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Abstract: Forkhead box class O family member proteins (FoxOs) are evolutionarily conserved
transcription factors for their highly conserved DNA-binding domain. In mammalian species, all the
four FoxO members, FoxO1, FoxO3, FoxO4, and FoxO6, are expressed in different organs. In bone,
the first three members are extensively expressed and more studied. Bone development, remodeling,
and homeostasis are all regulated by multiple cell lineages, including osteoprogenitor cells, chondrocytes,
osteoblasts, osteocytes, osteoclast progenitors, osteoclasts, and the intercellular signaling among these
bone cells. The disordered FoxOs function in these bone cells contribute to osteoarthritis, osteoporosis,
or other bone diseases. Here, we review the current literature of FoxOs for their roles in bone cells,
focusing on helping researchers to develop new therapeutic approaches and prevent or treat the related
bone diseases.

Keywords: FoxOs; bone cells; antioxidant; osteogenesis; osteoclastogenesis; chondrogenesis;
bone diseases

1. Introduction

Forkhead box class O family member proteins (FoxOs) are evolutionarily conserved transcription
factors [1]. FoxOs translate environmental signaling into gene expression [2], regulating many cellular
processes, including cell survival, proliferation, differentiation, apoptosis, oxidative stress resistance,
metabolism, inflammation, and aging [3–8]. In bone, internal and external environmental changes
cause an imbalance of the bone dynamic, resulting in loss of bone mass and strength, and increased
risk for fractures and morbidity [9,10]. Recent studies with murine models of cell-specific loss- or
gain-of-function of FoxOs, have revealed that FoxOs regulate bone cell functions and their intercellular
signaling. These controls affect bone development, alter bone mass, and conduce several bone diseases,
such as osteoarthritis, age-related or estrogen-deficiency osteoporosis, and so on [10].

Hence, we will firstly introduce the structure and function of the FoxO family. Then, we will
review the recent developments about FoxOs in osteoprogenitor cells, osteoblasts, hematopoietic stem
cells, osteoclast progenitors, osteoclasts, and chondrocytes, as well as the intercellular signaling among
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these bone cells. At the same time, we will also describe the FoxO actions in bone cell biology, including
cell survival, self-renewal, cell cycle, proliferation, osteogenesis, osteoclastogenesis, chondrogenesis,
autophagy, and apoptosis. All of these will focus on their emerging molecular mechanism, pathological
implications, and therapeutic potential for related bone diseases.

2. The FoxO Family

In mammalian species, there are four members of the FoxO family: FoxO1 (FKHR), FoxO3
(FKHRL1), FoxO4 (AFX), and FoxO6 [11]. FoxO1 and FoxO3 proteins are greater than 650 amino acids
in size, which are larger than FoxO4 and FoxO6 (nearly 500 amino acids). Although, the FoxO6 gene
exhibits major structural differences as compared to the other three family gene members [11]. The four
FoxO protein members share obvious sequence homology and possess four clearly different functional
motifs, which include a forkhead domain, nuclear localization, nuclear export, and transactivation
domains (Figure 1) [12,13]. All the four FoxO members are ubiquitously expressed [14], including
FoxO6 that was previously reported to exist basically in the brain but has been more recently discovered
in other organs as well [4,15]. In particular, FoxO1, FoxO4, and FoxO6 are more detected in the adipose,
musculoskeletal, and nervous tissues, respectively, while FoxO3 is more expressed in the stomach,
spleen, kidney, intestine, and cardiac tissues [13]. Nevertheless, FoxO1, FoxO3, and FoxO4 are all
expressed in bone cells [16].
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sequence and the nuclear export sequence are within the C-terminal DNA binding domain of FoxOs, 
indispensable for maintaining the FoxO proteins in the nucleus or in the cytosol, respectively [12]. 
Nuclear FoxO proteins, predominantly as transcription factors, interact with DNA and partner 
proteins to modulate the transcription of numerously specific target genes [17].  
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Figure 1. A schematic diagram of the four different functional motifs of the mammalian FoxO family
members (FoxOs). For humans, FoxO1, FoxO3, FoxO4, and FoxO6 proteins are 655 aa, 673 aa, 505 aa,
and 492 aa in size, respectively. The functional domains are the forkhead domain, nuclear localization,
nuclear export, and a transactivation domain.

In FoxO proteins, the forkhead domain located in the N-terminal portion [17] can recognize two
response elements: the insulin-responsive element (5’-(C/A) (A/C)AAA(C/T)AA) and Daf-16 (namely
FoxO) family member binding element (5´-GTAAA(T/C)AA) [12–16,18]. Although FoxO1 recognizes
both the insulin response element and the Daf-16 family member binding element, it has a higher
affinity for the latter [19]. The transactivation domain, located in the C-terminal region of the FoxOs,
combines with the cis-regulatory sites of FoxO-target genes [17]. In addition, the nuclear localization
sequence and the nuclear export sequence are within the C-terminal DNA binding domain of FoxOs,
indispensable for maintaining the FoxO proteins in the nucleus or in the cytosol, respectively [12].
Nuclear FoxO proteins, predominantly as transcription factors, interact with DNA and partner proteins
to modulate the transcription of numerously specific target genes [17].

Responding to a variety of external or internal stimuli (including starvation, insulin, growth factors,
hormones, cytokines, and oxidative stress), FoxOs act as transcription factors and rarely as co-regulators,
either activated or inactivated by post-translational modification (like phosphorylation, ubiquitination,
acetylation, and methylation) [9,20]. Further, they are also regulated by lipopolysaccharide (LPS),
tumor necrosis factor α (TNF-α), and the interaction with protein partners [21]. These modifications
alter the nuclear import and export steps of FoxOs, modify the DNA binding affinity of FoxOs, and alter
transcriptional activity for FoxOs’ specific target gene. Therefore, FoxOs take part in regulatory
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networks that ensure tight and timely transcriptional control of proteins involved in proliferation
(FoxO1, FoxO3, and FoxO4), cellular differentiation (FoxO1, FoxO3, and FoxO4), apoptosis (FoxO1,
FoxO3, and FoxO4), oxidative stress resistance (FoxO1 and FoxO3), metabolism (FoxO1 and FoxO3),
inflammation (FoxO1, FoxO3, and FoxO4) and aging (FoxO1, FoxO3, and FoxO4) in mammals [3–8].
What is more, a unifying hypothesis has also highlighted the role of FoxOs as signaling integrators for
the maintenance of cell and tissue homeostasis over time and in response to environmental challenges,
including metabolic stress, oxidative stress, and growth factor deprivation [9].

