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INTRODUCTION

Sarcopenia is defined as loss of muscle mass, decrease in 
muscle strength and muscle function, which ultimately result 
in low physical performance, disability, and decreased quality 
of life.1 In addition to physical symptoms, sarcopenia is known 
to be related to cognitive dysfunction in the elderly popula-
tion.2 A recent longitudinal study showed that muscle func-
tion was associated with incident Alzheimer’s dementia (AD), 
mild cognitive impairment (MCI), and cognitive decline with 
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and without lean muscle mass.3 Other studies reported that 
cognitive changes were related to poor muscle brain axis me-
diated by an imbalance in myokine secretion.4,5 Although 
previous studies suggested poor muscle functions such as 
low gait speed and reduced grip strength might be associated 
with brain atrophy promoting cognitive decline,6,7 precise roles 
of muscle mass and function on the brain structures are not 
yet clear.

To date, several prior works showed associations between 
brain structures and sarcopenia in terms of muscle function 
and mass.8-10 A longitudinal study by Rosano et al.8 found sub-
tle total brain volume abnormalities predicted gait speed de-
cline, but no significant link has been reported between hand-
grip strength and total brain volume. Another study showed 
that muscle strength was related to left hippocampal volume 
ratio in moderate AD patients even after adjusting for age 
and cognitive status.11 In terms of white matter (WM) changes, 
a previous study showed increased total and periventricular 
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(PV) white matter hyperintensity (WMH) burden and pro-
gression of PV WMH burden were associated with decreased 
gait performance over time, while progression of subcortical 
WMH volume was associated with memory decline in cog-
nitively intact elderly.9 On the other hand, there have been 
relatively few studies showing the relationship between mus-
cle and the brain structures. Although not pure muscle mass, 
Burns et al.6 reported that lean mass was positively associated 
with total brain volume in participants with early AD and 
controls without dementia, and that association was largely 
driven by WM volume. A recent previous large longitudinal 
study with 1,284 cognitively normal participants showed that 
significantly greater atrophy in parietal area was observed in 
the sarcopenia group compared with the control group.12 
They also found that low muscle mass, not muscle strength, 
was an independent factor associated with a decrease of gray 
matter (GM) volume in a joint regression model. Although 
they suggested that patients with sarcopenia showed GM 
volume reductions in the frontal, temporal, and parietal re-
gions and in the subcortical structures when compared with 
the controls, the results were sometimes rather inconsistent. 
These might be attributable to the methodological issue of 
brain imaging analysis. Indeed, nearly all previous studies 
have only investigated total brain or lobar volumes in com-
parison between the patients with sarcopenia and the healthy 
controls. It is possible that volumetric study measuring total 
and lobar volumes is not sufficiently sensitive to assess subtle 
changes in brain structures. In general, simple volumetric 
measurement of GM may be less sensitive for subtle brain 
structural changes than those that disentangle cortical thick-
ness and surface area.13

To the best our knowledge, there have been no studies to ex-
plore cortical thickness change in patients with sarcopenia. In 
this study, we tried to explore the cortical thickness and sub-
cortical volumes of sarcopenia patients to overcome the afore-
mentioned problems of the simple volumetric measurements. 
Through the aforementioned approach, we sought to unravel 
the distinctive neuronal substrates of the sarcopenia with mus-
cle mass, strength, function, and their clinical implications. 

METHODS 

Subjects
Thirty cognitively normal elderly subjects with sarcopenia 

and 30 age-sex matched controls without sarcopenia were 
included in this study. They were recruited from the normal 
control volunteers of the Department of Family Medicine, the 
Saint Vincent’s Hospital, The Catholic University of Korea from 
2016 to 2020. The diagnostic criteria of the normal cognition 
were as follows: 1) subjects aged ≥60 years; 2) Mini-Mental 

Status Examination score14 ≥27; 3) Clinical Dementia Rating 
(CDR)15=0. Sarcopenia was defined according to the Asian 
Working Group for Sarcopenia (AWGS) algorithm, in which 
the patient has low muscle mass, and low muscle strength or 
low physical performance.16 As suggested by the AWGS, low 
muscle mass was defined as an appendicular skeletal muscle 
mass (ASM), appendicular skeletal mass index (ASMI, ASM/
height2) of <7.0 kg/m2 in males and <5.7 kg/m2 in females. Low 
muscle strength was defined as a handgrip strength of <28 kg 
in males and <18 kg in females; and low physical performance, 
5 time-chair stand test (5CST) ≥12 seconds. 

