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ABSTRACT
Resistance to anti-cancer treatments is a critical and widespread health issue that has
brought serious impacts on lives, the economy and public policies. Mounting research
has suggested that a selected spectrum of patients with advanced colorectal cancer
(CRC) tend to respond poorly to both chemotherapeutic and targeted therapeutic
regimens. Drug resistance in tumours can occur in an intrinsic or acquired manner,
rendering cancer cells insensitive to the treatment of anti-cancer therapies. Multiple
factors have been associated with drug resistance. The most well-established factors
are the emergence of cancer stem cell-like properties and overexpression of ABC
transporters thatmediate drug efflux. Besides, there is emerging evidence that signalling
pathways that modulate cell survival and drug metabolism play major roles in the
maintenance of multidrug resistance in CRC. This article reviews drug resistance in
CRC as a result of alterations in the MAPK, PI3K/PKB, Wnt/β-catenin and Notch
pathways.

Subjects Biochemistry, Molecular Biology, Drugs and Devices, Gastroenterology and Hepatology,
Oncology
Keywords Colorectal cancer, Drug resistance, Chemotherapy, Targeted therapy, Signalling
pathways, Mitogen-activated protein kinases, Protein kinase B, Notch receptor

INTRODUCTION
Colorectal cancer (CRC) is ranked as the most prevalent malignancy globally, after
cancers of the lungs and the breast. In 2020 alone, two million new cases of CRC have
been estimated worldwide, whereby 940,000 CRC cases potentially result in mortalities
(International Agency for Research on Cancer, 2020). Risk factors of CRC are primarily
genetic predisposition and environmental influences. As such, the development of CRC
epitomizes gene-environment interaction, and multiple aetiologies that have been ascribed
to CRC include genetic disorders (familial adenomatous polyposis and Lynch syndrome),
family history of sporadic CRC, as well as unhealthy lifestyle (tobacco smoking, physical
inactivity and heavy alcohol consumption) (Stigliano et al., 2014; Macrae, 2016; Yurgelun
et al., 2017).

The genetic model of CRC carcinogenesis theorizes CRC as an accumulation of a set of
driver mutations occurring in genes essential for the growth and differentiation of intestinal
epithelium (Fearon & Vogelstein, 1990). Suchmutations dysregulate cell signalling events in
the intestinal epithelium, leading to CRC progression. Activation of oncogenes (e.g., KRAS
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or BRAF) and deletions of tumour suppressor genes (e.g., APC and p53) are known to
disrupt cell development which results in uncontrolled cell division and cancer metastasis
(Baker et al., 1989; Sansom et al., 2004; Aoki et al., 2007; Raskov et al., 2020).

Individuals diagnosed with CRC are subsequently treated according to the severity of
CRC. The treatment options are summarised in Table 1. Surgery is employed to resect
early-stage cancer to prevent the metastasis of CRC and its accompanying complications
(Rentsch et al., 2016; Dekker et al., 2019). Meanwhile, radiotherapy is often applied as a
supplemental treatment before CRC surgery and is targeted towards locally advanced
CRC in order to reduce the size of tumour prior to surgery. This renders the surgical
procedure less radical and may reduce local relapse (Häfner & Debus, 2016; Ma et al.,
2017). On the other hand, systemic treatments of CRC are prescribed when patients suffer
from metastatic CRC (mCRC). Systemic treatments can be divided into combination
chemotherapy and targeted therapy. In combination chemotherapy, cancer drugs are
combined in synergistically to produce more effective cytotoxic effects on the cancer cells
(Carethers, 2008; Wolpin & Mayer, 2008). FOLFOX is a standard adjuvant chemotherapy
for treating advanced CRC that is made up of folinic acid (leucovorin), oxaliplatin (L-OHP)
and 5-fluorouracil (5-FU) (De Gramont et al., 2000). While FOLFOX has been proven
effective for treating stage III and IV CRC, FOLFOX might not be suitable for treating
high-risk stage II CRC harbouring BRAF V660E mutation with or without microsatellite
stable (MSS) status due to a higher chance of tumour relapse after treatment (Seppälä
et al., 2015). Clinical trial data also suggests that a 6-month FOLFOX regimen results in
significant neurotoxicity for high-risk stage II CRC patients, suggesting the need to reduce
the duration of adjuvant chemotherapy for better treatment outcomes (Iveson et al., 2021).
XELOX (also known as CAPOX) is an alternative first-line or second-line treatment for
high-risk stage II CRC which comprises capecitabine and oxaliplatin. It has been reported
that a 3-month XELOX regimen exhibits a similar curative effect to a 6-month FOLFOX
regimen. However, treatment benefits vary according to the patients’ medical condition
and side effects of the treatment (Guo et al., 2016; Petrelli et al., 2020; Iveson et al., 2021).
Targeted therapy on the other hand involves the use of small-molecule drugs or antibodies
to specifically target genes or proteins that drive cancer survival and cancer metastasis (Xie,
Chen & Fang, 2020a). In most cases, combination chemotherapy and targeted therapy are
employed to treat mCRC after surgical removal of tumours (Kuo et al., 2005; Townsley et
al., 2006; Berlin et al., 2007).