3. FoxOs and Bone Cells

As compared to other organs in the body, bone is constantly degraded and replaced throughout
one’s life. The relatively dynamic bone modeling and remodeling are governed specifically by
osteoprogenitor cells, osteoblasts, osteocytes, hematopoietic stem cells, osteoclast progenitors,
osteoclasts, and chondrocytes, as well as the complex intercellular signaling among these bone
cells. Except for osteocytes, all bone cells were found expressing FoxO1, 3, and 4, as in several other
mammalian cell types. Functions of FoxOs in these cells are pivotal for bone development, remodeling,
and homeostasis manipulation under physiological and pathological conditions.

3.1. Bidirectional Regulation of FoxOs in Osteoprogenitor Cells

FoxOs play important roles in the osteogenesis of osteoprogenitor cells containing mesenchymal
stem cells (MSCs), the early precursors of osteoblasts. MSCs are multipotent stromal cells. They give
rise to chondrocytes, muscle cells, and adipocytes. Moreover, osteogenic differentiation of MSCs
into osteoblasts is managed by an array of specific transcription factors (such as transcription factor
TCF, runt-related transcription factor 2, and activating transcription factor 4) and genes (such as the
alkaline phosphatase gene, runt-related transcription factor 2 gene, and osteocalcin gene), leading
to a succession of osteoblast phenotypic markers [16]. Therefore, it is not difficult to envision the
bidirectional regulation role of FoxOs in the entire complex and sensitive osteogenic process (Table 1).

3.1.1. FoxOs Promote Osteogenesis

With experiments in vitro, ex vivo, and in vivo, Teixeira et al. have demonstrated FoxO1 as an
early positive regulator in the osteogenic differentiation of mesenchymal cells [22]. In mouse embryonic
mesenchymal cells (C3H10T1/2 cells), osteogenic stimulants enhance the activity and expression of
FoxO1. Similarly, overexpressing FoxO1 significantly increases the expression of osteogenic markers
such as runt-related transcription factor 2 (Runx2), alkaline phosphatase (Alp), and osteocalcin (Ocn).
Conversely, silencing FoxO1 inhibits the expression of these osteogenic markers, decreases calcification,
impairs skeletogenesis and craniofacial development, and especially reduces the size of the embryos as
well as bone size in the craniofacial area. In addition, knocking down FoxO1 in mouse embryonic tibia
ex vivo has been reported to have similar results as those obtained in vivo, which led to shorter and less
mineralized bone [22]. Furthermore, in pre-osteoblastic cells (e.g., MC3T3-E1 cells), the upregulated
binding activity of FoxO1 to the Runx2 gene promoter increases the mRNA level of Runx2 and alkaline
phosphatase (ALP) activity during the formation of mineralizing nodules. In addition, Runx2 directs
pluripotent MSCs to the osteoblast lineage and triggers the expression of major bone matrix protein
genes (like type I collagen or Alp) in early progenitors. Then, FoxO1 interacts with Runx2 and could
promote osteoblast differentiation [16,23]. Therefore, to some extent, FoxO1 promotes osteoblast
differentiation by interacting with Runx2 or its gene promoter (Figure 2). Besides, FoxO1 could also
bind to the ALP gene promoter [24]. BMP-2-induced FoxO1 transcription increases the reporter activity
of an ALP gene promoter construct [25]. Thus, FoxO1 may also promote osteoblast differentiation by
interacting with the ALP gene promoter (Figure 2).
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Figure 2. The diverse function of FoxOs in osteoprogenitor cells. Reactive oxygen species (ROS) can
trigger FoxOs mediated transcription and enhances the binding of FoxOs to β-catenin, thus diverting
the limited β-catenin pool from transcription factor TCF to FoxO-mediated transcription and thereby
decreases osteoblastogenesis. But FoxO1 promotes the transcription of runt-related transcription factor
2 (Runx2) or alkaline phosphatase (Alp), increasing osteoblastogenesis.

Similarly, it has been reported that global deletion of FoxO1, 3, and 4 in mice leads to a reduction
in the expression of Runx2, Osterix, and alkaline phosphatase in osteoblastic progenitors in vitro [26],
and the mice also display a significant decrease in the number of cell colony-forming unit (CFU)
fibroblasts and CFU osteoblasts presented in the bone marrow [21]. That means FoxOs could regulate
osteoblast differentiation and proliferation.

On the other hand, FoxO1, as a transcriptional trans-repressor, inhibits the actions of
peroxisome proliferator-activated receptor γ (PPARγ) [27], which activates adipogenesis and suppresses
osteoblastogenesis. The deletion of FoxOs increases PPARγ expression [21]. Consistent with these findings,
FoxO1 restrains adipogenesis by repressing the activity of the PPARγ promoter and by antagonizing
PPARγ’s ability by directly binding to PPAR-response elements (PPREs), the promoters of PPARγ target
genes in pre-adipocytes [28,29]. As a result, FoxOs improve bone formation, by increasing osteoblast
differentiation at the expense of adipocyte differentiation from their common mesenchymal progenitors.



Int. J. Mol. Sci. 2020, 21, 692 5 of 22

Table 1. The bidirectional regulation role of FoxO transcription factors (FoxOs) in osteoprogenitor cells.