The cognitive functions of the subjects were evaluated with 
the Korean version of Consortium to Establish a Registry for 
Alzheimer’s Disease (CERAD-K), which assess the following 
cognitive domains: verbal fluency, 15-item Boston Naming 
Test (BNT), the Korean version of Mini-Mental Status Exami-
nation (MMSE-K), constructional praxis (CP), word list 
memory (WLM), word list recall (WLR), word list recogni-
tion (WLRc), and constructional recall (CR).17 The study was 
conducted in accordance with the ethical and safety guide-
lines set forth by the local Institutional Review Board of The 
Catholic University of Korea and written informed consent 
was obtained from all study subjects. The local Institutional 
Review Board of The Catholic University of Korea approved 
this study (No. VC22RISI0118) following the principles set 
forth by the Declaration of Helsinki.

MRI acquisition
MRI acquisition Imaging data were collected at the Depart-

ment of Radiology, St Vincent’s Hospital, The Catholic Uni-
versity of Korea, using a 3T Siemens Verio machine and eight 
channel Siemens head coil (Siemens Medical Solutions, Er-
langen, Germany). The parameters used for the T1-weighted 
volumetric magnetization-prepared rapid gradient echo scan 
sequences were echo time (TE)=2.5 ms, repetition time (TR)= 
1,900 ms, inversion time (TI)=900 ms, field of view (FOV)= 
250 mm, matrix=256×256, and voxel size=1.0×1.0×1.0 mm3. 
Fluid attenuated inversion recovery (FLAIR) MRI sequences 
were as follows: TE=135 ms; TR=9,000 ms; TI=2,200 ms; flip 
angle (FA)=90°; FOV=220×220 mm; matrix=356×231; and 
voxel size=1.0×1.0×1.0 mm3.

Data analysis 
For cortical reconstruction and volumetric segmentation 

of the whole brain, Freesurfer image analysis suite (version 
6.0, http://surfer.nmr.mgh.harvard.edu), which is document-
ed and freely available online, was used. The technical details 
of these procedures have been described in previous publica-
tions.18,19 Briefly, the processing stream includes a Talairach 
transform of each subject’s native brain, removal of the non-
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brain tissue, and segmentation of the GM/WM tissue. The 
cortical surface of each hemisphere was inflated to an average 
spherical surface to locate both the pial surface and the GM/
WM boundary. The entire cortex of each subject was visually 
inspected, and any topological defects were corrected manu-
ally, blind to the subject’s identity. The cortical thickness was 
computed as the shortest distance between the pial surface 
and the GM/WM boundary at each point across the cortical 
mantle. The global mean cortical thickness for each subject 
was computed by averaging the cortical thickness at each ver-
tex, right and left hemispheres separately, and was used in the 
statistical analyses. The regional thickness value at each vertex 
for each subject was mapped to the surface of an average brain 
template allowing visualization of data across the entire corti-
cal surface (described at http://surfer.nmr.mgh.harvard.edu/
fswiki/FsAverage). In addition, the entire cerebral cortex was 
parcellated into 34 regions,20 and a variety of surface-based 
data, including maps of cortical volume and surface area as 
well as curvature and sulcal depth, were created. Data were 
resampled for all subjects onto a common spherical coordi-
nate system. The cortical map of each subject was smoothed 
with a Gaussian kernel of 10-mm full width at half-maximum 
for the entire cortex analyses. The subcortical volumes were 
obtained from the automated procedure for volumetric mea-
sures of the brain structures implemented in Freesurfer. In all, 
27 volumetric measures were investigated and extracted seven 
subcortical structures (WM, caudate, thalamus, pallidum, pu-
tamen, hippocampus, and amygdala) from each hemisphere.

WMH volumes were calculated and normalized using an 
automated localization and segmentation software by NEU-
ROPHET Inc. (Seoul, Korea). For each subject, the calculated 
WMH volume using FLAIR images was normalized to over-
all brain volume. The automated WMH segmentation method 
uses a semi-supervised learning method to segment WMH 
lesions around the seeds.21

