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Glucagon-Like Peptide-1 Increases Mitochondrial 
Biogenesis and Function in INS-1 Rat Insulinoma Cells 
Mi Yeon Kang*, Tae Jung Oh, Young Min Cho

Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea

Glucagon-like peptide-1 (GLP-1) is a gut-derived incretin hormone that increases glucose-stimulated insulin secretion in pancre-
atic β-cells. Since mitochondrial function is crucial to insulin secretion, we hypothesized that GLP-1 may increase mitochondrial 
biogenesis in pancreatic β-cells. We treated INS-1 rat insulinoma cells with GLP-1 or exendin-4 for 48 hours and measured mito-
chondrial mass and function. Both GLP-1 and exendin-4 increased mitochondrial mass by approximately 20%. The mitochon-
dria/cytosol ratio was increased from 7.60±3.12% to 10.53±2.70% by exendin-4. In addition, GLP-1 increased the mitochondri-
al membrane potential and oxygen consumption. Proliferator-activated receptor-gamma coactivator 1α expression was increased 
approximately 2-fold by GLP-1 treatment. In conclusion, the present study presents evidence for a new mechanism of action by 
which GLP-1 improves pancreatic β-cell function via enhanced mitochondrial mass and performance.
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INTRODUCTION

Mitochondrial dysfunction causes both insulin resistance and 
β-cell dysfunction, leading to glucose intolerance and diabetes 
[1,2]. In skeletal muscle, decreased mitochondrial fatty acid 
oxidation results in increased amounts of cytosolic long-chain 
acyl CoA and diacylglycerol, which leads to increased serine 
phosphorylation of insulin receptor substrate-1, thereby elicit-
ing insulin resistance [3]. In pancreatic β-cells, decreased ATP 
generation due to impaired mitochondrial oxidative phosphor-
ylation is linked to impaired insulin secretion, via a mecha-
nism that reduces closure of the ATP-sensitive potassium 
channel [4]. In this regard, measures to improve mitochondrial 

function, either in the skeletal muscle or in the pancreatic 
β-cell, should be effective for treating diabetes. 
 Glucagon-like peptide-1 (GLP-1) is a gut-derived incretin 
hormone that stimulates insulin secretion and suppresses glu-
cagon secretion, inhibits gastric emptying, and reduces appe-
tite and food intake [5,6]. Because of its efficacy in lowering 
blood glucose by stimulating β-cell insulin secretion, GLP-1 
analogues and incretin enhancers (i.e., dipeptidyl peptidase-4 
inhibitors) are widely used in the clinic to treat diabetes [7]. 
Interestingly, it was reported that GLP-1 stimulates ATP syn-
thesis in pancreatic MIN6 β-cells [8], suggesting a new mech-
anism for improving β-cell function using GLP-1 therapy. In 
this study, we examined the effect of GLP-1 and its analogue 
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on mitochondrial biogenesis in pancreatic β-cells. 

METHODS

INS-1 cell culture and glucose-stimulated insulin secretion
INS-1 rat insulinoma cells (passages 28 to 34) were grown in 
monolayer culture in RPMI-1640 supplemented with 10% fe-
tal bovine serum, 10 mM 4-(2-hydroxyethyl)-1-pipera-
zineethanesulfonic acid, 2 mM L-glutamine, 1 mM sodium 
pyruvate, 50 μM β-mercaptoethanol, 100 U/mL penicillin, and 
100 μg/mL streptomycin, at 37˚C in a humidified atmosphere 
of 5% CO2 and 95% air. For glucose-stimulated insulin secre-
tion, INS-1 cells were seeded in 24-well plates and treated 
with 0, 100, or 200 nM GLP-1 (Sigma-Aldrich, St. Louis, MO, 
USA) for 48 hours. Cells were then washed twice with Kreb’s 
ringer bicarbonate buffer (KRBB), incubated in KRBB at 37˚C 
for 1 hour, and exposed to 5 or 10 mM glucose for 1 hour. The 
culture supernatant was collected and stored at –20˚C until as-
sayed for insulin concentration using enzyme-linked immuno-
sorbent assay (ELISA, Linco Research, St. Charles, MO, 
USA). 