FoxOs Effects on Bone Functions in Osteoprogenitor
Cell Mechanisms Cell/Mice Models References

FoxO1
skeletogenesis (+);

craniofacial development
(+); craniofacial area (+)

osteogenesis differentiation (+);
calcification culture (+)

FoxO1 interacts with
Runx2 promoter (+);

Runx2, ALP and OCN
expression (+)

C3H10T1/2 cells with FoxO1
overexpression or silencing; mice

with downregulated FoxO1
expression in developing embryos
in vivo/embryonic tibiae ex vivo

[22]

osteoblast differentiation (+);
osteoblast proliferation (-)

depletion/overexpression of FoxO1
in MC3T3-E1 cells [25]

FoxO1, 3, and 4

oxidative stress (-);
skeletal homeostasis (+)

CFU-osteoblasts (+);
conditional deletion of FoxO1, 3,

and 4 in 3-month-old mice

[21]

osteogenic differentiation (+) Runx2, Osterix, and ALP
expression (+) [26]

Adipogenesis (-) PPARγ (-) global deletion of FoxO1, 3, and 4
in mice [21]

bone mass (-); osteoblast
numbers (-)

osteoprogenitor cells
proliferation (-)

Wnt/β-catenin signaling
(-); cyclin D1 expression (-)

mice lacking FoxO1, 3, and 4 in
bipotential progenitors of
osteoblast and adipocytes

(expressing Osterix1)

[18]

Note: (+) refers to a positive effect and (-) refers to a negative effect.



Int. J. Mol. Sci. 2020, 21, 692 6 of 22

3.1.2. FoxOs Repress Osteogenesis

In contrast to the above findings, some researchers also indicate FoxOs repress the osteogenic actions
by suppressing Wnt signaling in osteoblast progenitors. Conditional knocked-out mice of FoxO1, 3, and 4
in bipotential progenitors of osteoblast and adipocytes showed that osteoblast number and bone mass
were increased, but unexpectedly, there were no changes in the redox balance. The increased bone mass
rooted in the increased proliferation of osteoprogenitor cells and bone formation, which accounted for
the upregulation of Wnt/β-catenin signaling and cyclin D1 expression [18]. In addition, overexpression
of FoxO1 reduced the MC3T3-E1 cell number and the number of proliferating cell nuclear antigen
(PCNA)-positive cells with little effect on apoptosis, indicating that FoxO1 suppressed preosteoblast
proliferation [25].

Moreover, in osteoblast progenitors, FoxOs acts as defense molecules in oxidative stress to
regulate osteogenic actions. Excessive accumulation of reactive oxygen species (ROS) generally causes
oxidative stress and destroys proteins, lipids, and DNA, even consequentially leading to cell death [30].
As a result of the conditional deletion of FoxO1, FoxO3, and FoxO4 in 3-month-old mice, oxidative
stress and osteoblast apoptosis increased in bone, and the number of osteoblasts, the rate of bone
formation, and bone mass were all decreased at cancellous or cortical sites [26]. So, we can infer that
FoxOs can protect osteogenesis against oxidative stress. However, in osteoblast precursors, FoxOs
are induced by the oxidative stress (exemplified by H2O2) to bind with β-catenin to co-activate the
target genes’ transcriptions of FoxOs at the expense of Wnt/TCF-mediated transcription and osteoblast
differentiation (Figure 2) [31]. Moreover, in aging mice, the expression of β-catenin/TCF-target genes
decreases whereas FoxO-target genes increases in bone, along with an increase in markers of oxidative
stress and a decrease in bone formation [31,32]. In line with this idea, fatty acid-binding protein 4
(FABP4)-Wnt10b mice, which express the Wnt10b transgene in marrow, and the mice with a mutation
(G171V) in the low-density lipoprotein receptor related protein 5 (LRP5), both reveal enhanced bone
mass and no evidence of age-related loss of bone mass or strength [21,33,34].

Similarly, the lipid oxidation may also suppress Wnt signaling by the same mechanism, and result
in the decline in osteoblast number and bone formation that occurs with aging. It has been shown that
lipoxygenases oxidize polyunsaturated fatty acids to form products, which bind to and activate PPARγ
and generate pro-oxidants like 4-hydroxynonenal (4-HNE) [35]. The Almeida group demonstrated
that lipid oxidation increases with age in bone [21]. Similar to H2O2, the 4-HNE also activates FoxOs
that in turn attenuate β-catenin/TCF-mediated transcription [36]. Hence, it also enhances PPARγ levels
for the suppression of TCF-mediated transcription to PPARγ expression [37,38]. On the other hand,
the PPARγ bind to β-catenin and induce β-catenin degradation [36,39], thereby further diminishing
β-catenin/TCF-mediated transcription. Therefore, at least in part, it is reasonable to understand that
the bone loss with aging might arise from the repressive effect of ROS on Wnt/β-catenin signaling via
FoxO activation.

Responding to oxidative stress, FoxOs also restrain other main osteogenic signaling pathways
(Hedgehog signaling and Mitogen-activated protein kinases signaling) while boosting adipogenic
signaling pathways [40]. Meanwhile, they also promote expression of antioxidants, which also
increases adipogenic differentiation [40]. It is known that adipogenic differentiation is antagonistic to
the osteogenic differentiation. Thus, FoxOs may also accelerate bone loss with aging by enhancing
adipogenic differentiation. Obviously, in response to oxidative stress, FoxOs play an essential role to
maintain skeletal homeostasis in osteoprogenitor cells.

Taken together, in osteoblast progenitor cells, FoxOs have complicated and contradictory features
(Figure 2). There is no doubt that FoxOs are important in defense during oxidative stress and prevent
cell death triggered by ROS, thus promoting osteogenesis. On one hand, MSCs have relatively high
expression of antioxidant-like glycolysis and low ROS levels to keep quiescent [40], but a high ROS
level may act as an intracellular signal to drive MSCs to exit from quiescence and result in the activation
of a genetic program triggering osteoblast precursors commitment [16]. So, at the initial stage of
differentiation, the switching from FoxO-mediated transcription to Wnt/TCF-mediated transcription
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may benefit osteogenesis. On the other hand, with the progress of osteogenic differentiation, FoxO1 may
directly participate in osteoblastogenesis promotion by binding to the ALP and Runx2 gene promoters
or directly interacting with Runx2, as well as maintaining a low level of ROS to protect cells from
oxidative stress. Besides, FoxOs decrease ROS levels to restrain adipogenic differentiation. Therefore,
the specific role of FoxOs may depend on the differentiation stage and ROS level of osteoprogenitor
cells. Further studies are still needed to fully reveal the multiple functions of FoxOs in osteoprogenitor
cells at a subtle stage during osteogenic differentiation.

