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Abstract

Quantitative Structure-Activity Relationship (QSAR) modeling is a common computational 

technique for predicting chemical toxicity, but a lack of new methodological innovations has 

impeded QSAR performance on many tasks. We show that contemporary QSAR modeling 

for predictive toxicology can be substantially improved by incorporating semantic graph data 

aggregated from open-access public databases, and analyzing those data in the context of graph 

neural networks (GNNs). Furthermore, we introspect the GNNs to demonstrate how they can lead 

to more interpretable applications of QSAR, and use ablation analysis to explore the contribution 

of different data elements to the final models’ performance.
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1. Introduction

Evaluating the toxicity of chemicals is an essential component of pharmaceutical and 

environmental health research. Traditionally, the task of establishing toxicity has been 

accomplished using in vivo models, where a model organism is exposed to a chemical 

of interest and observed for toxic effects, or by performing epidemiological studies on 

human populations. Both of these approaches are costly and time consuming,1 and given 

the hundreds of thousands of compounds of toxicological interest, innovative alternatives are 

needed to rapidly screen chemicals. In recent decades, predictive toxicology and large-scale 

chemical screening efforts have emerged to address this issue.2,3
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Quantitative Structure-Activity Relationship (QSAR) modeling is arguably the most 

prevalent method for predicting in silico whether a chemical will cause a toxic response.4 

Briefly, QSAR modeling involves collecting regularly structured quantitative descriptions 

of molecular structures (known as fingerprints), and then fitting a statistical model (e.g., 

logistic regression, random forest, etc.) to sets of chemicals where a toxic endpoint of 

interest is already known.5,6 Since each data point used to train a model is itself the 

outcome of a single experiment, QSAR is a meta-analysis approach that is complicated not 

only by the challenge of capturing relevant structural features of chemicals, but also by 

errors, biases, and ambiguities in the underlying experiments used to generate the training 

data. Consequently, QSAR is often criticized for its disappointing performance on many 

tasks.7,8 The computational toxicology community has long acknowledged the need for new 

methodological innovations to improve QSAR performance, but few have been effectively 

implemented.

In this study, we address these issues by augmenting the traditional QSAR approach with 

multimodal graph data aggregated from several public data sources, and analyzing those 

data in the context of a heterogeneous graph convolutional neural network (GCN) model. 

GCNs are a relatively new class of models based on artificial neural networks that have 

performed incredibly well on many prediction tasks involving densely connected biomedical 

data, including drug–drug interactions, protein function, and medical term semantic type 

prediction,9 among others. We evaluate the model on 52 assays and their accompanying 

chemical screening data from the Tox21 dataset, and compare its performance to two 

rigorously defined traditional QSAR models consisting of random forest and gradient 

boosting classifiers. Our results show that the GNN strategy significantly outperforms 

traditional QSAR. We further refine our results by removing various components of the 

graph to explain the relative contributions of different data sources to the GNNs’ increased 

performance. Finally, we discuss how GNNs improve the interpretability of QSAR, and 

suggest future directions for this body of work.

2. Methods

2.1. Obtaining toxicology assay data

We used the Tox21 dataset2—a free resource provided by the US National Institutes of 

Health, Food and Drug Administration, and Environmental Protection Agency—to obtain a 

set of candidate assays for classification and establish ‘ground truth’ relationships between 

specific chemicals and those assays. Each assay in the database includes experimental 

screening results describing the activity of the assay in response to specific chemicals 

of toxicological interest, including pharmaceutical drugs, small molecule metabolites, 

environmental toxicants, and others. We removed all chemical–assay measurements with 

inconclusive or ambiguous results, as well as assays with very few (e.g., <100) active 

chemicals.

2.2. Aggregating publicly available multimodal graph data

The graph data used in this study come from a new data resource for computational 

toxicology, named ComptoxAIa. ComptoxAI includes a large graph database containing 
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many entity and relationship types that pertain to translational mechanisms of toxicity, all of 

which are sourced from third-party public databases (including PubChem, Drugbank, the US 

EPA’s Computational Toxicology Dashboard, NCBI Gene, and many others). We extracted 

the subgraph from ComptoxAI’s graph database defined as all nodes representing chemicals, 

genes, and toxicological assays, as well as the complete set of edges linking nodes of those 

types.

