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Abstract

Objectives: Although major advances have been made in bovine epigenome study,

the epigenetic basis for fetal skeletal muscle development still remains poorly under-

stood. The aim is to recapitulated the time course of fetal skeletal muscle develop-

ment in vitro, and explore the dynamic changes of chromatin accessibility and gene

expression during bovine myoblasts proliferation and differentiation.

Methods: PDGFR- cells were isolated from bovine fetal skeletal muscle, then cul-

tured and induced myogenic differentiation in vitro in a time-course study (P, D0, D2,

and D4). The assay for transposase-accessible chromatin sequencing (ATAC-seq) and

RNA sequencing (RNA-seq) were performed.

Results: Among the enriched transcriptional factors with high variability, we deter-

mined the effects of MAFF, ZNF384, and KLF6 in myogenesis using RNA interference

(RNAi). In addition, we identified both stage-specific genes and chromatin accessibil-

ity regions to reveal the sequential order of gene expression, transcriptional regula-

tory, and signal pathways involved in bovine skeletal muscle development. Further

investigation integrating chromatin accessibility and transcriptome data was con-

ducted to explore cis-regulatory regions in line with gene expression. Moreover, we

combined bovine GWAS results of growth traits with regulatory regions defined by

chromatin accessibility, providing a suggestive means for a more precise annotation

of genetic variants of bovine growth traits.

Conclusion: Overall, these findings provide valuable information for understanding

the stepwise regulatory mechanisms in skeletal muscle development and conducting

beef cattle genetic improvement programs.

1 | INTRODUCTION

Skeletal muscle, which accounts for about 40% of total body

weight,1 is a highly dynamic tissue of the body. The growth and
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physical and metabolic function in human, while in animal produc-

tion, affecting growth efficiency and meat quality.2 The growth of

skeletal muscle fibres is initiated during embryonic stage,3 then is

fixed during the foetal stage, and remains almost unchanged in

number after birth.4 Notably, the foetal stage is the critical period

of myogenesis, when the majority of skeletal muscle fibres form.5

It has become established that many specific signalling pathways

and transcription factors (TFs) are involved in myogenesis.5–8

Wingless and Int (Wnt), paired box 3 (Pax3), and Pax7 are neces-

sary myogenic regulatory factors (MRFs) that regulate the myogenic

lineage differentiation of mesenchymal stem cells during embryo

stage.5,9–12 Although previous studies provide strong evidence of

the contribution by MRFs to skeletal muscle development,13,14 the

precise mechanisms underlying skeletal muscle development remain

unclear. Halstead et al. reported the dynamic changes of chromatin

accessibility during bovine pre-implantation development, indicating

their important roles in species-specific embryonic genome activa-

tion.15 In addition, a comprehensive functional annotation of

bovine rumen epithelial cells has been well established and pro-

vided important information to explore butyrate-induced biological

effects in bovine.16 As Functional Annotation of Animal Genomes

(FAANG) Consortium proposed, additional efforts have been made

to investigate chromatin accessibility related to skeletal muscle

development.17–19 However, particularly in bovine models, previous

studies in the context of skeletal muscle chromatin accessibility

have mainly focused on comparative analysis across distant species

to identify tissue-specific regulatory elements.20–22 Recently, Cao

et al. described comparative analysis of enhancers between adult

and embryo bovine muscle using chromatin accessibility.23 Despite

the foetal stage is critical for skeletal muscle development, only

limited evidence of foetal muscle growth and development was

available from prior studies, and these findings may ignore that

skeletal muscle development is a dynamic process comprised of

multiple developmental stages. In our study, we reconstructed the

course of myogenic differentiation in vitro, providing an ideal

model to define when and how these regulatory changes occur

during skeletal muscle development.

2 | MATERIALS AND METHODS

2.1 | Primary cells isolation and culture

The myoblasts were enzymatically isolated from longissimus dorsi

tissues of bovine foetuses at 90 days, and cultured in low-glucose

DMEM with 10% foetal bovine serum (growth medium) as described

previously.24 At 90% confluence, the cells were trypsinized with

0.25% trypsin–EDTA (Gibco, Grand Island, NY) and passaged to cul-

ture plates. At 100% confluence, the growth medium was exchanged

by low-glucose DMEM with 5% horse serum (differentiation

medium). The differentiation medium was then changed every

2 days.

2.2 | RNA extraction, reverse transcription and
quantitative real-time PCR

Total RNA was isolated using the TRIzol reagent (Invitrogen Life Tech-

nologies). RNA concentration and quality were determined by

NanoPhotometer N50 (Implen, Munich, Germany). Next, the qRT-

PCR was performed using ABI QuantStudio 7 Flex system (Life, Carls-

bad, CA) in accordance with the instructions of KAPA SYBR® FAST

qPCR Kit (KAPABiosystems, Wilmington, MA). The primer sequences

involved in qRT-PCR were listed in Table S1.

