inh
Na [mV] 50.0, 55.0

EpyrK , EinhK [mV] −90.0, −97.0
S [cm2] 3:5 ´ 10�4

Table 3 Parameters for synaptic currents and background
inputs

Synaptic current

EAMPA, ENMDA, EGABA [mV] 0.0, 0.0, −75.0
τAMPA
ina , τGABAina [ms] 2.7, 10.0
τAMPA
rec , τGABArec [ms] 500, 500
UAMPA, UGABA 0.25, 0.25
αNMDA, βNMDA [ms�1] 0.5, 0.007

Background input current

ge;0, gi;0 [nS] 10.8, 51.3
σe, σ i [nS] 2.85, 6.26
τe, τ i [ms] 2.7, 10.5
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The AMPA conductance (gijAMPA) is drawn independently from a log-normal
distribution34,35

PðxÞ ¼ 1ffiffiffiffiffi
2π

p
σx

exp �ðlog x � μÞ2
2σ2

� �
; ð30Þ

where μ ¼ �3:37 and σ ¼ 1:3 are the mean and SD of the natural logarithm of
the AMPA conductance. The NMDA and GABA conductances (gijNMDA and gijGABA)
are sampled from the normal distribution

PðxÞ ¼ 1ffiffiffiffiffi
2π

p
σ
exp �ðx � μÞ2

2σ2

� �
; ð31Þ

where μ and σ are the mean and SD of the conductances. Parameters are
μNMDA ¼ 8:5 ´ 10�4 mS cm�2, σNMDA ¼ 8:5 ´ 10�5 mS cm�2 and
μGABA ¼ 0:34 mS cm�2, σGABA ¼ 0:27 mS cm�2 for the NMDA and GABA
conductance, respectively. If the sampled value is less than zero, the conductance is
resampled from the same distribution.

Because our model network is smaller than real cortical networks, where each
neuron receives inputs from the order of 1000 neurons, we added a background
current to represent inputs from many neurons, as previously done by Destexhe
et al.69. The background current is given as the sum of excitatory and inhibitory inputs:

Ibg ¼ geðtÞðV � EAMPAÞ þ g iðtÞðV � EGABAÞ; ð32Þ
where the total excitatory and inhibitory conductance ge;iðtÞ obey the
Ornstein–Uhlenbeck process70, representing random bombardments from a number
of neurons.

dgx
dt

¼ � gxðtÞ � gx;0
τx

þ
ffiffiffiffiffiffiffi
2σ2x
τx

s
ξðtÞ; ð33Þ

where x represents excitatory (e) or inhibitory (i), gx;0 and σx are the asymptotic mean
and SD of the conductance, τx is the synaptic time constant, and ξðtÞ is the Gaussian
white noise with zero mean and unit variance. Parameters for the background inputs
are summarized in Table 3.

Simulation codes were written in C++ and parallelized with OpenMP framework.
Simulations were conducted on a computer with Intel Xeon Processors E5-2650v2.
The time step was 0.01ms for excitatory (pyramidal) neurons and 0.001ms for
inhibitory (inter) neurons. The neural activity was simulated up to 10,000 s.

Experimental data. Spike trains were recorded from the hippocampal area of a rat,
while it was exploring an open square field. Experimental procedures, data collection,
and spike sorting are as described in detail in Mizuseki et al.51. All protocols were
approved by the Institutional Animal Care and Use Committees of Rutgers University
and New York University. Hippocampal principal cells and interneurons were sepa-
rated on the basis of their waveforms, autocorrelograms, and mean firing rates49–51.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The source data underlying Figs. 2–7 are provided as a Source Data file. Simulated data
generated by a network of 1,000 Hodgkin–Huxley neurons has been deposited in
figshare65 (https://doi.org/10.6084/m9.figshare.9637904). All experimental data used in
this paper can be found in hc-3 data sets at CRCNS48 (CRCNS.org. https://doi.org/
10.6080/K09G5JRZ).

Code availability
A ready-to-use version of the web application, the source code, and example data sets
are available at our website, http://www.ton.scphys.kyoto-u.ac.jp/%7Eshino/GLMCC
and are also hosted publicly on github, accessible via https://github.com/NII-Kobayashi.
Simulation codes of a large network of LIF neurons are available on ModelDB
(https://senselab.med.yale.edu/modeldb/ShowModel.cshtml?model=258807). Simulation
codes of a network of HH neurons are available upon request from the corresponding
author.