Measurement of mitochondrial mass and membrane 
potential 
INS-1 cells (1×105) were seeded in six-well plates and incubat-
ed with GLP-1 (100 to 400 nM) or exendin-4 (100 to 200 nM, 
Sigma-Aldrich) for 48 hours. Mitochondrial mass was mea-
sured by 10-n-nonyl-acridine orange staining (NAO, Invitro-
gen, Carlsbad, CA, USA), and the mitochondrial membrane 
potential was measured using tetramethylrhodamine ethyl ester 
perchlorate (TMRE, Invitrogen) with a FACSCalibur flow cy-
tometer (Becton Dickinson, Franklin Lakes, NJ, USA), follow-
ing the manufacturers’ protocols. The strength of NAO or 
TMRE staining was expressed as the mean fluorescence inten-
sity (MFI).

Transmission electron microscopy
INS-1 cells (5×105) were seeded in 60-mm plates and incubated 
with exendin-4 for 48 hours. Cells were collected and processed 
for electron microscopy using standard methods. Ten random pic-
tures were taken at a magnification of ×5,000, using an H-7100 
transmission electron microscope (Hitachi, Tokyo, Japan). The 
volume density of mitochondria was estimated using a point-
counting method in a blinded fashion by two separate examiners. 
For each set of 10 pictures, the average volume density was cal-
culated, and the mean of 10 values was used to estimate the vol-

ume density for each individual cell.

Measurement of oxygen consumption
Oxygen consumption was measured using a high-resolution 
respirometer (Oxygraph-2k, Oroboros Instruments, Innsbruck, 
Austria) according to the manufacturer’s instructions. A sus-
pension of INS-1 cells at 1×106 cells/mL in a 2-mL volume of 
culture medium (RPMI-1640) was measured in the respirome-
ter at 37˚C. 

Reverse transcriptase polymerase chain reaction
Total RNA from cells was prepared using an RNeasy Mini kit 
(Qiagen, Valencia, CA, USA). cDNA was obtained from 1 μg 
RNA using random hexamers and avian myeloblastosis virus 
reverse transcriptase (Invitrogen). Samples were amplified in 
a Gene Amp polymerase chain reaction (PCR) system 9600 
(Perkin-Elmer/Cetus, Norwalk, CT, USA). Digital images of 
the PCR products separated on 1% agarose gels were ana-
lyzed using a Gel Doc 2000 (BioRad Inc., Richmond, CA, 
USA). 

Statistical analysis
Data are presented as means±SD. Nonparametric methods, 
including Kruskal-Wallis tests, Wilcoxon signed-rank tests, 
and Mann-Whitney tests, were used to evaluate statistical sig-
nificance. Values for P<0.05 were considered significant.

RESULTS

Effects of GLP-1 and its analogue on insulin secretion and 
mitochondrial biogenesis in INS-1 cells
GLP-1 treatment of INS-1 cells for 48 hours enhanced glucose-
stimulated insulin secretion (Fig. 1A) and mitochondrial mass 
(Fig. 1B, C). GLP-1 at 100, 200, and 400 nM increased NAO 
staining intensity to 121.64±11.54, 127.48±15.47, and 126.94±12.89 
MFI, respectively (n=10) (Fig. 1C). A similar result was obtained 
using another mitochondrial dye (MitoTracker Green, data not 
shown). When mitochondrial density was measured using a 
point-counting method on transmission electron microscopy im-
ages, the mitochondria/cytosol area ratio was significantly in-
creased by 100 nM exendin-4, from 7.60±3.12% to 10.53±