Statistical analysis 
Statistical analyses for demographic data were performed 

with the Statistical Package for Social Sciences software (SPSS, 
version 20.0; IBM Corp, Armonk, NY, USA). Assumptions 
for normality were tested for all continuous variables. Nor-
mality was tested using the Kolmogorov–Smirnov test. All 
variables were normally distributed. The independent t-test 
and the χ2 test were used to assess potential differences be-
tween the exercise groups and non-exercise groups for all de-
mographic variables. All statistical analyses had a two-tailed 
a level of <0.05 for defining statistical significance. The gen-
eral linear model (GLM) was implemented at each vertex in 
the whole brain to identify the brain regions in which the Ex-
ercise groups showed significant differences in cortical thick-

ness relative to non-exercise group, using the FreeSurfer’s 
mri_glmfit (described at http://surfer.nmr.mgh.harvard.edu/
fswiki/mri_glmfit). All the analyses were performed for the 
right and left hemispheres separately. For multiple compari-
sons correction, family-wise error correction p<0.05 using the 
Monte Carlo Null-Z simulation with 10,000 permutations 
was applied. This approach is implemented in FreeSurfer and 
is based on the AlphaSim algorithm. The seven subcortical 
structure volumes (i.e., total WM volumes, thalamus, caudate 
nucleus, putamen, pallidum, hippocampus, and amygdala) 
were imported into the SPSS 20.0 software for statistical anal-
yses (IBM Corp). To assess the main effects of diagnosis on 
the volume of subcortical structures, we used analysis of co-
variance (ANCOVA) with total intracranial volume, educa-
tion, sex, and age as nuisance variables.

RESULTS

Demographic and clinical characteristics of the study par-
ticipants are summarized in Table 1. There was no significant 

Table 1. Demographic and clinical characteristics of the study 
participants

Sarcopenia 
group (N=30)

Control 
group (N=30)

p value

Age (yr) 72.6±5.8 73.2±7.1 NS
Education (yr) 8.1±4.8 8.6±5.2 NS
Sex (M:F) 12:18 14:16 NS
CDR 0 0
CERAD-K battery 

VF 14.4±3.9 14.4±4.1 NS
BNT 10.9±2.7 11.3±2.3 NS
MMSE 27.9±2.7 27.2±2.8 NS
WLM 16.9±4.3 17.2±3.5 NS
CP 10.2±1.1 10.2±1.2 NS
WLR 5.5±2.2 5.3±1.9 NS
WLRc 8.2±2.2 8.9±1.8 NS
CR 5.3±3.3 5.6±2.1 NS

ASMI (ASM/m2) 5.4±0.6 6.0±0.6 <0.001
Handgrip strength 
  (kg)

14.6±4.8 22.8±4.4 <0.001

5 time-chair 
  stand test (sec)

19.5±8.1 8.9±2.5 <0.001

Values are presented as mean±standard deviation. NS, not signifi-
cant; CDR, Clinical Dementia Rating; CERAD-K, the Korean ver-
sion of Consortium to Establish a Registry for Alzheimer’s Disease; 
VF, verbal fluency; BNT, 15-item Boston Naming Test; MMSE, 
Mini-Mental Status Examination; WLM, word list memory; CP, 
constructional praxis; WLR, word list recall; WLRc, word list rec-
ognition; CR, constructional recall; ASMI, appendicular skeletal 
muscle index; ASM, appendicular skeletal muscle mass
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difference in age, education, sex, CDR scores and the CERAD-K 
scores between the sarcopenia group and the control group. 
There were significant differences between the groups in the 
ASMI, handgrip strength, and 5CST results. 

When compared with the control group, the sarcopenia 
group demonstrated significantly reduced cortical thickness 
in left superior frontal, precentral, right postcentral, inferior 
parietal, rostral middle frontal, superior parietal, and both lat-
eral occipital and paracentral gyrus (Monte Carlo simulation, 
p<0.05; Table 2 and Figure 1). However, no significant reduc-
tions were observed in the control group compared to the 
sarcopenia group. In addition, the volumes of total, deep and 
PV WMH were significantly reduced in the sarcopenia group 
compared to the control group (p<0.05). 

As for subcortical volumes, reduced subcortical volumes 

were noted in left hippocampus in the sarcopenia group when 
compared with the control group (Bonferroni corrected p< 
0.05, Table 3).

In the correlation analysis of the cortical thickness of the 

Table 2. Voxel wise group comparison results where a significant cortical thinning was observed in the sarcopenia group relative to the con-
trol group (Monte Carlo Z simulation, p<0.05)

Region Cluster size (mm2) Number of vertex T max X Y Z
Left

Precuneus 973.3 1,876 5.50 -14.7 -58.5 25.4
Lateral occipital 743.3 1,030 5.28 -16.8 -87.4 20.9
Superior frontal 518.8 1,330 4.72 -12.0 -0.8 39.7
Precentral 480.1 1,127 4.64 -51.4 -4.1 7.9
Paracentral 224.5 578 4.73 -13.3 -32.3 49.9