Drug resistance in CRC
Despite advances in the diagnostics and treatments, the global age-standardised mortality
rates of CRC remain high (8.9 per 100,000 population in both sexes) (Siegel et al., 2017;
Rawla, Sunkara & Barsouk, 2019). This is mainly due to the development of resistance
to the standard chemotherapeutic regimens (5-FU and L-OHP) or combinational
treatments (FOLFOX and XELOX) (Swanton, 2012; Weeks et al., 2012; Pai et al., 2017).
In such cases, targeted therapeutic agents such as growth factor receptor inhibitors
and protein kinase inhibitors are combined with the standard treatments to improve
drug efficacy and patients’ response rates (Cunningham et al., 2004; Heinemann et al.,
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Table 1 List of treatments available for CRC patients.

Treatment method Characteristic Reference

Complete mesocolic excision
(CME)

Surgery that involves removal of the affected colon and its
lateral lymphatic supply by cutting the mesentry.

Dimitriou & Griniatsos (2015)

Single incision laparoscopic
surgery (SILS)

Surgery involving the use of one umbilical port. Greaves & Nicholson (2011)

Natural orifice transluminal en-
doscopic surgery (NOTES)

Surgery that involves entering the peritoneal cavity via the
gastrointestinal tract using a natural orifice.

Kalloo (2007)

Robotics laparoscopic surgery Minimally invasive bowel resections performed by robotic
system.

Giulianotti et al. (2003)

Short-course radiotherapy Procedure regarding patients being exposed to radiation for
1 week with a clinical dosage of 25 Gray in 5 fractions fol-
lowed by surgery 1 week later.

Påhlman (1997)

Long-course chemoradiotherapy Procedure that covers radiation exposure for 5 weeks with
a clinical dosage of 45–50 Gray in 25–28 fractions together
with 5 concurrent fluoropyrimidine-based regimens as radi-
ation sensitiser. This is followed by surgery 4–8 weeks later.

Bosset et al. (2006)

FOLFOX Chemotherapeutic regimen involving the use of folinic acid,
5-fluorouracil (5-FU) and oxaliplatin to promote DNA
cross-linking, hence inhibiting DNA synthesis and eventually
induces cell death.

Gramont et al. (2000), Parker
& Cheng (1990), Goldberg et al.
(2004), Raymond et al. (1998)

FOLFIRI Chemotherapeutic regimen involving the use of folinic acid,
5-FU and irinotecan to interfere with DNA uncoiling during
DNA replication which ultimately induces cell death.

Klein et al. (2002), Douillard et
al. (2000), Saltz et al. (2000)

Growth factor receptor
inhibitors (e.g., Bevacizumab,
Cetuximab)

Therapeutic agents designed to target specific pathways sup-
porting cancer proliferation and formation of new blood
vessels that allow the spread of mCRC.

Sherwood, Parris & Folkman
(1971), Venook (2005)

Tyrosine kinase inhibitors (e.g.,
Gefitinib, Erlotinib, Sorafenib)

Therapeutic agents designed to target tyrosine kinases that
mediate downstream signalling events of mCRC.