The 3 entity types that comprise the nodes of the extracted subgraph are chemicals, assays, 

and genes. We sourced the chemicals from the US EPA’s DSSTox database,10 and further 

filtered them so that each one is equivalent to a distinct compound in PubChem. We obtained 

genes from the NCBI Gene database,11 and assays from the Tox21 screening repository as 

described above. To serve as node features for chemicals, we computed MACCS chemical 

descriptor fingerprints12 for all chemicals in the graph using their SMILES strings. Each 

fingerprint is a bit-string of length 166, where each bit indicates presence or absence of 

a specific chemical characteristic. These fingerprints are also used as predictive features 

in the baseline (non-GNN) QSAR models, described below. We sourced all edges in the 

graph from either the Hetionet database13 or from assay–chemical annotations in Tox21. A 

metagraph describing the node and edge types in the subgraph is shown in Figure 2.

2.3. Heterogeneous graph neural network

We constructed a heterogeneous graph convolutional neural network (GCN) architecture14 

for the graph ML experiments. Since our graph contains multiple entity types (chemicals, 

genes, and assays)—each with possibly different sets of node features, and linked by 

multiple semantically distinct edge types—our architecture extends the GCN model to learn 

separate message passing functions for each edge type. Briefly, each layer of the network 

aggregates signals from adjacent nodes in the graph, such that a greater number of layers 

results in signals being aggregated from an increasingly wider radius around each node. The 

output of the network can be thought of as encoded representations of nodes that incorporate 

information from the other nodes in their local neighborhood. The GCN can also be thought 

of as a generalization of convolutional neural networks (CNNs) used in computer vision—

instead of the convolutional operator aggregating signals from nearby pixels in an image, it 

aggregates features from adjacent nodes in the graph.15

In a heterogeneous graph, different node types represent different types of entities, 

each represented within a semantically distinct feature space.16 Therefore, the process 

of aggregating information from adjacent nodes must take those nodes’ types 

into account. Additionally, different edge types (e.g., 〈chemicalUpregulatesGene〉 and 

〈chemicalDownregulatesGene〉) convey their own semantically distinct meanings, which 

can substantially effect the flow of information through the network. To handle these 

two challenges, we learn separate aggregation functions for each edge type in the graph, 

following the example proposed by Schlichtkrull et al in R-GCNs (Relational Graph 

Convolutional Networks).17 Within the R-GCN paradigm, the message passing process 

can be split into 3 sequential steps: (1.) collecting signals from adjacent nodes using an 

aThe full graph database for ComptoxAI can be found at https://comptox.ai, and will be described in a separate, upcoming publication.
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appropriate edge type-specific message function ϕ, (2.) combining each of those incoming 

signals (across all edge types) via a reduce function ρ, and (3.) finally updating the target 

node v by applying an update function ψ. Training the network is roughly equivalent to 

finding an appropriate parameterization of ϕ for each edge type.

A formal description of the GCN is given in Appendix A. We implemented all GCN code in 

PyTorch using the DGL library for the Python programming language.

2.3.1. Node classification—Given the GCN architecture described above, we construct 

a heterogeneous graph where chemicals are labeled according to whether they do (1) or 

do not (0) activate an assay of interest. Although we remove the node representing the 

assay of interestb, all other Tox21 assays are included in the graph, and edges between 

chemicals and the other assays can therefore be used to improve the inferential capacity of 

the model beyond those of the baseline QSAR models, which only have access to chemical 

structure. Similarly, interactions involving genes further increase the information available to 

the model. We use the MACCS fingerprints as node features, while assay and gene nodes 

are initialized as 1-dimensional uniform random values that are optimized during model 

training, eventually serving as scalar ‘embeddings’ that are roughly proportional to those 

nodes’ importance in the trained network. The procedure we use for labeling the graph is 

shown in Algorithm 1.