3.2. FoxOs Improve Osteoblasts Function

The effects of FoxOs on osteoblasts are also complicated and likely to depend upon specific conditions
(Table 2). Nevertheless, most of the literature support the positive effect of FoxOs in osteoblasts. On one hand,
FoxOs regulate osteoblast numbers significantly by improving antioxidant defense (Figure 3). Conditionally
overexpressed FoxO3 in osteoblasts decreases ROS and further inhibits osteoblast apoptosis with
reducing phosphorylation of p66Shc. Consistent with this, conditional deletion of all three FoxO
members (FoxO1/3/4) in 3-month-old mice decrease osteoblast numbers due to osteoblast apoptosis
with arising oxidative stress. FoxOs inactivation also inhibits osteoblastogenesis [26]. Moreover,
osteoblast-specific deletion of FoxO1 leads to increased oxidative stress, which decreases osteoblast
numbers and bone mass [41]. More precisely, the FoxO1 inactivation weakens its interaction with
activating transcription factor 4 (ATF4), reducing the target gene binding activity of FoxO1 and impeding
amino acid import and protein synthesis through ATF4 (Figure 3). Therefore, as transcriptional
regulation genes of FoxO1, antioxidant gene (such as Sod2 and catalase) expression decreases, increasing
the ROS level and exerting harmful effects on osteoblast survival. And with FoxO1 deletion, the blocked
protein synthesis breaks the redox balance by improving the expression of p19ARF (an alternate reading
frame protein product of the CDKN2A locus in mice) and p16 and downstream activation of their
target protein p53, repressing the cell cycle of the osteoblasts and finally decreasing osteoblast numbers.
Additionally, the blocked protein synthesis also suppresses glutathione accumulation, which induces
oxidative stress [41]. Taken together, FoxOs enhance the activity of osteoblasts and protect these cells
through the induction of antioxidants (Figure 3).
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Figure 3. FoxOs’ function in osteoblasts. FoxOs’ transcriptional activity reduces ROS levels and improves
osteoblast survival. The interaction between FoxO1 and activating transcription factor 4 (ATF4) maintains
osteoblast normal proliferation by preventing ROS or enhancing protein synthesis. In addition, FoxO1
suppresses the interaction between the Runx2 and Bglap2 (osteocalcin gene) promoters, directly bind to
the Bglap2 promote r, or both to inhibit osteocalcin (OCN) expression.
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Table 2. Bone metabolism regulatory functions of FoxO transcription factors in osteoblast.

FoxOs Effects on Bone Functions in Osteoblast Mechanisms Cell/Mice Models References

FoxO1, 3,
and 4

bone mass (+); bone
formation rate (BFR) (+)

osteoblast number (+); osteoblast
apoptosis (-); oxidative stress (-)

osteoblast number (+) through osteoblastogenesis (+);
osteoblast apoptosis (-) through a cell-autonomous

mechanism that enhances oxidative stress

conditional deletion of FoxO1,
3, and 4 in 3-month-old mice

[26]FoxO1 BFR (+); bone volume (+) osteoblast numbers (+); oxidative
stress (-)

ROS activates the p53 signaling cascade, inducing cell
cycle arrest and limiting osteoblast proliferation. FoxOs deletion mice in bone

FoxO3 vertebral bone mass (+);
BFR (+)

osteoblast number (+), osteoblast
apoptosis (-), oxidative stress (-) ROS (-); phosphorylation of p66 Shc (-)

mice overexpressing FoxO3
under the control of the

osteocalcin promoter

FoxO1 bone mass (+), BFR (+)
bone volume (+)

osteoblast proliferation (+),
oxidative stress (-)

FoxO1 interacts with ATF4 and promotes amino acid
import to favor the protein synthesis, such as

glutathione. FoxO1 reduces ROS, activating a p53
signaling cascade, then promoting cell cycle.

FoxO1 deletion in mice from
collagen1a1 expressing cells [41]
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However, FoxO1 can restrain the energy metabolism function of osteoblasts through inhibiting
osteocalcin (OCN) expression. Furthermore, FoxO1 can suppress the interaction between the Runx2
and Bglap2 (OCN gene) promoters, directly bind to the Bglap2 promoter, or both to reduce the
transcriptional activity of Bglap2 [16,42–44]. Generally, OCN also improves bone mineralization,
calcium ion homeostasis, and prevents excessive mineralization. Thus, it is possible that FoxO1
mediates the dual roles of OCN in osteogenesis. But, obviously the effect of FoxO1 on Runx2 activity in
osteoblasts is opposite in mesenchymal progenitors, and the mechanism is not well known. In addition,
accompanied by immune response, FoxO1 also potentially contributes to immune-mediated inhibition
of bone formation through accelerating osteoblast apoptosis [45].

Therefore, among the three FoxO proteins, FoxO1 is mainly required for redox balance and
proliferation of osteoblasts and thereby to regulate bone formation.