Huang et al. (2004), Townsley et
al. (2006),Wilhelm et al. (2006)

2014). Nevertheless, CRC patients have also been reported to develop resistance against
these targeted therapeutic agents (Chen et al., 2018a; Negri et al., 2019; Vitiello et al., 2019;
Rimassa et al., 2019). Hence, cancer drug resistance represents a significant obstacle to the
successful treatment of CRC patients.

Drug resistance occurs when a tumour has become insensitive to the prescribed drugs,
leading to the emergence of drug-tolerant cancer persister cells which support the growth
of cancer cells under treatment pressure (Ramirez et al., 2016; Russo et al., 2019). While
intrinsic or primary drug resistance occurs before drug treatment, acquired or secondary
drug resistance manifests itself as a gradual reduction in drug efficacy against CRC (Lippert,
Ruoff & Volm, 2008). Among the factors culminating in drug resistance, overexpression
of ATP-binding cassette (ABC) transporters has been identified as the main driver.
ABC transporters function to mediate the efflux of drugs from the tumours, leading to
reduced drug concentration and drug efficacy (Giacomini et al., 2010; Hu et al., 2016).
On top of that, the development of drug resistance has been attributed to genetic and
epigenetic alterations, such as the (i) overexpression and gain-of-function of oncogenes
(e.g., epidermal growth factor receptor (EGFR), Kirsten rat sarcoma virus (KRAS)) (Lièvre
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et al., 2006; Misale et al., 2014; Wang et al., 2019; Wang, Zhang & Chen, 2019), (ii) loss-of-
function of tumour suppressor genes (e.g., p53, phosphatase and tensin homolog (PTEN))
(Boyer et al., 2004; Frattini et al., 2007; Sartore-Bianchi et al., 2009), (iii) under-expression
of cell signalling regulator (e.g., thymidine phosphorylase) (Meropol et al., 2006), and (iv)
the change in the binding site of drug target (e.g., topoisomerase I) (Gongora et al., 2011).
In addition, the evolution of CRC subclones further complicates CRC treatment due to
the limited ability of the cancer therapeutics to counteract the diverse drug resistance
mechanisms present in the heterogeneous cancer subpopulations (Molinari et al., 2018;
Wang et al., 2019; Wang, Zhang & Chen, 2019).

It has increasingly been acknowledged that various molecular mechanisms contribute
to cancer drug resistance, among which the dysregulation of signalling pathways has been
shown to play critical roles (Nisar et al., 2020). As such, the study of cell signalling pathways
can provide valuable insights into the cancer biology of drug-resistant CRC and improve
the treatment strategies (Wan et al., 2020). Previous studies have attributed four major
signalling pathways (MAPK, PI3K/PKB, Wnt/β-catenin and Notch) to the development of
resistance against CRC treatment (Li et al., 2011; Corcoran et al., 2012; Xu et al., 2017; He
et al., 2018). There are significant efforts focusing on delineating tumour evolution and the
underlying molecular mechanisms of drug resistance linked to these signalling pathways.
Numerous studies have revealed that genetic mutations and/or epigenetic alterations of
these pathways contribute to drug resistance (Normanno et al., 2015; Jeantet et al., 2016;
Yamada et al., 2020). Apart from that, recent evidence also indicates that resistance of the
tumour cells involves highly complex and tightly controlled crosstalk between different
signal transduction pathways (Duong et al., 2018). Additionally, emerging findings suggest
that signalling related to tumour microenvironment (TME), metabolic reprogramming
and gutmicrobiome are also associated with the development of drug resistance (Lotti et al.,
2013; Endo et al., 2020). A summary of the molecular alterations and clinical implications
associated with the treatment of CRC is provided in Table 2.

In this review article, we attempt to summarize the gap in knowledge in understanding
the link between modulation of the signalling mechanisms due to diverse exogenous and
endogenous factors with drug resistance in CRC. We aim to provide current updates
related to the dysregulation of the four selected signal transduction pathways and their
roles in conferring drug resistance in CRC. In addition, future perspectives pertinent to
the involvement of other signalling pathways and resistance mechanisms due to TME,
metabolic reprogramming and gut microbiome are also discussed.