Algorithm 1

Labeled heterogeneous graph construction for toxicity assay QSAR model.

Let G be a heterogeneous graph for QSAR, a ∈ A be an assay of interest, and ℓ(c) denote an activity label for 
chemical c ∈ C w.r.t. assay a.

for each chemical c ∈ C do

 if ∃ an edge (c, r, a) s.t. the edge type of r is chemicalHasActiveAssay  then ℓ(c) 1
 else if ∃ an edge (c, r, a) s.t. the edge type of r is chemicalHasInactiveAssay  then ℓ(c) 0
 else

 ℓ(c)  is undefined ▹ No label available for node c

 end if

end for

Ga
⋆ G ∖ a ▹ Delete node a from the graph to prevent information leakage

return Ga
⋆

The resulting graph Ga
⋆ containing labeled chemicals is then used as input to the 

GCN, which we train to predict the correct labels. We use an 80%/20% train/test split 

on the labeled chemicals, optimize the GCN’s parameters using the Adam algorithm 

(a computationally efficient variant of stochastic gradient descent suitable for sparse 

gradients),18 and compute the error between predicted and true labels via cross entropy 

loss.

bTo prevent information leakage, since conectivity to the assay would perfectly predict the node labels.
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Additional details on the node classification approach are given in Appendix B.

2.4. Baseline QSAR classifiers

For comparison, we built 2 additional (non-NN) QSAR models that represent rigorously 

defined benchmarks consistent with current practice in predictive toxicology: A random 

forest classifier,19 and a gradient boosting classifier.20 Each model was trained on the 

aforementioned MACCS fingerprints of chemicals computed from SMILES strings, with an 

80%/20% training/testing split. We tuned 6 hyperparameters for each random forest model, 

and 5 for each gradient boosting model, as described in Table S1. These were tuned using 

grid search, where the optimal hyperparameter set is defined as the one that minimized 

binary cross entropy between predicted labels and true labels on the training data.

3. Results

3.1. GNN node classification performance vs. baseline QSAR models

Of the 68 total assays in the Tox21 database, we retained 52 for analysis in the QSAR 

experiments. The remaining 16 assays were not used due to either a low number of active 

chemicals or underrepresentation of screened chemicals in the ComptoxAI graph database. 

Additionally, we discarded compound labels for chemicals with inconclusive or ambiguous 

screening results.

As shown in Figure 3, the GNN model significantly outperforms both the random forest 

(Wilcoxon signed-rank test p-value 2.3·10−4) and gradient boosting (p-value 2.6·10−3) 

models in terms of area under the receiver operating characteristic curve (AUROC), with 

a mean AUROC of 0.883 (compared to 0.834 for random forest and 0.851 for gradient 

boosting). This is robust evidence that the GNN model tends to substantially outperform 

‘traditional’ QSAR models. A notable characteristic of the GNN AUROCs is that their 

distribution has a higher variance than either the random forest or gradient boosting 

AUROCs. Anecdotally, this may be due to diminished sensitivity of the GNN model 

when trained on assays with few positive examples—neural networks tend to struggle as 

data become more sparse, which seems to be the case here. We also compared F1-score 

distributions between the 3 model types; however, the differences between the 3 models are 

not statistically significant. The relatively low F1-scores in the 3 model types is a result of 

the class imbalance in the QSAR toxicity assays—all of the assays contain far more negative 

samples (assay is inactive) than positive samples (assay is active), which results in any false 

negatives having a magnified impact on F1. The same increased variance observed in GNN 

model AUROCs is shown in the GNN F1-scores.