Received: 10 July 2018 Accepted: 27 August 2019

References
1. Buzsáki, G. Large-scale recording of neuronal ensembles. Nat. Neurosci. 7, 446

(2004).
2. Jun, J. J. et al. Fully integrated silicon probes for high-density recording of

neural activity. Nature 551, 232 (2017).

3. Mitz, A. R. et al. High channel count single-unit recordings from nonhuman
primate frontal cortex. J. Neurosci. Methods 289, 39–47 (2017).

4. Pachitariu, M. et al. Suite2p: beyond 10,000 neurons with standard two-
photon microscopy. preprint at https://www.biorxiv.org/content/10.1101/
061507v2.abstract (2017).

5. Stringer, C., Pachitariu, M., Steinmetz, N., Carandini, M. & Harris, K. D.
High-dimensional geometry of population responses in visual cortex. Nature
571, 361–365 (2019).

6. Brown, E. N., Kass, R. E. & Mitra, P. P. Multiple neural spike train data
analysis: state-of-the-art and future challenges. Nat. Neurosci. 7, 456 (2004).

7. Hatsopoulos, N., Joshi, J. & O’Leary, J. G. Decoding continuous and discrete
motor behaviors using motor and premotor cortical ensembles. J.
Neurophysiol. 92, 1165–1174 (2004).

8. Pillow, J. W. et al. Spatio-temporal correlations and visual signalling in a
complete neuronal population. Nature 454, 995 (2008).

9. Ohiorhenuan, I. E. et al. Sparse coding and high-order correlations in fine-
scale cortical networks. Nature 466, 617 (2010).

10. Stevenson, I. H. & Kording, K. P. How advances in neural recording affect
data analysis. Nat. Neurosci. 14, 139 (2011).

11. Churchland, M. M. et al. Neural population dynamics during reaching. Nature
487, 51 (2012).

12. Cunningham, J. P. & Byron, M. Y. Dimensionality reduction for large-scale
neural recordings. Nat. Neurosci. 17, 1500 (2014).

13. Kobak, D. et al. Demixed principal component analysis of neural population
data. Elife 5, e10989 (2016).

14. Perkel, D. H., Gerstein, G. L. & Moore, G. P. Neuronal spike trains and stochastic
point processes: Ii. simultaneous spike trains. Biophys. J. 7, 419–440 (1967).

15. Toyama, K., Kimura, M. & Tanaka, K. Organization of cat visual cortex as
investigated by cross-correlation technique. J. Neurophysiol. 46, 202–214
(1981).

16. Aertsen, A. M. & Gerstein, G. L. Evaluation of neuronal connectivity:
sensitivity of cross-correlation. Brain Res. 340, 341–354 (1985).

17. Reid, R. C. & Alonso, J.-M. Specificity of monosynaptic connections from
thalamus to visual cortex. Nature 378, 281 (1995).

18. Sakurai, Y. Hippocampal and neocortical cell assemblies encode memory
processes for different types of stimuli in the rat. J. Neurosci. 16, 2809–2819
(1996).

19. Okatan, M., Wilson, M. A. & Brown, E. N. Analyzing functional connectivity
using a network likelihood model of ensemble neural spiking activity. Neural
Comput. 17, 1927–1961 (2005).

20. Fujisawa, S., Amarasingham, A., Harrison, M. T. & Buzsáki, G. Behavior-
dependent short-term assembly dynamics in the medial prefrontal cortex. Nat.
Neurosci. 11, 823 (2008).

21. Grun, S. Data-driven significance estimation for precise spike correlation. J.
Neurophysiol. 101, 1126–1140 (2009).

22. Stevenson, I. H. et al. Bayesian inference of functional connectivity and
network structure from spikes. IEEE Trans. Neural Syst. Rehabil. Eng. 17,
203–213 (2009).

23. Chen, Z., Putrino, D. F., Ghosh, S., Barbieri, R. & Brown, E. N. Statistical
inference for assessing functional connectivity of neuronal ensembles with sparse
spiking data. IEEE Trans. Neural Syst. Rehabil. Eng. 19, 121–135 (2011).