3.3. FoxOs Positively Regulate Hematopoietic Stem Cell Activities

Hematopoietic stem cell (HSC) is an osteoclast progenitor. FoxOs maintain quiescence and
self-renewal of HSCs mainly through transcriptional regulation of cell cycle arrest and oxidative stress
resistance (Figure 4a). The loss of FoxO3 in HSCs not only leads to oxidative DNA damage in HSCs by
interfering in the base excision repair pathway [46], but also damages the HSC pool with regulating the
cell cycle through ROS-independent modulations of the tumor suppressor protein ataxia telangiectasia
mutated (ATM) and p16INK4a and ROS-mediated activation of p19ARF/p53/p21CIP1/WAF1/Sdi1 tumor
suppressor pathways [47]. Likewise, conditional deletion of FoxO1, FoxO3, and FoxO4 in the adult
mice hematopoietic system decreases the expression of antioxidant enzyme genes, including catalase,
glutathione peroxidase 1 (Gpx-1), and superoxide dismutase Sod1, Sod2, and Sod3, resulting in ROS
over-accumulation. The following physiologic oxidative stress increases HSCs’ apoptosis and drives
HSCs out of quiescence into the cell cycle. Meanwhile, HSCs repopulating activity have been long-term
impaired. All of these imply that FoxOs deficiency enforces HSCs into terminal differentiation at the
expense of self-renewal. Finally, combined FoxOs’ deletion markedly decreases HSCs’ population and
also expanses myeloid lineage [48]. Therefore, FoxOs are likely to serve as protectors of HSCs, decreasing
the number of osteoclast progenitor cells to some degree (Table 3).
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self-renewal of hematopoietic stem cells by enhancing the expression of antioxidant enzymes. Moreover,
FoxO3 also regulates expression of the ATM tumor suppressor to decrease ROS level and p16INK4a
expression, thereby maintaining cell cycling and self-renewal. (b) FoxO1 stimulates osteoclastogenesis
may by mediating the effect of M-CSF or RANKL on osteoclast precursors. But conversely, FoxOs restrain
osteoclastogenesis, which mediated the regulation of Akt or Sirt1. ATM = ataxia telangiectasia mutated,
p16INK4a = p16 (also known as multiple tumor suppressor 1), Akt = Protein kinase B, Sirt1 = Sirtuin 1,
RANK = receptor activator of the NF-κB, RANKL = receptor activator of the NF-κB ligand, M-CSF =
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Table 3. Bone metabolism regulatory functions of FoxO transcription factors in hematopoietic stem cell.

FoxOs Effects on
Bone

Functions in Hematopoietic
Stem Cell Mechanisms Cell/Mice Models References

FoxO3 oxidative DNA damage in
HSC and progenitor cell (-) ROS (-); the base excision repair pathway (+)

mice model with FoxO3−/− in HSC

[47]

FoxO3 HSC quiescence (+); HSC
G2/M transition (-)

ROS-independent modulations of ATM and
p16INK4a and ROS-mediated activation of
p53/p21CIP1/WAF1/Sdi1 tumor suppressor

pathways (-)

[46]

FoxO3 bone mass
(+) osteoclast number (-) mice overexpressing FoxO3 in

monocyte/macrophage lineage cells [21]

FoxO1, 3,
and 4

HSC quiescence (+); HSC
compartment survival (+)

partly by impairing detoxification of ROS,
FoxOs decreases HSC apoptosis and

HSC-specific entry into the S/G2/M and G1
phases of the cell cycle

conditional deletion of FoxO1, 3, and 4 in the
adult mice hematopoietic system [48]
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3.4. FoxOs Regulate Osteoclastogenesis

3.4.1. FoxOs Activate Osteoclastogenesis

Complex osteoclastogenesis is governed by macrophage colony-stimulating factor 1 (M-CSF)
and receptor activator of the NF-κB (RANK) ligand (RANKL), as well as other cytokines secreted by
osteoblasts and osteocytes that control various steps of the osteoclast differentiation process, including
precursor proliferation, commitment, differentiation, and maturation [49]. In osteoclast precursors,
M-CSF can stimulate expression of RANK, which promotes osteoclast differentiation [50]. FoxO1 deletion
in bone marrow macrophages (BMMs) decreases M-CSF-induced RANK expression and migration of
osteoclast precursors [51]. RANKL indirectly induces nuclear factor of activated T cells 1 (NFATc1) of
osteoclast precursors, dramatically facilitating osteoclast differentiation [52]. FoxO1 deletion in osteoclast
precursors reduces expression and nuclear localization of NFATc1 [51]. In line with this, conditional
deletion of FoxO1, FoxO3, and FoxO4 in 3-month-old mice reduces the expression of osteoclastogenesis
related factors like the calcitonin receptor, tartrate-resistant acid phosphatase (TRAP), and cathepsin
K [26]. Therefore, FoxOs should activate osteoclastogenesis by mediating the effect of M-CSF or RANKL
on osteoclast precursors (Figure 4b).

3.4.2. FoxOs Suppress Osteoclastogenesis

Other researchers have demonstrated that FoxOs negatively mediate RANKL-induced osteoclast
formation. Overexpressing FoxO3 in monocyte/macrophage lineage cells decreases several resorption
markers and increases bone mass [21]. The phosphoinositide 3-kinase (PI3K)/Akt pathway is the main
negative regulator of FoxOs activity [6]. In osteoclast precursors, RANKL activates Akt signaling (like
Akt/PI3K signaling) to promote proliferation, differentiation, and also attenuate apoptosis [50,53,54].
Along with these evidence, the deletion of FoxO1, FoxO3, and FoxO4 or overexpression of FoxO3
or mitochondria-targeted catalase in osteoclast precursors further elucidate that FoxOs upregulate
the H2O2-inactivating enzyme catalase, and attenuates H2O2 accumulation, partly restraining the
RANKL–Akt mediated osteoclastogenesis action [55]. Besides, Tan et al. have indicated that
FoxO1 antagonizes ROS generation and thereby represses Akt, mitogen-activated protein kinases
(MAPKs), and nuclear factor kappa-B (NF-κB), including the activated pathways of RANKL-induced
osteoclastogenesis [56]. What is more, the inhibitory effect of FoxO1 on osteoclastogenesis is partially
mediated by suppression of transcription factor MYC [57], which has been shown to reduce ROS
production by inhibiting mitochondrial function [4,58,59]. Taken together, phosphorylation and
inhibition of FoxO activity might partially mediate the positive effects of RANKL-induced Akt in
osteoclast precursors (Figure 4b).