2.70% (Fig. 1D, E). The expression of proliferator-activated re-
ceptor-gamma coactivator 1 α (PGC1α), a key regulator of mito-
chondrial biogenesis, was increased dramatically after 1 hour of 
GLP-1 treatment; after 4 hours, expression decreased gradually 
but remained above control levels for up to 48 hours of treatment 
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Fig. 2. Glucagon-like peptide-1 (GLP-1) increases mitochondria membrane potential (A, n=6) and cellular oxygen consumption rate (B, 
n=4). TMRE, tetramethylrhodamine ethyl ester perchlorate; MFI, mean fluorescence intensity. aP<0.05; bP<0.01 compared with con-
trol. 
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Fig. 1. Effects of glucagon-like peptide-1 (GLP-1) or exendin-4 on insulin secretion (A, n=6), mitochondrial mass (C, n=10), mitochon-
drial density (E, n=10), and proliferator-activated receptor-gamma coactivator 1 α (PGC1α) expression (F) in INS-1 cells. (B) A repre-
sentative fluorescence activated cell sorting analysis for 10-n-nonyl-acridine orange staining (NAO) intensity, as summarized in (C). (D) 
Representative transmission electron microscopy images used to estimate the mitochondria/cytosol area ratios shown in concentration 
(conc). MFI, mean fluorescence intensity; GAPDH, glyceraldehyde 3-phosphate dehydrogenase. aP<0.05; bP<0.01 compared with the 
control. 
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(Fig. 1F).

Effects of GLP-1 and exendin-4 on mitochondrial function 
in INS-1 cells
The intensity of TMRE staining, which is an indicator of the 
strength of the mitochondrial membrane potential, was in-
creased in INS-1 cells treated with GLP-1 or exendin-4 for 48 
hours (Fig. 2A). In line with this finding, the oxygen consump-
tion rate of cells treated with GLP-1 for 48 hours exhibited a 
significant increase relative to controls (56.3±2.8 μmol/sec/105 
cells vs. 42.0±1.6 μmol/sec/105 cells, P<0.05) (Fig. 2B). 

DISCUSSION

Because mitochondrial oxidative phosphorylation is crucial to 
glucose-stimulated insulin secretion [4], the mechanisms me-
diating the effects of GLP-1 on mitochondria in pancreatic 
β-cells deserve further study. One possible mechanism is the 
mobilization of calcium into the mitochondrial matrix after 
GLP-1 treatment, which has been reported to enhance mito-
chondrial function in pancreatic MIN6 β-cells, possibly 
through the activation of several Krebs cycle dehydrogenases 
[8] and also in vascular smooth muscle cells [9]. Interestingly, 
in hepatocytes, nonapeptide fragments of GLP-1 (i.e., GLP-1 
[28-36] amide) were shown to enter the cytoplasm rapidly and 
target mitochondria in a GLP-1 receptor-independent manner, 
and to be associated with decreased gluconeogenesis and oxi-
dative stress [10]. However, in the present study, exendin-4 
also exhibited a stimulatory effect on mitochondrial mass and 
function. Therefore, signaling through the GLP-1 receptor ap-
pears to be sufficient to increase both mitochondrial mass and 
function in pancreatic β-cells. 
 We report here a novel effect of GLP-1 on mitochondrial 
biogenesis and function. In INS-1 cells, GLP-1 and exendin-4 
treatment triggered an increase in mitochondrial mass, mito-
chondrial density, mitochondrial membrane potential, and ox-
ygen consumption. These increases were accompanied by up-
regulation of PGC1α, a key regulator of mitochondrial biogen-
esis [11]. However, further studies are needed to characterize 
the time-course of GLP-1-stimulated biogenesis, as it relates 
to that of PGC1α expression. In conclusion, the present study 
provides evidence for a new mechanism of action of GLP-1 in 
pancreatic β-cells, linking mitochondrial biogenesis and func-
tion to glucose-stimulated insulin secretion. 
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