2.3 | siRNA transfection

Small interfering RNA (siRNA) were supplied by RiboBio (Guangzhou,

China), and the sequences are listed in Table S2. With the help of Lip-

ofectamineTM RNAiMAX (Invitrogen Life Technologies, Carlsbad, CA)

reagent, the siRNAs against MAFF, ZNF384, KLF6 (siMAFF, siZNF384,

siKLF6) or siRNA control (NC) were transfected into myoblasts at a

final concentration of 50 nM.

2.4 | CCK8 assay

After interference of MAFF in myoblasts, CCK8 reagent was added at

12, 24, 36, 48 and 60 h. After continuously incubating for 2 h, the

absorbance (OD values) at 450 nm was then measured.

2.5 | mRNA-seq library construction, sequencing
and data processing

mRNAs were purified from total RNAs using oligo-dT beads and then

fragmented with Mg2+. RNA-seq libraries were constructed by follow-

ing steps: reverse transcription, the end repair of cDNA, poly(A) tail

and index addition. All libraries were sequenced on the HiSeq2500

platform following a PE150 strategy. RNA-seq datasets from each

sequencing library were trimmed with Trim_Galore 0.6.3 to remove

Illumina adapter sequences and low-quality sequences. Trimmed reads

were then aligned to bovine genome (ARS-UCD1.2) using STAR

2.7.3a.25 Gene expression counts were calculated by the –quantMode

GeneCounts functionality in STAR. For downstream analysis, RNA-

seq raw counts were normalized by computing counts per million and

then formed to Z scores. Differential gene expression analysis was

performed by DESeq2 (adjusted p-value <0.01).26,27

2.6 | ATAC-seq library construction, sequencing
and data processing

The ATAC-seq libraries were performed as TruePrep DNA Library Prep

Kit V2 for Illumina (Vazyme, Nanjing, China). Briefly, 5 � 104 cells were
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counted and resuspended in precooled lysis buffer. The unfixed nucle-

uses were incubated with Tn5 transposase at 37�C for 30 min. Ampli-

fied the fragments for 16 cycles and purified using the VAHTS RNA

Clean Beads (Vazyme, Nanjing, China). Libraries were quantitated using

Qubit 4 Fluorometer (Invitrogen, Singapore), and then sequenced on

Illumina HiSeq2500 platform following a PE150 strategy. ATAC-seq

datasets from each sequencing library were first trimmed with Trim

Galore 0.6.3 to remove Illumina adapter sequences and low-quality

sequences. Trimmed reads were then aligned to bovine genome (ARS-

UCD1.2) using Bowtie2 2.3.5.28 ATAC-seq peak calling for each indi-

vidual replicate was performed by MACS2 2.1.2.29 To establish a com-

mon peak set, peak summits were extended ±250 bps to obtain

500 bp fixed-width peaks.30 Overlapping peaks in each sample were

handled using an iterative removal procedure with the strongest signal

(�log10 FDR) until all peaks were accounted. FeatureCounts31 was

used to quantify the raw read counts from the common peak set

including all replicates. For downstream analysis, ATAC-seq raw counts

were normalized by computing counts per million and then formed to

Z scores. Differential chromatin accessibility analysis was performed by

DESeq2 (adjusted p-value < 0.01 and jlog2FCj > 2). Peak annotation

was performed by R package ChIPseeker.32

2.7 | Clustering and visualization of ATAC-seq and
RNA-seq signal

For clustering, the normalized counts of all genes and the top 50,000

open chromatin peaks (ranked by adjusted p-value) were used for prin-

cipal component analysis (PCA) and Spearman correlation analysis using

prcomp_irlba and Complexheatmap.33 The coverage tracks were gener-

ated by deeptools 3.3.0 bamCoverage.34 Visualization of ATAC-seq

and RNA-seq coverage track was performed by IGV 2.6.2.35 Each read

was extended by 250 bp and the genome-wide signal was generated

by the normalized read counts (CPM) per bin. TF deviation and variabil-

ity analysis were performed via the motifmatchr package, and CisBP

transcription factors from the ‘human_pwms_v2’ dataset.36 Transcrip-

tion factor activity scoring was performed using the 501-bp fixed-width

peak set, which combined replicates for each differentiated time point.