24. Ito, S. et al. Extending transfer entropy improves identification of effective
connectivity in a spiking cortical network model. PLoS One 6, e27431 (2011).

25. Amarasingham, A., Harrison, M. T., Hatsopoulos, N. G. & Geman, S.
Conditional modeling and the jitter method of spike resampling. J.
Neurophysiol. 107, 517–531 (2012).

26. Stetter, O., Battaglia, D., Soriano, J. & Geisel, T. Model-free reconstruction of
excitatory neuronal connectivity from calcium imaging signals. PLoS Comput.
Biol. 8, e1002653 (2012).

27. Kobayashi, R. & Kitano, K. Impact of network topology on inference of
synaptic connectivity from multi-neuronal spike data simulated by a large-
scale cortical network model. J. Comput. Neurosci. 35, 109–124 (2013).

28. Schwindel, C. D., Ali, K., McNaughton, B. L. & Tatsuno, M. Long-term
recordings improve the detection of weak excitatory-excitatory connections in
rat prefrontal cortex. J. Neurosci. 34, 5454–5467 (2014).

29. Zaytsev, Y. V., Morrison, A. & Deger, M. Reconstruction of recurrent synaptic
connectivity of thousands of neurons from simulated spiking activity. J.
Comput. Neurosci. 39, 77–103 (2015).

30. Cai, Z., Neveu, C. L., Baxter, D. A., Byrne, J. H. & Aazhang, B. Inferring
neuronal network functional connectivity with directed information. J.
Neurophysiol. 118, 1055–1069 (2017).

31. Brody, C. D. Correlations without synchrony. Neural Comput. 11, 1537–1551
(1999).

32. Gerstein, G. L., Bedenbaugh, P. & Aertsen, A. M. Neuronal assemblies. IEEE
Trans. Biomed. Eng. 36, 4–14 (1989).

33. Stevenson, I. H., Rebesco, J. M., Miller, L. E. & Körding, K. P. Inferring
functional connections between neurons. Curr. Opin. Neurobiol. 18, 582–588
(2008).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12225-2

12 NATURE COMMUNICATIONS |         (2019) 10:4468 | https://doi.org/10.1038/s41467-019-12225-2 | www.nature.com/naturecommunications

https://doi.org/10.6084/m9.figshare.9637904
https://doi.org/10.6080/K09G5JRZ
https://doi.org/10.6080/K09G5JRZ
http://www.ton.scphys.kyoto-u.ac.jp/%7Eshino/GLMCC
https://github.com/NII-Kobayashi
https://senselab.med.yale.edu/modeldb/ShowModel.cshtml?model=258807
https://www.biorxiv.org/content/10.1101/061507v2.abstract
https://www.biorxiv.org/content/10.1101/061507v2.abstract
www.nature.com/naturecommunications


34. Song, S., Sjöström, P. J., Reigl, M., Nelson, S. & Chklovskii, D. B. Highly
nonrandom features of synaptic connectivity in local cortical circuits. PLoS
Biol. 3, e68 (2005).

35. Teramae, J.-N., Tsubo, Y. & Fukai, T. Optimal spike-based communication in
excitable networks with strong-sparse and weak-dense links. Sci. Rep. 2, 485
(2012).

36. Ikegaya, Y. et al. Interpyramid spike transmission stabilizes the sparseness of
recurrent network activity. Cereb. Cortex 23, 293–304 (2013).

37. Buzsáki, G. & Mizuseki, K. The log-dynamic brain: how skewed distributions
affect network operations. Nat. Rev. Neurosci. 15, 264 (2014).

38. Hoffmann, J. H. et al. Synaptic conductance estimates of the connection
between local inhibitor interneurons and pyramidal neurons in layer 2/3 of a
cortical column. Cereb. Cortex 25, 4415–4429 (2015).

39. Potjans, T. C. & Diesmann, M. The cell-type specific cortical microcircuit:
relating structure and activity in a full-scale spiking network model. Cereb.
Cortex 24, 785–806 (2014).

40. Matthews, B. W. Comparison of the predicted and observed secondary
structure of t4 phage lysozyme. Biochim. Biophys. Acta 405, 442–451 (1975).