Beyond that, RANKL also prevents FoxO activity via acetylation. But Sirtuin 1 (Sirt1) deacetylates
FoxO1, FoxO3, and FoxO4, and thereby stimulates FoxO-mediated transcription of catalase and
hemeoxygenase-1 (HO-1). In osteoclast precursors, HO-1 attenuates mitochondrial oxidative
phosphorylation and ATP production [60] and, along with catalase, reduce H2O2 levels. Both low ATP
and H2O2 levels repress osteoclastogenesis [61]. Therefore, Sirt1 contributes to the anti-osteoclastogenic
effects of FoxOs (Figure 4b). Similarly, mammalian sterile 20-like (Mst) kinase 1 (Mst1) is also a FoxO
activating kinase and might facilitate osteoclast apoptosis via activation of FoxO-mediated transcription.
When osteoclasts apoptosis is induced by serum withdrawal, staurosporine or bisphosphonates, Mst1
is identified as a key intermediate [62]. In detail, these apoptosis-inducing treatments promote the
caspase cleavage of Mst1 into a positive 34 kDa species that keeps the catalytic domain and conduces
to phosphorylate FoxOs [63]. However, it remains unknown whether FoxOs mediate the actions of
Mst1 on osteoclast generation and survival.

3.4.3. FoxOs, Expressed in Osteoblasts, Indirectly Repress Osteoclastogenesis

Unexpectedly, FoxOs also repress osteoclastogenesis indirectly via osteoblasts. In mice, conditional
deletion of FoxO1 or overexpression of FoxO3 in osteoblasts results in increased or reduced osteoclast
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numbers, respectively [26]. Hence, activated FoxOs in osteoblastic cells also reduce osteoclast numbers.
Osteoprotegerin (OPG), largely produced by osteoblasts, can bind and neutralize RANKL and block
osteoclast formation in vitro and bone resorption in vivo [64]. Targeted deletion of FoxO1 in osteoblasts
in mice diminishes OPG expression in bone. And FoxO1 activated or not in osteoblasts, in vitro,
increases or decreases OPG, respectively [42]. Therefore, FoxO1 may control osteoclast numbers by
increasing the OPG expression of osteoblasts. However, mice with overexpressed FoxO3 in osteoblasts
does not exhibit any altering OPG levels in bone, hence indicating that FoxO3 might regulate osteoclast
numbers independent of OPG [26].

Above all, in osteoclastogenesis, a relatively high ROS level increases HSC apoptosis and drives HSCs
out of quiescence into the cell cycle and further terminal differentiation at the expense of self-renewal.
But FoxOs fight against oxidative stress and thus protect HSCs from osteoclast differentiation. Moreover,
in osteoclast precursor cells, relatively high ROS level promotes osteoclastogenesis [65]. But FoxOs also
attenuate osteoclastogenesis or osteoclast activity largely for their oxidative resistance role, which is
activated by Sirt1 or Mst1 and suppressed by Akt. In contrast, some researchers have suggested
that FoxO1 stimulates osteoclastogenesis by mediating the effects of MSC-F or RANKL on osteoclast
precursors. Nevertheless, ROS level is important for FoxOs for controlling osteoclastogenesis; the majority
of the literature demonstrates that FoxOs negatively regulate osteoclastogenesis (Figure 4; Tables 3
and 4).
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Table 4. Bone metabolism regulatory functions of FoxO transcription factors in osteoclast and progenitor cells.

FoxOs Effects on Bone Functions in Osteoclast
and Progenitor Cell Mechanisms Cell/Mice Models References

FoxO1, 3,
and 4 bone resorption (-)

osteoclast progenitor
proliferation (-); osteoclast

lifespan (-)

FoxOs upregulate the H2O2-inactivating
enzyme catalase and attenuates H2O2

accumulation

FoxO1,3,4f/f; LysM-Cre C57BL/6
mice; transgenic C57BL/6 mice:

mitochondria-targeted catalase in
osteoclasts

[55]

FoxO1, 3,
and 4 bone mass (+); BFR (+)

osteoclast progenitor
numbers (-); osteoclast

apoptosis (-)

FoxOs increase the expression of the
osteoclast-specific markers like the calcitonin

receptor, TRAP, and cathepsin K.

conditional deletion of FoxO1, 3,
and 4 in 3-month-old mice [26]

FoxO3 vertebral bone mass (+);
BFR (+)

osteoclast progenitor
numbers (-); osteoclast

numbers (-)

mice overexpressing FoxO3 under
the control of the

osteocalcin promoter

FoxO1 bone resorption (-);
osteoclast surface (-)

FoxO1 deletion in mice from
collagen1a1 expressing cells [41]

FoxO1 osteoclast differentiation
(-); osteoclast activity (-)

MAPKs, NF-κB and AP-1 (-);
MYC activity (-);

ROS (-);

bone marrow mononuclear cells;
RAW264.7 cells [57]

FoxO1 osteoclastogenesis of
calvarial bone (+)

osteoclastogenesis (+);
osteoclast activity (+);
osteoclast precursor

migration (+)

FoxO1 activates osteoclast formation by
mediating the effect of RANKL on NFATc1
and several downstream effectors; FoxO1
deletion or knockdown reduces M-CSF

induced RANK expression and migration of
osteoclast precursors.

LyzM.Cre+FoxO1 L/L mice; BMMs
or RAW264.7 cells transfected with

FoxO1 siRNA
[51]

Note: TRAP = Tartrate-resistant acid phosphatase, AP-1 = activator protein 1, NFATc1 = nuclear factor of activated T cells 1.
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3.5. FoxOs Facilitate Chondrogenesis

In human and mice models, FoxO1 and FoxO3 expressions are dramatically decreased in the
superficial zone of cartilage regions during joint aging. There are obvious FoxO phosphorylation and
cytoplasmic localization in chondrocyte clusters of osteoarthritis (OA) cartilage [66]. Furthermore,
combined deletion of FoxO1, 3, and 4 in mice growth plate chondrocytes (Col2Cre-FoxO1, 3, and 4
triple knockout; Col2Cre-TKO) and Col2Cre-FoxO1 single knockout results in the overall body and
tail length increasing, the articular cartilage becoming thicker in young mice, and severe skeletal
deformities occurring at older stages, such as hyperkyphosis or OA-like changes in cartilage, synovium,
and subchondral bone. These abnormalities are associated with the distinctly elongated hypertrophic
zone of the growth plate or the increased height of the proliferative zone of the proximal tibial growth
plate [67,68]. Noticeably, FoxOs are indispensable for the growth, development, and health of cartilage
(Table 5).