2.8 | Identification of stage-specific genes and
stage-specific peaks

We used a Shannon-entropy-based to identify differentiation stage-

specific genes/peaks as previously described.37,38 We first selected

those with entropy scores less than a predefined threshold (stage-

specific genes: 1.6; stage-specific peaks: 1.8) as candidates. Then the

ATAC-seq peak was highest active in this stage (normalized CPM > 1),

and its high activity (normalized CPM > 0) could not be observed at

more than two additional stages. The enrichment of known motifs for

stage-specific peaks was detected by findMotifsGenome.pl function

of the HOMER package.39 After filtering out motifs of TFs which were

not expressed in all stages (MAX(CPM) < 1), the top enriched known

motifs were reported.

2.9 | Functional annotation enrichment analysis

Gene Ontology (GO) enrichment analysis for the tested genes was

performed by DAVID V 6.8.40,41 KEGG pathway enrichment was con-

ducted by KOBAS 3.0.42

2.10 | Integration of ATAC-seq and RNA-seq

Based on genomic region, consensus peaks were classified into six

groups: Promoter (TSS ±2.5 kb), 50UTR, 30UTR, downstream, exon,

intergenic and intron. Spearman's correlation coefficients were cal-

culated between gene expression levels (normalized CPM) and chro-

matin accessibility levels (normalized CPM) of each genomic region

group. We further defined genes/peaks based on the previous defi-

nition43: Genes defined as HA/HE that maximum value of ATAC-

seq/RNA-seq reads was higher than the 70th percentile; Genes/

peaks were defined as MA/ME that maximum value of ATAC-seq/

RNA-seq reads was below the 50th percentile. Each gene associated

with promoter-region accessibility was assigned to four groups: HA–

HE, high accessibility/high expression; MA–ME, medium-low acces-

sibility/medium-low expression; HA–ME, high accessibility/medium-

low expression; and MA–HE, medium-low accessibility/high

expression.

2.11 | Enrichment analysis based on empirical
sampling

Overall, 3804 human housekeeping genes were converted suc-

cessfully to 3256 bovine orthologous housekeeping genes using

the BioMart tool.44,45 Enrichment analysis was conducted on

housekeeping genes enriched in HA–MA group and gene set ran-

domly sampled 10,000 times. The empirical p-value was calculated

as:

p�value
1þP10,000

i¼1 number of proportion random sampleð Þ >proportion HA�MA groupð Þ
� �� �

10,001
:
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QTL regions and associated SNP that affect cattle anatomy and

growth were derived from Animal QTL Database (Cattle QTLdb:

https://www.animalgenome.org/cgi-bin/QTLdb/BT/index).

2.12 | Genome-wide association analyses and
GWAS enrichment analysis

A total of 1233 Chinese Simmental beef cattle were derived from

Ulgai, Xilingol League, and Inner Mongolia, China from 2008 to

2015 as previously described.46,47 Phenotypic data including car-

cass weight, average daily gain, liveweight, dressing percentage,

meat percentage and pure meat weight were collected. DNA sam-

ples were genotyped on Illumina BovineHD 770 K SNP array, and

then imputed to whole-genome sequence level.47 Genome-Wide

Association Analyses were performed by GCTA version 1.93.0.48,49

The annotation of GWAS Summary Statistics was lifted over from

UMD 3.1 to ARS-UCD1.2 via the UCSC liftOver tool.50 To check

whether the SNP effects were more enriched in chromatin peaks

than background regions, GWAS signals enrichment analysis were

F IGURE 1 Comprehensive profiling of the chromatin accessibility and transcriptional landscape during bovine myoblast proliferation and
myogenic differentiation. (A) Schematic illustration of myogenic differentiation in vitro. P, proliferation; D0, D2, D4, myogenic differentiation after
0, 2 and 4 days. (B) Normalized coverage (CPM) of chromatin accessibility and mRNA levels around MYOD gene for each time point. (C) Number
of chromatin accessibility regions detected at P, D0, D2 and D4 time points. (D) Genomic distribution of chromatin accessibility peaks from the
common peak set, namely promoter (TSS ± 2.5 kb), 50UTR, 30UTR, downstream, exon, intergenic and intron. (E) and (F) Principal component
analysis (PCA) plot of chromatin accessibility and gene expression during myogenesis in two dimensions (PCA1 and PCA2). The normalized counts
of all genes and the top 50,000 open chromatin peaks (ranked by �log10 FDR) were used for plot
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performed using Perl scripts (sumGSE, https://github.com/

WentaoCai/GWAS_enrichment).51

3 | RESULTS

3.1 | Comprehensive profiling of the chromatin
accessibility and transcriptional landscape

To investigate the molecular control during bovine myoblast prolifer-

ation and myogenic differentiation, we isolated PDGFR� cells from

bovine foetal skeletal muscle, then cultured and induced myogenic

differentiation in vitro in a time-course study. Next, we profiled the

transcriptome and chromatin accessibility during bovine myogenesis

at four important time points, including proliferation (P) and myo-

genic differentiation after 0, 2, and 4 days (D0, D2, and D4)

(Figure 1A,B). Overall, we generated an average of 61.23 million

uniquely mapped reads for ATAC-seq library and an average of

21.55 million mapped reads for RNA-seq library (Tables S3 and S4).