We performed further review of model performance on two selected assays of interest: PXR 

agonism (labeled tox21-pxr-p1 in Tox21) and HepG2 cell viability (tox21-rt-viability-hepg2-

p1). We selected these assays because: (1.) Both are semantically distinct from all other 

Tox21 assays (i.e., there are no other assays measuring pregnane X activity or cell viability), 

and therefore we do not expect an information leak from other highly correlated Tox21 

assays present in the GNN, and (2.) both have a sufficient number of positive chemicals such 

that their ROC curves attain high resolution at all values of the decision rule. Figure 4 shows 
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that the GNN outperforms the random forest and gradient boosting models at virtually all 

discrimination thresholds in both cases. The high performance of the GNN on HepG2 cell 

viability is especially noteworthy—cell viability is notoriously challenging to predict in 

chemical screening experiments. Many of the other 50 Tox21 assays showed similar patterns 

in performance. All ROC plots are available in Supplemental Materials.

To verify that the improved performance of the GCN over the baseline QSAR models is not 

solely due to the use of multilayer neural networks, we performed an additional analysis of 

the cell viability assay using a multilayer perceptron (MLP) model. The MLP model never 

achieved better than an AUROC of 0.76, which is comparable to the performance of the 

other baseline models, yet still significantly less than the GCN’s AUROC of 0.85. Complete 

details on the MLP analysis are available in Supplemental Materials.

3.2. Ablation analysis of graph components’ influence on the trained model

To better understand how the GNN model outperforms the random forest and gradient 

boosting models, we performed an ablation analysis on the two previously mentioned assays

—pregnane X agonism and HepG2 cell viability. For both of the assays, we re-trained the 

model after removing specific components from the GNN:

• All assay nodes.

• All gene nodes.

• MACCS fingerprints for chemical nodes (replacing them with dummy variables 

so the structure of the network would remain the same).

ROC plots for these experiments are shown in Figure 5. For both assays, the full GNN 

model performed best, although only modestly better (in terms of AUROC) than the versions 

without MACCS fingerprints or gene nodes. However, the performance of the GNN drops 

substantially—barely better than guessing labels at random (i.e., AUROC = 0.5)—when 

assay nodes are removed from the graph. In other words, much of the inferential capacity 

of the GNN models is conferred by chemicals’ connections to assays other than the one 

for which activity is being predicted. Similarly, MACCS fingerprints are not—on their own

—enough for the GNN to attain equal performance to the baseline QSAR models, which 

only use MACCS fingerprints as predictive features. Therefore, although the GNN achieves 

significantly better performance than the two baseline models, it is only able to do so 

with the added context of network relationships between chemicals, assays, and (to a lesser 

degree) genes.

4. Discussion

4.1. GNNs versus traditional ML for QSAR modeling

The toxicology community largely agrees that QSAR underperforms on many tasks, and 

that new methodological advances are desperately needed. In this study, we demonstrate 

that GNNs significantly outperform the current gold-standard techniques in the field. Aside 

from the fact that neural networks can more easily adapt to nonlinear objectives than non-

neural network models,21 this is likely a natural consequence of incorporating biomedical 

Romano et al. Page 6

Pac Symp Biocomput. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



knowledge that goes beyond chemical structure characteristics. Gene interactions provide 

clues about how chemicals influence metabolic and signaling pathways in vivo, and non-

target assays (i.e., other assays in the graph aside from the one currently being predicted) 

may correlate with activity of the target assay.

4.2. Interpretability of GNNs in QSAR

Chemical fingerprints—such as MACCS, which we use in this study—provide a valuable 

approach to representing chemicals that is suitable for machine learning. However, models 

based on fingerprints are challenging to interpret.7,22 Although each field of a MACCS 

fingerprint corresponds to meaningful chemical properties (such as whether the chemical 

contains multiple aromatic rings, or at least one nitrogen atom), the fingerprint is largely 

inscrutable in QSAR applications, since biological activity is the result of many higher-order 

interactions between the chemical of interest and biomolecules.

In this study, the knowledge representation-based heterogeneous graph data represent easily 

interpretable relationships between entity types that mediate toxic responses to chemicals. 