SURVEY METHODOLOGY
To ensure a thorough and unbiased coverage of the literature, we searched fthe PubMed
database for published articles written in English from 1990 until present. The search
strings include ‘‘colorectal cancer AND (crosstalk OR communication) AND (signalling
OR pathway) AND therapy resistance’’, ‘‘colorectal cancer AND (monotherapy OR
combinational therapy) AND drug resistance AND MAPK pathway’’, ‘‘colorectal cancer
AND (monotherapy OR combinational therapy) AND drug resistance AND PI3K
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Table 2 Molecular alterations and clinical implications associated with the dysregulation of targeted signalling pathways in multidrug-resistant CRC.

Therapeutic agent Targeted
signalling
pathway

CRC
mutational
status

Molecular alteration Clinical implication Reference

Anti-EGFR antibodies
(cetuximab and panitu-
mumab) alone or in com-
bination with chemother-
apy

MAPK pathway Wild-type
KRAS

KRAS, NRAS, BRAF and
PI3KCAmutations

•Poor prognosis
for overall survival
•Low response rate to
anti-EGFR therapy

De Roock et al. (2010), Diaz
et al. (2012)

Anti-EGFR antibodies
(cetuximab, panitumumab,
SYM004, MM151,
trastuzumab, pertuzumab
and duligotuzumab) alone
or in combination with
chemotherapy

MAPK pathway Wild-type
KRAS, NRAS,
BRAF and
PI3KCA

•HER2 gene amplification
and activating mutations
•Sustained signalling of
PI3K/PKB and MAPK
pathways

•Poor therapeutic response
•Oncogenic transforma-
tion of colon epithelial cells

Kavuri et al. (2015), Belli et
al. (2019)

RAF inhibitor (vemu-
rafenib)

MAPK pathway BRAF(V600E) Feedback activation of
EGFR

Treatment failure Prahallad et al. (2012)

Combined RAF inhibitors
(vemurafenib and cetux-
imab or vemurafenib and
selumetinib)

MAPK pathway BRAF(V600E) Reactivation of MAPK
pathway

Tumour relapses Ahronian et al. (2015)

RAF inhibitors (GDC-0879
and vemurafenib)

MAPK pathway BRAF(V600E) RAF dimerization and
MEK/ERK phosphoryla-
tion

Enhanced tumour growth Hatzivassiliou et al. (2010)

Vemurafenib MAPK pathway KRAS(G13D) Activation of ERK leads to
the activation of Hippo and
Rho pathways

Cancer metastasis Kubiniok et al. (2017)

Chemotherapeutic drug
(oxaliplatin)

MAPK pathway Not applicable miRNA-625-3p-mediated
downregulation of
MAP2K6

Cancer progression due to
reduced apoptosis.

Rasmussen et al. (2016)

Combinational chemother-
apeutic drugs (FOLFOX
and FOLFIRI)

PI3K/PKB path-
way

Not applicable PIK3CAmutations (E545K,
E542K and E545D on exon
9; H1047R and H1047L on
exon 20)

LGR5+ CRC stem cells sur-
vival and proliferation

Wang et al. (2018)

(continued on next page)
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Table 2 (continued)

Therapeutic agent Targeted
signalling
pathway

CRC
mutational
status

Molecular alteration Clinical implication Reference

Cetuximab PI3K/PKB path-
way

Wild type KRAS
and BRAF

PIK3CAmutations on exon
19 (K944N, V955I, F930S,
V955G and K966E)

Decrease in progression-
free survival

Xu et al. (2017)

Cetuximab and panitu-
mumab

•MAPK
pathway
•PI3K/PKB
pathway

Wild type KRAS BRAF, NRAS, PTEN and
PIK3CAmutations

•Poor prognosis
for overall survival
•Cancer metastasis

Sartore-Bianchi et al.
(2009), Laurent-Puig et
al. (2009), De Roock et al.
(2010)

NVP-BEZ235 (dual
PI3K/MTOR inhibitor)

•MAPK
pathway
•PI3K/PKB
pathway

Not applicable KRAS and PIK3CAmuta-
tions leads to additive acti-
vation of PI3K/PKB path-
way