Fragment size distribution displayed a clear nucleosomal periodicity

in ATAC-seq and the expression pattern of major myogenic

regulatory factors in RNA-seq demonstrated the robustness of our

dataset (Figure S1A,B). To enable direct comparison of peaks across

different time points during bovine myogenesis, peaks called from all

replicates (range 192,928 to 309,729) were pooled together and

identified regions of open chromatin, resulting in a 501-bp fixed-

width peak set with 379,553 accessible chromatin peaks (Figure 1C).

To predict genomic features of functional regulatory elements, anno-

tation of accessible regions was performed (Figure 1D). As expected,

the majority of consensus peaks identified in the peak set were

assigned to distal intergenic (63.56%), intronic (21.21%) and pro-

moter (10.30%) regions throughout the genome, consistent with pre-

viously reported profiles of chromatin accessibility in cattle.20 We

also performed the Spearman correlation and principal component

analysis on both gene expression and chromatin accessibility pro-

files, and our data suggested a continuous trajectory of bovine

myogenesis and a high correlation between biological replicates

(Figures 1E,F and S2A,B). Thus, examples of the chromatin accessi-

bility and transcriptomic dynamic changes during bovine myoblast

proliferation and myogenic differentiation at myogenic marker genes

were shown to demonstrate the robustness of our dataset

(Figures 1B and S2C).

F IGURE 2 Genome-wide transcription profiles of differentially expressed genes (DEGs) from time-point pairwise comparisons. (A) Heatmap
of differentially expressed genes from time-point pairwise comparisons, yielding four clusters of co-regulated gene sets. (B) Examples of co-
regulated gene sets showed similar gene expression pattern in each cluster. (C) Enrichment gene ontology (GO) terms of co-regulated gene sets in
each cluster. Only GO terms for GOTERM_BP_DIRECT and p-value <0.05 were considered
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3.2 | Time-dependent modules of transcriptional
regulation during bovine skeletal muscle development

To characterize transcriptional modules during bovine skeletal muscle

development, we defined gene expression profiles at four differenti-

ated time points and identified a total of 4655 differentially expressed

genes (DEGs) among each pairwise comparison. We also employed k-

means clustering to separate differentially expressed genes, yielding

four clusters of co-regulated gene sets that showed a wide range of

expression patterns (Figure 2A,B). For example, many up-regulated

genes in the early stages of myoblasts proliferation were related to

cell proliferation and cell cycle progressions such as ID1, ID3, JUN,

JUNB and MSTN.52,53 HOX genes (HOXA3, HOXB3, HOXA5, HOXA7)

involved in embryonic skeletal system morphogenesis were strongly

up-regulated in the later stages of myogenic differentiation.54 Like-

wise, the marker genes of myogenic myogenesis including MYOD,

MYOG showed maximum expression activity in the early stages, while

MYHs (MYH2, MYH3), MYLs (MYL3, MYL4) in the later stages. We fur-

ther performed Gene Ontology (GO) analysis on the differentially

expressed genes within each cluster and identified associated GO

terms to gain insights into variable changes of gene expression during

the bovine skeletal muscle development (Figure 2C). The genes in

cluster K1 demonstrated a highly significant enrichment for cell

division-related processes, suggesting their potential roles in

F IGURE 3 Dynamic of chromatin landscape and TF regulatory during myogenesis. (A) Heatmap of differentially accessible chromatin regions,
yielding four clusters of co-regulated peak sets. (B) Rank order plot of the transcription factor variability in the OCRs during myogenesis.
(C) Heatmap displaying the top 20 most variably motifs. (D) Cell proliferation was measured by CCK8 assay of expressing siMAFF. (E, F) Relative
gene expression of muscle-specific genes (MYH1, MYH4, MYH7 and MYOG) following siRNA knockdown of ZNF384 and KLF6.
*p < 0.05, **p < 0.01
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myoblasts proliferation. The genes in cluster K4 were significantly

enriched embryonic skeletal muscle morphogenesis, consistent with

the process of myotubes development.55,56 Notably, skeletal

myogenesis showed high dynamic in cluster K2 and cluster K3,

reflecting the peak of myogenesis progress. Taken together cluster-

ing of gene expression profiles demonstrated that each cluster

comprised unique gene expression pattern may reveal time-

dependent modules of transcriptional regulation during skeletal

muscle development.