Although not implemented in this particular study, a GNN architecture known as a graph 
attention network explicitly highlights portions of a graph that are influential in predictions, 

providing a logical next step for continuing this body of work on GNNs in QSAR 

modeling. Other, simpler approaches also provide avenues for exploring interpretability, 

such as visualizing the edge weights for edges starting at assay nodes in the trained GNN. 

Often, the sheer size of graphs make this approach intractable, but since our graph only 

contains 52 assays it is relatively straightforward to inspect their weights. For example, the 

highest weighted assays for the HepG2 cell viability prediction task are HepG2 Caspase-3/7 
mediated cytotoxicity and NIH/3T3 Sonic hedgehog antagonism (a marker of developmental 

toxicity). The first of these makes sense from an intuitive standpoint, as it measures toxic 

response in the same cell line as the predicted assay. The second, on the other hand, does not 

have an immediately obvious connection to the predicted assay, but may be linked to the fact 

that Shh antagonists can induce apoptosis.23 Either way, it is easy to see that assay weights 

can be used to generate specific hypotheses for future targeted studies of mechanisms that 

underlie toxicity.

We provide all assay weights for these two assays in Supplemental Materials.

4.3. Sources of bias and their effects on QSAR for toxicity prediction

Like any meta-analysis technique, QSAR is subject to multiple sources of bias that can 

be introduced at several levels, not the least of which is in the original experiments used 

to generate toxic activity annotations for training data samples. This was a greater issue 

historically, when known activities for chemicals were compiled either from published 

scientific journal article results or from reporting guidelines for in vivo experiments.24 

Publication bias caused negative activity annotations to be extremely incomplete, and 

techniques for imputing negative annotations were inconsistent. Older QSAR studies often 

did not state the original sources of their data, so verification and reproducibility of results 

are immensely challenging (if not impossible).
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Fortunately, modern large-scale screening efforts (including Tox21) were created to directly 

address these and other issues.25 While our training data are still subject to batch effects, 

bias in selecting assays and chemicals for screening, and other systematic and experimental 

errors that are propagated along to the final QSAR model, we are relatively confident that 

publication bias, reporting bias, and other issues that plagued early QSAR studies have 

been substantially decreased. Furthermore, our GNN approach to QSAR modeling may be 

more robust to these sources of bias than non-GNN approaches, because (a.) the graph 

incorporates multiple levels of biological knowledge that can ‘fill in gaps’ left by incomplete 

or inaccurate data at other levels and (b.) GNNs—and heterogeneous GNNs in particular—

exhibit properties that make them inherently robust to noise.26,27 In the future, we will 

continue to refine novel predictions of the GNN by fusing electronic health record data via 

drug exposures to chemicals in the graph, and assess whether predicted toxicity outcomes 

are observed in real-world data.

5. Conclusions

In this study, we introduce a novel GNN-based approach to QSAR modeling for toxicity 

prediction, and evaluate it on data from 52 assays to show that it significantly outperforms 

existing methods. GNNs comprise an incredibly active emerging topic within artificial 

intelligence research, and as one of the first GNN applications in computational toxicology 

we hope that our results serve as a ‘jumping off point’ for a vast body of similar work. We 

plan to evaluate graph attention networks, new data modalities, and network regulization 

techniques in the near future, and encourage contributions from the toxicology and 

informatics communities at-large to improve predictive toxicology’s overall data ecosystem.
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Appendix A.: Graph convolutional network architecture

Our GCN implementation uses a message-passing paradigm that combines aspects of the 

GraphSAGE28 and R-GCN17 architectures. Let G = (V, ℰ, ℛ) be a heterogeneous graph 

consisting of nodes vi ∈ V, edges vi, r, vj ∈ ℰ, and a set of edge types r ∈ ℛ. Each edge 

is labeled with exactly one edge type. All chemical nodes (represented below as h0) are 

represented by a bit string of length 166 corresponding to its MACCS fingerprint, while 

all other nodes (assays and genes) are represented by a single decimal-valued ‘embedding 

feature’ that is learned during optimization. The magnitude of an assay or gene’s embedding 

is roughly equivalent that node’s importance in the network, and can be introspected for 

model interpretation.