Suppression of BIM-
induced apoptosis.which
leads to cancer survival

Kim et al. (2013)

Chemotherapeutic drug
(paclitaxel)

PI3K/PKB path-
way

Not applicable miR-29a-mediated PTEN
inhibition

Reduction in drug sen-
sitivity suppress apopto-
sis which supports cancer
growth

Yuan et al. (2018)

Chemotherapeutic drug
(doxorubicin)

PI3K/PKB path-
way

Not applicable miR-29a-mediated P-gp
inhibition and upregula-
tion of PTEN

Enhanced drug sensitiv-
ity which thwart cancer
growth

Shi et al. (2020)

Chemotherapeutic drug (5-
FU)

PI3K/PKB path-
way

Not applicable miR-543-mediated PTEN
inhibition

Reduced drug sensitiv-
ity which supports cancer
growth

Liu, Zhou & Dong (2019)

Chemotherapeutic drug
(vincristine)

Wnt/β-catenin
pathway

Not applicable Overexpression of Dvl1-
3 leads to β-catenin/TCF-
induced transcription of
ABC transporters (P-gp,
MRP2 and BCRP)‘and
anti-apoptotic proteins
(Survivin and Bcl-2)

CRC is protected from
Vincristine-induced apop-
tosis which drives cancer
growth

Zhang et al. (2017b)

(continued on next page)
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Table 2 (continued)

Therapeutic agent Targeted
signalling
pathway

CRC
mutational
status

Molecular alteration Clinical implication Reference

5-FU and oxaliplatin Wnt/β-catenin
pathway

Not applicable Overexpression of
LINC00152 inhibits
CK1α-dependant β-catenin
phosphorylation

•Cancer metastasis
•Expression of EMT
markers

Yue et al. (2016), Yue et al.
(2018), Bian et al. (2017)

5-FU Wnt/β-catenin
pathway

Not applicable miR-30-5p-mediated inhi-
bition of USP22 and Wnt
target genes (Axin2 and c-
Myc)

Suppression of cancer
stemness and chemoresis-
tance

Ning et al. (2014), Jiang et
al. (2019)

5-FU and oxaliplatin Wnt/β-catenin
pathway

Not applicable LncRNA CRNDE-
mediated repression
of miR-181a-5p
promotes β-catenin/TCF
transcriptional activity

CRC cell proliferation and
chemoresistance

Han et al. (2017)

Small-molecule multi
kinase inhibitor
(regorafenib)

Notch pathway Not applicable Upregulation of Notch-1
and the target genes (HES1
and HEY1)

CRC cell proliferation due
to reduced sensitivity to
Regorafenib

Mirone et al. (2016)

Anti-VEGF antibody (be-
vacizumab)

Notch pathway Not applicable Upregulation of NICD Cancer stemness Negri & Ardizzoni (2015),
Negri et al. (2019)

5-FU Notch pathway Not applicable HES1-mediated overex-
pression of ABC trans-
porters (ABCC1, ABCC2
and P-gp1) with depressed
E-cadherins and elevated
N-cadherins

Tumour relapses Gao et al. (2014), Sun et al.
(2017)

Chemotherapeutic drug
(methotrexate)

•Notch pathway
•Wnt/β-catenin
pathway

Not applicable Dvl-3-related Wnt and
Notch crosstalk.

Cancer stemness Zhao et al. (2020)

5-FU and Irinotecan •Notch pathway
•KRAS/Erk/ADAM
pathway

KRAS(G12D,
G12A, G13D,
Q61L)

Aberrant Jagged1 process-
ing leads to sustained Jag1-
ICDs-mediated intrinsic
reverse signalling.