3.3 | Dynamics of the chromatin accessibility and
TF regulatory network for bovine skeletal muscle
development

We next sought to investigate dynamic changes in chromatin accessi-

bility during bovine myoblasts proliferation and myogenic differentia-

tion. We detected a total of 42,211 differentially accessible chromatin

regions (DARs) among each pairwise comparison, which clustered into

four groups via k-means clustering method. Dramatic and widespread

changes in chromatin accessibility were evident at four differentiated

time points, which exhibited a similar profile with gene expression

profile (Figure 3A). Remarkably, we found that massive differential

accessibility regions occurred at P and D4 time points, and less

appeared at D0 and D2 time points, supporting changing and stable

chromatin accessibility states during bovine skeletal muscle differenti-

ation. Cluster K3 was comprised of 12,421 open chromatin regions

(OCRs) that activated at P time point, and became less accessible at

the later stages. In contrast, cluster K2 was composed of 11,652

OCRs that displayed relatively closed chromatin accessible at the early

stages, and activated at D4 time point. Cluster K4 consisted of 8033

OCRs gained accessible during the whole period of myoblasts prolifer-

ation, while cluster K1 contained 10,105 OCRs remaining accessible

during the whole period of myoblast proliferation.

Transcription factors and their regulatory programs mediate the

key developmental events in myoblasts proliferation and differentia-

tion. Here, we applied chromVAR to dissect transcription factor vari-

ability in the OCRs at four time points (Figures 3B,C and Data S1).

Among the most variably accessible sequence motifs determined, we

identified important TF motifs such as MAFF, JUNB, Runx1, MYF5,

TEAD3 and TEAD4. Many TFs from the group were directly related to

skeletal muscle cell proliferation and differentiation, and their tran-

scription regulation activity was consistent with their relevant regula-

tory roles.57–60 Combined with differential chromatin accessibility, we

observed profound loss of chromatin accessibility at promotors region

of NR1I2 (Figure S3A). Although we found MAFF, ZNF384 and KLF6

exhibited dynamic activity in four time points (Figure S3B), their roles

in bovine myoblasts proliferation or differentiation have not been

reported. We investigated their effects on myogenesis in cell models

using RNA interference. Myoblasts proliferation was inhibited after

MAFF silencing (Figure 3D). Silencing ZNF384 impaired MYOG and

MYH7 expression, while silencing KLF6 improved the MYH1, MYH4

and MYH7 expression but inhibited MYOG expression (Figure 3E,F).

These findings suggest an integrative role for these factors in the reg-

ulatory mechanisms of bovine myoblasts proliferation and myogenic

differentiation.

F IGURE 4 Characterization of stage-specific genes. (A) Heatmap of stage-specific genes identified at each time point. (B) Table showing the
top five GO terms enriched at P, DO, D2 and D4, respectively. Only GO terms for GOTERM_BP_DIRECT and p-value < 0.05 were considered
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3.4 | Stage-specific gene expression during bovine
myoblasts proliferation and myogenic differentiation

To characterize the persistent and stage-specific genetic mechanisms

underlying skeletal muscle myogenesis, we next identified gene sets

that temporally regulated at different time points. Using Shannon-

entropy-based method, we identified 613, 247, 349 and 843 stage-

specific genes at P, D0, D2 and D4 time point, respectively

(Figure 4A). To further investigate whether specific genes at each time

point have a specific gene regulatory pattern, we applied GO enrich-

ment analysis (Figure 4B). We observed that the GO terms of specific

genes at each time point were different from those of differentially

expressed genes to some extent. Stage-specific genes at P and D2

time points were enriched for GO terms related to cell division and

skeletal muscles development, respectively. Interestingly, we found

distinct GO terms enriched in D0 and D4 time points. Reverse choles-

terol transport (p <2.27 � 10�3), cholesterol efflux (p <1.08 � 10�2)

and intracellular cholesterol transport (p <1.96 � 10�2) were signifi-

cantly enriched in stage-specific genes at D0 time point, while positive

regulation of cytosolic calcium ion concentration (p <2.10 � 10�5),

cell adhesion (p <2.73 � 10�4) and cell activation (p <6.44 � 10�4)

were significantly enriched in stage-specific genes at D4 time point.

Altogether, stage-specific genes expression at each time point appears

to establish a key restriction point for bovine myoblasts proliferation

and myogenic differentiation.