Right
Cuneus 494.5 678 5.00 6.1 -83.3 17.8
Lateral occipital 384.4 581 3.73 32.5 -77.0 12.3
Postcentral 287.5 761 4.65 63.3 -10.2 15.6
Superior parietal 259.9 541 4.14 16.6 -60.4 51.7
Paracentral 245.5 690 4.68 14.7 -23.3 42.8
Inferior parietal 182.9 348 5.24 37.5 -61.6 21.3
Rostral middle frontal 182.6 318 5.34 32.3 38.1 18.9

Figure 1. Statistical maps corrected for age, education, and sex 
showing reduced cortical thickness in the sarcopenia group rela-
tive to the control group (Monte Carlo Z simulation, p<0.05).

Table 3. Subcortical and WMHs volumes of the control and the sar-
copenia group

Sarcopenia 
group (N=30)

Control 
group (N=30)

p value

Subcortical volumes (mm3)
Left

Caudate 3,120.1±494.1 3,115.1±577.5 NS
Thalamus 5,992.3±895.9 6,096.9±577.5 NS
Pallidum 1,630.5±242.0 1,616.8±202.6 NS
Putamen 4,880.7±792.5 4,730.7±537.9 NS
Hippocampus 3,576.3±398.4 3,985.3±340.8 <0.001
Amygdala 1,427.5±270.8 1,489.2±189.2 NS

Right
Caudate 3,117.8±435.4 3,109.5±346.7 NS
Thalamus 6,215.4±558.6 6,146.4±574.5 NS
Pallidum 1,485.6±133.7 1,462.2±132.6 NS
Putamen 4,385.0±564.6 4,451.5±523.1 NS
Hippocampus 3,756.4±466.6 3,738.2±393.1 NS
Amygdala 1,533.1±274.0 1,583.4±238.9 NS

WMH volumes (mm3)
Total 13.5±10.7 5.12±6.2 <0.01
Periventricular 12.6±9.8 4.6±5.9 <0.01
Deep 0.97±1.2 0.3±0.4 <0.01

Values are presented as mean±standard deviation. WMH, white 
matter hyperintensity; NS, not significant
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sarcopenia group with the ASMI, we found a significant pos-
itive correlation with the left precuneus (Monte Carlo simula-
tion, p<0.05). There were no significant correlations between 
MS and the cortical thickness of the sarcopenia group. The 
5CST in the sarcopenia group revealed a significant positive 
correlation with the volumes of PV WMH (p<0.05). In addi-
tion, there is no correlations between the cognitive function 
tests scores and cortical thickness and subcortical volumes in 
the sarcopenia group. 

DISCUSSION

To the best of my knowledge, this is the first study to ex-
plore the cortical thinning pattern and the WMH volume re-
duction in the cognitively normal older adults with sarcopenia, 
relative to group-matched healthy controls without sarcopenia.

In this study, we have found the cortical thinning of the pa-
rietal areas including precuneus and superior parietal areas 
in the sarcopenia group as compared with the control group. 
The precuneus is thought to be involved in integrating infor-
mation from multiple sources into additional aspects of spa-
tial and self-representation.22 In terms of cognitive function, 
the precuneus, together with the posterior cingulate and pre-
frontal cortices, has been selectively implicated in episodic 
memory retrieval-related tasks which is seriously impaired 
in AD clinical trajectory.22 Indeed, the precuneus is the hub 
region of the default mode network (DMN) a subsystem that 
is presumptively active when a person is left undisturbed to 
engage in introspective modes of cognition including episodic 
memory and self-referential and mediating the perspectives 
of others.23 A previous study showed aberrant DMN func-
tional connectivity changes in the preclinical AD subjects re-
flecting a detrimental effect of amyloid retention on function-
al changes in the course of AD progression.24 Several previous 
researches showed cortical volume and thickness reduction 
in precuneus area especially in early onset AD.25,26 A recent 
study investigated functional and structural neuroimaging 
changes associated with muscle loss in the patients with Par-
kinson’s disease. They showed core muscle loss in the thigh, 
associated with DMN degeneration, longer disease duration, 
and female gender.27 They suggested identification of risk fac-
tors associated with lean muscle mass loss may assist in early 
prevention of comorbidities such as sarcopenia.27 Although 
not specifically indicated the precuneus area, a previous lon-
gitudinal study showed that muscle mass is associated with 
parietal GM volume atrophy, in a middle-aged cognitively 
normal subjects.12 Taken these together, our results with pre-
cuneus area cortical reduction might be significant aberrant 
sign of sarcopenia as risk factor of cognitive impairment in-
cluding AD and other dementia. 