Each layer of the network is defined as an edge-wise aggregation of adjacent nodes:
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ℎi
(l) = σ ∑

r ∈ ℛ
ρj ∈ Nir W r

(l − 1)ℎj
(l − 1) + W 0

(l − 1)ℎi
(l − 1) . (A.1)

where ℎi
l is the hidden representation of node i in layer l, N(i) is the set of immediate 

neighbors of node i, and σ is a nonlinear activation function (either softmax or leaky ReLU, 

as explained in Appendix B). ρ can be any differential ‘reducer’ function that combines 

messages passed from incident edges of a single type; in the case of this study we use 

summation. Since our graph contains relatively few edge types, regularization of the weight 

matrices W is not needed.

Appendix B.: Node classification model

For classifying chemicals as active or inactive with regards to an assay of interest, we stack 2 

GCN layers in the form given by (A.1), with a leaky ReLU activation between the two layers 

and softmax applied to the second layer’s output. Since we only classify chemical nodes, 

we ignore outputs for all other node types (and for chemicals with undefined labels); labels 

are generated via Algorithm 1 We train the network by minimizing binary cross-entropy 

between the network’s softmax outputs and true activity values:

ℒ = − ∑
i ∈ Y

ℓ ℎi
(0) ⋅ lnℎi

(2) + 1 − ℓ ℎi
(0) ⋅ ln 1 − ℎi

(2) . (A.2)

where Y is the set of all labeled nodes, ℓ ℎi
(0)  is the true label of node i, and ℎi

(2) is the final 

layer output of node i.

The relatively shallow architecture of the network allows us to optimize the model using 

the Adam algorithm applied to the entire training data set, but the model can be adapted to 

mini-batch training when appropriate or necessary.
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Fig. 1. 
Overview of the graph machine learning approach used in this study. We build a toxicology-

focused graph database (named ComptoxAI) using data aggregated from diverse public 

databases, and extract a subgraph for QSAR analysis containing chemicals, assays, and 

genes. We then train and evaluate a graph neural network that predicts whether or not a 

chemical activates specific toxicology-focused assays from the Tox21 database.
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Fig. 2. 
Metagraph of the node types, node counts, and edge types in the heterogeneous graph. 

During implementation of the GNN, we also define corresponding inverse edges (e.g., 

assayTargetsGene ↔ geneTargetedByAssay) to facilitate the message-passing paradigm of 

the GNN.
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Fig. 3. 
Overall performance metrics of the 3 QSAR model types on each of the Tox21 assays—a.) 

AUROC and b.) F1 score. The mean AUROC is significantly higher for the GNN model 

than for either of the two baseline models. Differences in F1 scores are not statistically 

significant. The GNN achieves poor F1 scores on assays with relatively few (e.g., < 100) 

“active” annotations in Tox21, which is consistent with known performance of neural 

networks on data with sparse labels. p-values correspond to Wilcoxon signed-rank tests 

on means, with a significance level of 0.05.
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Fig. 4. 
Receiver operating characteristic (ROC) curves for two selected Tox21 assays: a.) PXR 

agonism (tox21-pxr-p1) and b.) HepG2 cell viability (tox21-rt-viability-hepg2-p1). In both 

cases, the area under the curve (AUC) is significantly higher for the GNN model than 

either the Random Forest or Gradient Boosting models. AUC values are given with 95% 

confidence intervals.
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Fig. 5. 
Receiver Operator Characteristic (ROC) curves for two selected Tox21 assays using different 

configurations of the GNN model. ‘GNN - full’ is the complete model as described in 

§2.3.1. ‘GNN - no structure’ omits the MACCS chemical descriptors and replaces them 

with node embeddings. ‘GNN - no gene’ omits gene nodes and their incident edges. ‘GNN 

- no assay’ removes all assay nodes and incident edges, so predictions are made solely 

using chemicals, genes, the remaining edges, and the MACCS fingerprints as chemical node 

features. AUC values include 95% confidence intervals.
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