3.5 | Stage-specific open chromatin reveals
distinct TF binding events during bovine myoblasts
proliferation and myogenic differentiation

As lineage commitment and myogenic differentiation relies on the

activity of specific transcriptional programs, we asked whether the

stage-specific ATAC-seq peaks harbour specific TFs regulating skele-

tal muscle development. A total of 3424, 731, 343 and 3022 stage-

specific peaks were identified at P, D0, D2 and D4 time points,

respectively (Figure 5A). Interestingly, we observed a progressive

increase in the number of stage-specific peaks at P and D4 time

points and the majority of stage-specific peaks fell into enhancer

regions (distal intergenic and intronic regions; Figure S4). The enriched

GO terms were involved in a variety of biological functions, while only

a small part of GO terms was directly related with skeletal muscle

growth and development (Figure S5). The enriched pathways were

Rap1, cAMP, Wnt, Hippo and MAPK signalling pathways, which were

associated with muscle growth and development (Figure 5B). Next,

we investigated the characters of TF binding in stage-specific peaks.

Notably, we revealed a series of TFs that showed specific enrichment

at different time points (Figure 5C). We observed specific enrichment

motif of the ATF3, AP-1 and its family members (FRA-1, FRA-2, JUNB)

at P time point, which is in accordance with the observation that AP-1

complex is correlated with cell proliferation and transformation.61,62

We also found that high motif enrichment of MyoG, Myf5, HLH-1

F IGURE 5 Characterization of stage-specific peaks. (A) Heatmap of stage-specific peaks identified at each time point. (B) Heatmap displaying
the top 20 significantly enriched KEGG pathways across four time points. p-value < 0.05 is statistically significant. (C) The top 10 known TF
binding motifs enrichment within stage-specific accessible regions. The dot colour represents gene expression level of TFs and the dot size
represents the motif-enrichment value identified by HOMER (�log p value). (D) Veen diagram showing the overlap of top 10 known TF binding
motifs enrichment at each time point
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F IGURE 6 Chromatin accessibility at promoter positively correlates with gene expression. (A) Boxplot of the Spearman correlation between
normalized counts of RNA-seq (log2CPM) and normalized counts of ATAC-seq (log2CPM) at promoter (TSS ± 2.5 kb), 50UTR, 30UTR, downstream,
exon, intergenic and intron. (B) Scatter plot showing positive relationships between gene expression level and chromatin accessibility level at
promoter for P, D0, D2 and D4 time points. Based on the level of gene expression and chromatin accessibility, genes are divided into four groups:
HA–HE: high accessibility/high expression; MA–ME: medium-low accessibility/medium-low expression; HA–ME: high accessibility/medium-low
expression; MA–HE: medium-low accessibility/high expression. (C) Veen diagram showing the overlap between HA–HE genes and bovine
orthologous housekeeping genes. (D) Enrichment analysis of HA–HE genes in bovine orthologous housekeeping genes compared to random
genes. Random selections of 2915 genes from all protein-coding genes

F IGURE 7 Cattle growth-related genetic variants associated with chromatin accessibility regions. (A) Genomic distribution of 163 stature-
associated lead SNPs identified by Aniek C. Bouwman et al. (B) The distribution of the distance between 163 stature-associated lead SNPs and

their nearest OCRs. Peak distance is grouped into 6 categories: 0 kb (located within the peak), 0–0.5, 0.5–1.5, 1.5–3, 3–10 and >10 kb. (C) The
overlap between 163 stature-associated QTL confidence regions and OCRs. (D) Distribution of the distance between known QTL regions and
their nearest OCRs. The known QTL regions and associated SNP for anatomy and growth traits are obtained from cattle QTLdb. (E) Boxplot
showing the enrichment of GWAS signals for chromatin accessibility obtained from myoblasts proliferation peaks (cluster K3 and K4), myogenic
differentiation peaks (cluster K1 and K2), stage-specific peaks, DARs peaks and OCRs peaks. The x-axis represents growth traits, including carcass
weight, average daily gain, dressing percentage, liveweight, meat percentage and pure meat weight. The y-axis represents FDR (adjusted p values)
obtained from enrichment analysis
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appeared at D0 time and these TFs have previously been shown to be

markers of muscle lineage specification,63–65 suggesting that the dif-

ferentiation program may be initiated at this stage. It is important to

note that the TFs, ZBTB18, TCF4, TEAD1, TEAD2, TEAD3 and TEAD4,

enriched between D2 and D4 time point were largely consistent

(Figure 5D), suggesting a continuous regulatory mechanism that mod-

ulates myogenic differentiation.