In this study, we showed significant reduction of the pre-
central gyrus in the sarcopenia group compared to the control 
group. This is in line with the previous structural neuroimag-
ing study with 456 women with frailty.28 They showed signifi-
cant volume reductions in the precentral gyrus in the frailty 
group.28 They also showed that right supplementary motor 
area, an area near precentral gyrus was significantly correlated 
with lower physical activity.28 In general, the precentral gyrus 
plays a major role during the execution of a movement or dur-
ing isokinetic contraction, and therefore is more activated than 
other brain regions in stronger and fitter individuals.29 In ad-
dition, another previous longitudinal study showed volumes 
of the primary motor cortex and gait speed.30 We could not 
find the associations between 5CSTs and cortical thickness in 
the sarcopenia group. This might be due to small sample size 
and difference characteristics between gait speed and 5CSTs.28 
Further structural imaging study with larger samples might 
be needed to clarify this associations. 

We found PV WMH volumes were significantly reduced in 
the sarcopenia group compared to the control group. In addi-
tion, PV WMH volumes were positively correlated with the 
5CTS test in the sarcopenia group. These results were in ac-
cordance with the previous structural neuroimaging studies 
in the elderly subjects with sarcopenia. A longitudinal study 
with 104 cognitively normal older adults followed up 13 years 
showed that increased and progression of PV WMH volumes 
were associated with decreased gait performance over time, 
while progression of deep WMH volume was associated with 
memory decline.9 Cerebral small vessel disease and its related 
hypoperfusion is the major cause of WMHs in the brain.31 In 
general, WMH is related to vascular risk factors with associ-
ated with subsequent stroke mortality, cognitive impairment, 
gait speed, and functional impairment. Disruption of WM in-
tegrity has been considered the pathogenesis of gait impair-
ment in subjects with WMH.32 Proper gait requires sensory 
integration, motor planning, and execution of gait; these as-
pects largely rely on cortical–subcortical neuronal networks.33 
Frontal and temporoparietal cortices correspond with one 
another to receive and integrate sensory information; these 
cortices also play a critical role in the execution of gait with 
subcortical motor structures.33 Several previous studies re-
ported that PV WM especially in the frontal region contains 
major subcortical motor circuits with longitudinal WM tracts 
that subserve gait and balance control.34 In these regards pre-
vention of small vessel disease with control of vascular risk 
factors such as hypertension, diabetes, and dyslipidemia might 
contribute to subsequent prevention of muscle function such 
as gait speed. 

In terms of subcortical volumes, we observed smaller hip-
pocampal volume in the sarcopenia group compared to the 
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control group. Our result extends results of a prior work by 
Moon et al.11 which conducted in AD to subjects with normal 
cognition. They reported muscle strength was correlated with 
the left hippocampal volume after adjusting for age and cog-
nitive functions.11 They suggested shared underlying pathol-
ogy between sarcopenia and AD though hippocampal atro-
phy.11 Current epidemiology studies have suggested that 
sarcopenia accelerates cognitive impairment,35 and this cog-
nitive change has been reported to be related to poor muscle-
brain axis mediated by an imbalance in myokine secretion.5 
Subsequently, the imbalanced secretion of myokines leads to 
memory impairment by upregulation of proinflammatory 
cytokine production through the blood brain barrier cross-
ing.36 Several previous studies reported that exercise may in-
duce secretion of myokines, including irisin, brain-derived 
neurotrophic factor (BDNF), and cathepsin B in skeletal mus-
cle, and ultimately contributes to the improvement and main-
tenance of memory function.37 In these regards, muscle func-
tion and mass improvement by appropriate physical exercise 
may contribute to hippocampal volume increase related with 
memory function. 

There are several limitations that must be taken into con-
sideration. First, subjects were recruited from a single center, 
which limits generalizability of results. Second, our study de-
sign were cross sectional and sample sizes were small. Third, 
homogeneity of our study participants makes the results dif-
ficult to generalize. Indeed, even in cognitively normal older 
adults, there might be potential underlying pathologies such 
as cerebral beta amyloid accumulation.24

In conclusion, we observed cortical thickness reductions 
and WMH changes in sarcopenia. In addition, we found sig-
nificant correlations between cortical thickness/WMH vol-
umes and muscle function and strength in sarcopenia. These 
structural changes might explain the neurobiological mecha-
nisms associated with sarcopenia, but longitudinal studies 
will be needed to identify the mechanisms of these structural 
changes.
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