Chondrogenesis begins with the mesenchymal cells differentiating to chondrocytes, which then
proliferate, hypertrophically differentiate, and terminally be apoptotic. FoxO3A expression is upregulated
during chondrogenesis of human primary MSCs, blocking the hypertrophic differentiation and promoting
apoptosis [69]. In human chondrocytes, downregulation of FoxO transcription factors with siFoxO1
and siFoxO3 reduces cell viability in response to ROS. The reduced antioxidant proteins, such as the
ROS scavengers, GPX-1, and catalase, lead to an increase in intracellular oxidative stress. And the
simultaneously raised autophagy-related proteins, such as microtubule-associated protein 1A/1B-light
chain 3 (LC3) and Beclin1, give rise to ROS-induced apoptosis [70]. Furthermore, similar to the strongly
reduced sirtuin 1 (SIRT-1) expression in OA cartilage [71], FoxO1 or FoxO1+3 (FoxO1 and FoxO3)
downregulation also suppresses SIRT-1; this regulates oxidative stress and autophagy by modulating
the signaling of FoxO and p53 [72], improves human chondrocytes survival via reducing proapoptotic
protein tyrosine phosphatase 1B (PTP1B) [73], and also manages autophagy directly via deacetylation
of key components (such as ATG5, 7, and 8) in the autophagy induction network [74]. Besides, the
decreased SIRT-1, in response to siFoxO, brought about reduced FoxO transcriptional activity [70].
Collectively, in response to ROS in chondrocytes, FoxOs mediate antioxidant and autophagy proteins
through altering the SIRT-1 level to some extent (Figure 5).
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Figure 5. FoxOs increase antioxidants and further regulate multiple functions of chondrocytes. FoxOs
possibly promote proliferation and block hypertrophic differentiation along with the PTEN/Akt/FoxO
signaling. FoxOs also repress apoptosis and autophagy with altering the SIRT-1 protein level. PTEN =

phosphatase and tensin homolog deleted on chromosome ten.
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Table 5. Bone metabolism regulatory functions of FoxO transcription factors in chondrocytes.

FoxOs Effects on Bone Functions in Chondrocyte Mechanisms Cell/Mice Models References

FoxO1,
FoxO3

chondrocyte viability (+);
chondrocyte apoptosis (-)

FoxO1 and FoxO3 up-regulated
antioxidant proteins and

autophagy-related proteins, but
decreased expression of

ADAMTS-4 and chemerin.

human articular chondrocyte
transfected into siFoxO1 and

siFoxO3
[70]

FoxO1, 3,
and 4

hypertrophic zone of the growth plate (-); overall
body and tail length at eight weeks of age (-);

hyperkyphosis (-)

expression of genes involved in
redox homeostasis (+)

FoxO1,3a,4f/f; Collagen2-Cre
mice;

[67]

FoxO1, 3,
and 4

total body and tail length at 1 month of age (-); height
of the proliferative zone of proximal tibial growth

plate at P7 and 1 month (-); articular cartilage thicker
at 1 or 2 months of age (-); OA-like changes developed

in cartilage, synovium, and subchondral bone
between 4 and 6 months of age (-)

chondrocyte proliferation
(-); cell density (+);

autophagy and antioxidant defense
genes (+); Prg4 expression (+)

Col2Cre-FoxO1, 3, and 4 triple
knockout mice (Col2Cre-TKO);
Col2Cre-FoxO1 knockout mice [68]

FoxO3 or 4 no cartilage abnormalities until 18 months of age Col2Cre-FoxO3 or 4 single
knockout mice

FoxO1, 3,
and 4

spontaneous cartilage degradation and OA severity in
a surgical model or treadmill running of skeletally

mature mice (-)
cell density (+); Prg4 expression (+) deletion of FoxO1/3/4 in mature

mice using Aggrecan-CreERT2

FoxO3
cell apoptosis (+);

chondrogenic
differentiation (-)

expression level of markers specific
for mature (aggrecan, collagen II)

and hypertrophic (collagen X)
chondrocytes (-)

multipotent mesenchymal
stromal cells (MSCs) [69]
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Combined deletion of FoxO1, 3, and 4 in mice growth plate chondrocytes (chondrocyte triple
knock-out; CTKO) significantly reduces expression levels of oxidative stress defense genes, such as
Gpx3, Sepp1, and Sesn3, in the primary chondrocytes, which may elevate the levels of ROS and promote
more proliferated chondrocytes turning to pre-hypertrophic and hypertrophic chondrocytes [67,75].
Interestingly, chondrocyte-specific inactivation of the tumor suppressor gene phosphatase and tensin
homolog deleted on chromosome ten (PTEN) also generated a disorganized neonatal growth plate,
hyperkyphosis, and an increased total body length, which is similar to the phenotype of FoxOs CTKO
mice [76]. Besides, PTEN can act as the upstream of FoxOs by regulating Akt activation [24]. Moreover,
the Akt/FoxO pathway enhances chondrocyte proliferation but decreases chondrocyte maturation and
cartilage matrix production [77]. Therefore, as antioxidant factors in chondrocytes, FoxOs may promote
proliferation and block hypertrophic differentiation through the signaling along the PTEN/Akt/FoxO
axis (Figure 5).