3.6 | Integrative analysis of chromatin accessibility
and gene expression

Enhancer and promoter regions are key players in gene expression

regulation through transcription initiation (promoters) and by amplify-

ing such transcription initiation (enhancers).66–69 Overall, we observed

only chromatin accessibility at promoter was positively correlated

with its gene expression [Spearman's R (promoter) = 0.62], whereas

the correlation at other genomic regions was relatively weak

(Spearman's R <0.14; Figure 6A). To enhance our understanding of

the positive relationship, we further divided genes into groups

according to their promoter accessibility and expression levels

(Figure 6B). As in previous reports, genes with both high expression

level and accessibility at promoter region were enriched for

housekeeping-like biological functions.43,70 Therefore, we verified

whether this regulatory pattern was also present during bovine skele-

tal muscle development. In general, we found a significantly higher

proportion (proportion = 34.42%, p-value <10�4) of HA-HE genes

were bovine orthologous housekeeping genes (Figure 6C,D). In sum-

mary, our results indicated a potential relationship between chromatin

accessibility and gene expression, which is paramount to understand-

ing the complexities of gene regulatory during bovine skeletal muscle

development.

3.7 | Cattle growth-related genetic variants in the
context of chromatin dynamics

To dissect genetic aspects of skeletal muscle development, we further

investigated whether the open chromatin regions dynamics were

associated with muscle-related traits. In this study, we first investi-

gated the association between our data and 163 stature-associated

lead SNPs identified by Bouwman et al.71 (Figure 7A). Although very

few of them were located in accessible chromatin peaks, the majority

of these lead variants were located within 3 kb of OCRs (Figure 7B).

There were 11.5% of lead variants located in OCRs, while 70.55% of

lead variants were located within 3 kb. Since there is a reasonable

chance that the lead SNP is not the causal variant, we also examined

the fractions of OCRs that overlapped with QTL confidence regions

and found that a great number (90.37%) of QTL confidence regions

were overlapped with at least one OCRs (Figure 7C). A similar pattern

was observed in context from cattle QTLdb. About 56.92% and

54.09% of known QTL regions and associated SNP located within

3 kb of OCRs for anatomy and growth traits, respectively (Figure 7D,

Table S5). Thus, we expect that the joint effect of genetic variations in

OCRs might impact cattle growth-related traits. We categorized five

groups: myoblasts proliferation peaks (cluster K3 and K4), myogenic

differentiation peaks (cluster K1 and K2), stage-specific peaks, DARs

peaks, OCRs peaks. Significant enrichments (FDR <0.05) were

observed for carcass weight, average daily gain, dressing percentage,

liveweight, meat percentage and pure meat weight in all five chroma-

tin peak groups. (Figure 7E, Table S6). Notably, we found the joint

SNP effects in OCRs were lower than those in other groups (Table S6).

Given that the majority of genetic variants fell into non-coding

regions, our data therefore may be suitable for the functional interpre-

tation of GWAS results.

4 | DISCUSSION

Previous studies have provided powerful evidence for the crucial roles

of cis-regulatory elements (CREs) in identifying causative variants of

complex traits.16,72,73 With driven efforts by FAANG, a growing body

of studies engaged in the functional annotation of farm animal

genome have emerged, further leading to characterize the genetic

architecture of important economic traits and enhance the animal per-

formance.20,22,74,75 Although major advances have been made in

bovine epigenome study, the epigenetic basis for foetal skeletal mus-

cle development remains poorly understood. An important limitation

for this study is the lack of ideal samples across multiple developmen-

tal time points of bovine skeletal muscle development. In our study,

we recapitulated the time course of foetal bovine myoblasts prolifera-

tion and myogenic differentiation, which is an ideal model to study

bovine early skeletal muscle development in vitro. Furthermore, we

inferred the gene expression and transcription regulator dynamic

change, investigated the major genes that exhibit maximum activity,

and identified potential TFs motif that acts actively in accessibility peaks.

As a result, the chromatin accessibility and gene expression profiles

between time points exhibited widespread changes and period specific-

ity. We comprehensively characterized co-expressed genes clusters and

highly variable TFs during bovine myoblasts proliferation and myogenic

differentiation, providing a novel insight to capture key transitions and

turning points during skeletal muscle development. CREs play essential

roles in development, whereas promoter and enhancer serve as the best

understood types of CREs.76–78 Notably, chromatin accessibility across

the genome reflects specific binding events at CREs. Despite chromatin

accessibility is a powerful marker of active regulatory elements, alone it

provides only a partial view of the regulatory mechanisms underlying

skeletal muscle development. Further investigations with additional epi-

genetic data, such as histone modification, are still necessary for accurate

identification of CREs in the future.