41. Fetz, E. E. & Gustafsson, B. Relation between shapes of post-synaptic
potentials and changes in firing probability of cat motoneurones. J. Physiol.
341, 387–410 (1983).

42. Volgushev, M., Ilin, V. & Stevenson, I. H. Identifying and tracking simulated
synaptic inputs from neuronal firing: insights from in vitro experiments. PLoS
Comput. Biol. 11, e1004167 (2015).

43. Melssen, W. & Epping, W. Detection and estimation of neural connectivity
based on crosscorrelation analysis. Biol. Cybern. 57, 403–414 (1987).

44. Tsodyks, M. V. & Markram, H. The neural code between neocortical
pyramidal neurons depends on neurotransmitter release probability. Proc.
Natl Acad. Sci. USA 94, 719–723 (1997).

45. Gupta, A., Wang, Y. & Markram, H. Organizing principles for a diversity of
gabaergic interneurons and synapses in the neocortex. Science 287, 273–278
(2000).

46. Shinomoto, S., Shima, K. & Tanji, J. Differences in spiking patterns among
cortical neurons. Neural Comput. 15, 2823–2842 (2003).

47. Mochizuki, Y. et al. Similarity in neuronal firing regimes across mammalian
species. J. Neurosci. 36, 5736–5747 (2016).

48. Mizuseki, K., Sirota, A., Pastalkova, E., Diba, K. & Buzsáki, G. Multiple single
unit recordings from different rat hippocampal and entorhinal regions while
the animals were performing multiple behavioral tasks. (CRCNS Org, 2013).

49. Skaggs, W. E., McNaughton, B. L., Wilson, M. A. & Barnes, C. A. Theta phase
precession in hippocampal neuronal populations and the compression of
temporal sequences. Hippocampus 6, 149–172 (1996).

50. Csicsvari, J., Hirase, H., Czurko, A. & Buzsáki, G. Reliability and state
dependence of pyramidal cell-interneuron synapses in the hippocampus: an
ensemble approach in the behaving rat. Neuron 21, 179–189 (1998).

51. Mizuseki, K., Sirota, A., Pastalkova, E. & Buzsáki, G. Theta oscillations provide
temporal windows for local circuit computation in the entorhinal-
hippocampal loop. Neuron 64, 267–280 (2009).

52. Freund, T. F. & Buzsáki, G. Interneurons of the hippocampus. Hippocampus 6,
347–470 (1996).

53. Deuchars, J. & Thomson, A. Ca1 pyramid-pyramid connections in rat
hippocampus in vitro: dual intracellular recordings with biocytin filling.
Neuroscience 74, 1009–1018 (1996).

54. Pillow, J. W., Shlens, J., Chichilnisky, E. & Simoncelli, E. P. A model-based
spike sorting algorithm for removing correlation artifacts in multi-neuron
recordings. PLoS One 8, e62123 (2013).

55. Gewaltig, M.-O. & Diesmann, M. Nest (neural simulation tool). Scholarpedia
2, 1430 (2007).

56. Koyama, S., CastellanosPérez-Bolde, L., Shalizi, C. R. & Kass, R. E. Approximate
methods for state-space models. J. Amer. Stat. Assoc. 105, 170–180 (2010).

57. Chen, Z. & Brown, E. N. State space model. Scholarpedia 8, 30868 (2013).
58. Zhou, B., Moorman, D. E., Behseta, S., Ombao, H. & Shahbaba, B. A dynamic

bayesian model for characterizing cross-neuronal interactions during
decision-making. J. Amer. Stat. Assoc. 111, 459–471 (2016).

59. Marshall, L. et al. Hippocampal pyramidal cell-interneuron spike transmission
is frequency dependent and responsible for place modulation of interneuron
discharge. J. Neurosci. 22, RC197 (2002).

60. English, D. F. et al. Pyramidal cell-interneuron circuit architecture and
dynamics in hippocampal networks. Neuron 96, 505–520 (2017).

61. Barthó, P. et al. Characterization of neocortical principal cells and
interneurons by network interactions and extracellular features. J.
Neurophysiol. 92, 600–608 (2004).