In addition, FoxO1 downregulation in chondrocytes also dramatically upregulates the expression of
the inflammatory factor, chemerin, which increases chondrocyte apoptosis to some degree [70]. Through
transcription factor FoxO1, pro-inflammatory cytokines TNF-α activates chondrocyte apoptosis and
accelerates the loss of cartilage in diabetic fracture healing [78,79]. Moreover, TNF-α promote the
chemokine expression of chondrocytes in diabetic fracture healing [80]. Hence, FoxO1 may protect
diabetic fracture healing from an inflammation effect through TNF-α/chemokine.

In short, by decreasing ROS accumulation during chondrogenesis, FoxOs promote proliferation
and block hypertrophic differentiation along with the PTEN/Akt/FoxO signaling, as well as repress
apoptosis and autophagy by altering the Sirt1 protein level. All of these demonstrate that FoxOs
contribute to relieving osteoarthritis and improve the growth, development, and health of cartilage.

4. Conclusion and Perspective

In summary, through FoxO deletion or overexpression in early osteoblast progenitors, osteoblasts,
hematopoietic stem cells, osteoclast precursors, or chondrocytes, these sufficient and seminal papers
have revealed the complicated and prominent roles of FoxO transcription factors not only in
regulating bone cells function, but also in controlling the bone modeling or remodeling and preserving
skeletal homeostasis.

In particular, FoxOs regulate bone cell survival, cell cycle, proliferation, differentiation, autophagy,
even apoptosis, and also participate in network control among different kinds of bone cells (Figure 6).
They are intimately involved in many bone physiological and pathological activities, such as bone
development, bone remodeling, energy metabolism, aging, osteoarthritis, low bone mass in type 1
diabetes, postmenopausal osteoporosis, age-related bone loss, and myeloid leukemia. For example,
FoxOs improve expression of antioxidant enzymes and maintain relatively low ROS levels to
protect MSCs/HSCs from osteogenesis/osteoclastogenesis. During differentiation, ROS levels are
increased due to enhanced cell metabolism. FoxOs promote osteogenesis and inhibit adipogenesis
or osteoclastogenesis by decreasing ROS levels. Moreover, age-related mechanisms intrinsic to bone
and oxidative stress are more proven as the protagonist of osteoporosis (including postmenopausal
osteoporosis) [81]. Therefore, in bone, all the three FoxO members (FoxO1, 3, and 4) jointly mediate the
redox balance of these bone cells, thereby regulating bone metabolism and also involved in osteoporosis
pathology. Above all, these roles of FoxOs may help in the development of pharmacological agents,
targeting FoxOs to further elucidate the treatment of bone metabolism diseases.
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Figure 6. The role of FoxOs in osteoprogenitor cells, chondrocytes, osteoblasts, osteocytes, hematopoietic
stem cells, and osteoclast precursors, as well as in the complex intercellular signaling among these bone
cells. FoxOs not only regulate survival, self-renewal, cell cycle, proliferation, differentiation, autophagy,
and apoptosis of bone cells, but also participate in the interaction among these bone cells. FoxO’s
function in osteocytes is unknown.

Before that, several questions should be paid attention to, including but not limited to the following:
Firstly, how FoxO factors balance the positive and negative regulation of bone formation? On one
hand, FoxO1 facilitates bone formation by interacting with Runx2 in osteoprogenitor cells or with
ATF4 in osteoblasts, while diminishing bone formation by mediating the function of M-CSF/RANKL
in osteoclasts. Here, FoxO1 should be an important factor for bone formation, but not involved in
redox regulation. On the other hand, FoxOs mediate the redox balance in or among bone cells, thereby
regulating bone metabolism and homeostasis. Therefore, the balance role of FoxOs may depend on
the bone metabolism stage and bone redox homeostasis. Secondly, what are the complete and precise
mechanisms of FoxOs performing functions among the different kinds of bone cells? For example,
FoxOs regulate redox balance involved in the activities of all kinds of bone cells. Then, how the FoxOs
mediate ROS signaling in or among bone cells? Thirdly, how FoxOs regulate bone remodeling and
preserve skeletal homeostasis during aging in bone? For example, with aging, excessive osteocyte
apoptosis correlates with oxidative stress and favors osteoclastogenesis, which leads to increased bone
remodeling imbalance and bone loss. This results in the occurrence of several bone diseases, especially
osteoporosis. Then, does FoxOs inhibit osteocyte apoptosis by regulating an anti-oxidation system in
osteocytes? And what is the mechanism involved therein? Is it effective to treat and prevent bone loss?
In light of this evidence, more research is necessary to further illuminate the precise role of FoxOs,
especially for the development of new therapeutic approaches.
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Abbreviations

FoxOs Forkhead box class O family member proteins
LPS Lipopolysaccharide
TNF-α Tumor necrosis factor α
MSCs Mesenchymal stem cells
Runx2 Runt-related transcription factor 2
ALP Alkaline phosphatase
OCN Osteocalcin
CFU Colony forming unit
PPARγ Peroxisome proliferator-activated receptor γ
PPREs PPAR-response elements
PCNA Proliferating cell nuclear antigen
ROS Reactive oxygen species
FABP4 Fatty acid-binding protein 4
4-HNE 4-hydroxynonenal
ATF4 Activating transcription factor 4
BFR Bone formation rate
HSC Hematopoietic stem cell
Gpx-1 Glutathione peroxidase 1
M-CSF Macrophage-colony stimulating factor
RANK Receptor activator of NF-κ B
RANKL Receptor activator of NF-κ B ligand
BMMCs Bone marrow mononuclear cells
NFATc1 Nuclear factor of activated T cells 1
Akt Protein kinase B
SIRT-1 Sirtuin 1
TRAP Tartrate-resistant acid phosphatase
MAPKs Mitogen-activated protein kinases
NF-κB Nuclear factor kappa-B
HO-1 Hemeoxygenase-1
Mst 1 Mammalian Sterile 20-like kinase 1
OPG Osteoprotegerin
AP-1 Activator protein 1
PI3K phosphoinositide 3-kinase
OA Osteoarthritis
PTP1B Protein tyrosine phosphatase 1B
CTKO Chondrocyte triple knock-out
PTEN Phosphatase and tensin homolog deleted on chromosome ten
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