In order to characterize the sequence of developmental steps

leading to bovine myoblasts proliferation and myogenic differentia-

tion, we applied the Shannon-entropy-based method to capture speci-

fication gene expression pattern and TF binding events. In terms of

specific gene pattern, enrichment for GO terms at the early stages of

myoblasts proliferation and myogenic differentiation was expected,
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while GO terms enriched at the later stages exhibited distinct biologi-

cal activities, denoting their specific and temporal roles. The later

stages of myoblasts proliferation enriched cholesterol-related GO

terms such as reverse cholesterol transport, cholesterol efflux and

intracellular cholesterol transport, and the later stages of myogenic

differentiation enriched GO terms associated with positive regulation

of cytosolic calcium ion concentration, cell adhesion and cell activa-

tion. Notably, these biological processes were not observed in differ-

entially expressed genes from each pairwise comparison, elucidating

that the stage-specific expression may be responsible for the specific

molecular mechanisms. During skeletal muscle development, myo-

blasts undergo a number of biochemical and morphological changes,

including membrane cholesterol decreased during the early stages of

myoblasts fusion.79–83 For instance, previous studies had demon-

strated that ABCG1- and ABCA1-mediated cholesterol efflux played

an important role in reducing cell plasma membrane cholesterol con-

tent and apoA-IV encoded by APOA4 gene is known to participate in

promoting cholesterol efflux.84–88 In addition, elevation in cytosolic

calcium, membrane remodelling and adhesive interactions are consid-

ered to participate in the fusion of myoblasts into multinucleated

myotubes.89–94 Alternatively, these stage-specific genes may contrib-

ute to bovine myoblasts proliferation and myogenic differentiation by

mediating these biological processes. Overall, these results further

supported our prediction on the functions of stage-specific genes,

suggesting the reliability of our data analysis. As for nearby genes of

stage-specific peaks, we found significant decreases in the number of

GO terms related to myogenesis, although muscle growth and devel-

opment such as Rap1, cAMP, Wnt, Hippo and MAPK signalling path-

ways were identified. Indeed, the investigation on gene regulatory

mechanisms regulated by stage-specific peaks in our study may be

limited on the assumption that genes are regulated by proximal regu-

latory elements. It must be noted that this assumption is not always

correct. Additionally, a series of TF binding events occurred as

expected during bovine myoblasts proliferation and myogenic differ-

entiation, including ATF3, AP-1 family members, MyoG, Myf5, HLH-1,

ZBTB18, TCF4 and TEAD family. We propose that these TFs may facil-

itate our understanding of the sequential order of gene regulatory

during skeletal muscle growth and development.

Previous studies have pointed to a strong relationship between

gene expression and chromatin accessibility at promoter region.43,95

However, given the genetic basis of complex cis-regulatory mecha-

nisms, the relationship between chromatin accessibility and gene

expression remains functionally uncharacterized at present. In this

work, chromatin landscape was classified into six groups based on

their genomic regions, and relationships were calculated between

chromatin accessibility and gene expression in each group. We only

observed a strong positive relationship between chromatin accessibil-

ity and their nearby gene expression in promoter group, which were con-

sistent with the previous study.43Transcriptional regulation is governed

not only by proximal cis-regulatory elements (promoter), but also by dis-

tal cis-regulatory elements (enhancer) that often located far away from

their target gene.96 While such a strong positive relationship was absent

in intergenic group, this is partly due to a remarkably large amount of

intergenic regions widely distributed across the genome and the inaccu-

rate method of nearby genes annotation. Furthermore, we provided evi-

dence showing that at least one-third of the genes (high expression and

high accessibility level at promoter region) were correlated with house-

keeping genes. Considering the potential significance of the residual

HA/HE genes, we suppose that this regulatory model is an essential step

towards completing our understanding of the regulatory mechanism of

skeletal muscle development.

Genome-wide association studies (GWAS) have proved to be an

effective and promising approach for the identification of genetic vari-

ants associated with complex traits.97 However, most of these genetic

variants are located in non-coding regions and a push for annotation of

cis-regulatory elements by epigenomic information have contributed to

elucidate the functional relevance of non-coding genetic variants to

some extent.98 In this study, integration of chromatin landscape profiles

with GWAS signals demonstrated that the GWAS signals of bovine

growth traits were significantly enriched in chromatin accessibility of

skeletal muscle development, which elucidated the activity of genetic

variants in skeletal muscle development-related cis-regulatory elements.

Further studies are warranted to prioritize variant SNPs and explain how

these variant SNPs change TFs regulatory and genes expression.

5 | CONCLUSION

Overall, our study describes the dynamic changes of chromatin acces-

sibility and gene expression during bovine myoblasts proliferation and

differentiation in vitro, which is a good model to reconstruct the pro-

cess of skeletal muscle development. In addition, we identified a series

of stage-specific genes and TFs to enhance our understanding of the

sequential regulation of skeletal muscle development. Integrations of

chromatin accessibility with transcriptional expression profiles and

GWAS signals provide an opportunity to explore the regulatory role

of these cis-regulatory elements defined by chromatin accessibility.

Taken together, our study demonstrates a step-wise dissection of the

transcriptional regulation network for skeletal muscle development

and provide a systematic understanding of the molecular circuits

governing skeletal muscle development.
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