62. Daley, D. J. & Vere-Jones, D. An introduction to the theory of point processes.
(Springer-Verlag, New York, 2003).

63. Akaike, H. Likelihood and the bayes procedure. in Selected papers of Hirotugu
Akaike 309–332 (Springer, 1998).

64. Sun A. & Lim E.-P. Hierarchical text classification and evaluation, in
Proceedings of ICDM 2001 521–538 (IEEE, 2001).

65. Kobayashi R. et al. Synthetic spike data generated by a network of 1000
hodgkin-huxley type neurons. Figshare (2019) https://doi.org/10.6084/m9.
figshare.9637904.

66. Destexhe, A. & Paré, D. Impact of network activity on the integrative
properties of neocortical pyramidal neurons in vivo. J. Neurophysiol. 81,
1531–1547 (1999).

67. Erisir, A., Lau, D., Rudy, B. & Leonard, C. Function of specific k. channels in
sustained high-frequency firing of fast-spiking neocortical interneurons. J.
Neurophysiol. 82, 2476–2489 (1999).

68. Destexhe, A., Mainen, Z. F. & Sejnowski, T. J. Kinetic models of synaptic
transmission. Methods Neuronal Model. 2, 1–25 (1998).

69. Destexhe, A., Rudolph, M., Fellous, J.-M. & Sejnowski, T. J. Fluctuating
synaptic conductances recreate in vivo-like activity in neocortical neurons.
Neuroscience 107, 13–24 (2001).

70. Tuckwell, H. C. Introduction to theoretical neurobiology:, nonlinear and
stochastic theories 2 (Cambridge University Press, Cambridge, 1988).

Acknowledgements
We thank Yuzuru Yamanaka, Tatsuya Goto, Kazuki Fujita, Daisuke Endo, and Masahiro
Naito for their constructive comments on this manuscript. Furthermore, this paper was
greatly improved by the comments of anonymous reviewers. R.K. is supported by JSPS
KAKENHI grant numbers JP17H03279, JP18K11560, and JP19H01133, JST ACT-I
Grant Number JPMJPR16UC, the Okawa Foundation for Information and Tele-
communications, and the Open Collaborative Research and MOU grant at the National
Institute of Informatics in Japan. S.K. is supported by JST ACT-I Grant Number
JPMJPR17U8. A.K. and M.D. received funding from the European Union’s Horizon 2020
Framework Programme for Research and Innovation under Specific Grant Agreement
No. 785907 (Human Brain Project SGA2). K.M. is supported by JSPS KAKENHI grant
numbers JP16H04656 and JP17K19462. B.J.R. is supported by US NIMH Intramural
Program with report number ZIAMH002619-27. S.S. is supported by JSPS KAKENHI
Grant numbers JP26280007 and JP17H06028, and the New Energy and Industrial
Technology Development Organization (NEDO).

Author contributions
S.S. conceived the project. R.K. and S.S. developed methodology for reconstructing
neuronal connectivity. S.K and K.K. performed the network simulation of HH neurons.
K.M. performed the experiment. A.K. and M.D. performed the large-scale simulation of
LIF neurons. S.S. and B.J.R. wrote the manuscript based on input from R.K. All authors
commented on the manuscript. S.S. supervised the project.

Additional information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41467-
019-12225-2.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Peer review information Nature Communications thanks Zhe Chen, Marius Pachitariu
and the other, anonymous, reviewer(s) for their contribution to the peer review of
this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12225-2 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:4468 | https://doi.org/10.1038/s41467-019-12225-2 |www.nature.com/naturecommunications 13

https://doi.org/10.6084/m9.figshare.9637904
https://doi.org/10.6084/m9.figshare.9637904
https://doi.org/10.1038/s41467-019-12225-2
https://doi.org/10.1038/s41467-019-12225-2
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Reconstructing neuronal circuitry from parallel spike trains
	Results
	Estimating neuronal connections
	Criterion for the presence of connections
	Duration of spike recording
	Estimating PSPs
	Excitatory–nobreakinhibitory (E–nobreakI) dominance index
	Real spike trains
	Comparison with other methods
	Testing with large-scale simulations

	Discussion
	Methods
	Estimating neuronal connectivity
	GLMCC
	Statistical test for determining connectivity
	Selecting the significance level
	Estimating PSPs from GLM connection parameters
	Details of existing methods
	A network of HH-type neurons
	Neuron models
	Synaptic connections
	Experimental data
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Additional information