Cancer progression and
chemoresistance

Van Schaeybroeck et al.
(2011), Pelullo et al. (2019)

5-FU Notch pathway Not applicable miR-139-5p-mediated in-
hibition of Notch-1 and
downstream multidrug-
resistant genes (MRP-1 and
BCL-2)

Increased sensitivity to 5-
FU

Liu et al. (2016)

5-FU Notch pathway Not applicable miR-195-5p-mediated in-
hibition of Notch-2 and
RBPJ

Inhibition of cancer stem-
ness and 5-FU resistance

Jin et al. (2018)

5-FU Notch pathway Not applicable miR-34a-mediated ABCG2
inhibition

Enhanced chemosensitivity
to 5-FU

Xie, Chen & Fang, (2020a),
Xie et al. (2020b)
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pathway’’, ‘‘colorectal cancer AND (monotherapy OR combinational therapy) AND drug
resistance ANDWnt pathway’’, ‘‘colorectal cancer AND drug resistance AND Notch’’, and
‘‘colorectal cancer AND (MAPK OR PI3K OR Wnt OR Notch) AND drug resistance’’.
The searches were performed by two authors independently of each other. The abstracts
of these articles were then assessed to exclude papers that were not relevant to the scope of
this review. This review paper is intended for scientist who work in the same scientific area
as well as other readers in the field of molecular and cancer biology in general.

Regulation of signalling pathways associated with drug resistance in
CRC
Mitogen-activated protein kinase (MAPK) pathway
The MAPK pathway is mediated by mitogen-activated protein kinases (MAPKs), which
comprise a family of serine/threonine-specific protein kinases that regulate a variety of
cellular processes and play crucial roles in the pathogenesis of many diseases such as cancer,
infection, inflammatory and autoimmune diseases (Kim & Choi, 2010). The MAPK family
is divided into several subgroups. ConventionalMAPKs are (i) extracellular signal-regulated
kinase 1 and 2 (ERK1/2), (ii) c-Jun N-terminal kinases (JNKs), (iii) p38 (also known as
MAPK14) and (iv) ERK5, all are summarised in Fig. 1 (Morrison, 2012). Atypical MAPKs
comprise ERK3/4, ERK7/8 and Nemo-like kinase (NLK) (Cargnello & Roux, 2011). In the
canonical ERK/MAPK signalling pathway, extracellular signals (e.g., growth factors, stress,
mitogens) bind to the receptors, most of which are receptor tyrosine kinases (RTKs) at the
surface of the cell membrane, leading to auto-phosphorylation of growth factors receptors
and recruitment of adaptor proteins (e.g., growth factor receptor-bound protein 2 (GRB2)
and son of sevenless 1 (SOS1)) (Morrison, 2012). This in turn results in the switching of
the inactivated form of Ras-family GTPase (Ras in GDP bound form, Ras-GDP) to the
active form of Ras-family GTPase (Ras in GTP bound form, Ras-GTP). The external signal
is then transmitted via Ras-GTP to other downstream phosphorylation targets within the
cytoplasm where the signalling cascade converges at the activation of a series of MAPKs,
starting from MAPK kinase kinase (MAPKKK, e.g., Raf1) followed by MAPK kinase
(MAPKK, e.g., MEK1/2) and MAP kinase (MAPK, e.g., ERK1/2). Finally, the MAP kinase
translocates to the nucleus to phosphorylate transcription factors (e.g., c-Jun, STAT1,
c-Myc) that regulate transcription of genes for different cellular processes (Wei & Liu,
2002; Fang & Richardson, 2005;Morrison, 2012) (Fig. 1).

In multidrug-resistant CRC, MAPK pathway is often reprogrammed, usually by the
overexpression of RTKs, Ras and Raf; or gain-of-function mutations of Ras and Raf,
which sustain the activity of MAPK signalling pathway upon treatment with MAPK and
RTK inhibitors, 5-FU and oxaliplatin (Wan et al., 2004; Kavuri et al., 2015;Martinelli et al.,
2017; Ressa et al., 2018). EGFR has been a favourable target for the treatment of mCRC
since the last decade, mainly because they are highly expressed in most human tumours,
including CRC (Yarden & Pines, 2012). In particular, monoclonal antibody targeting
EGFR, such as cetuximab and panitumumab are widely used to treat mCRC patients due
to their initial benefit of improving patients’ survival (Jonker et al., 2007; Vermorken et
al., 2008; Pirker et al., 2009). However, some studies have shown that anti-EGFR based
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Figure 1 Deregulation of the canonical MAPK signalling pathway during CRC treatment. Region highlighted green represents substrates for
MAPKs that regulate biological processes in CRC cells treated with drug therapy.

Full-size DOI: 10.7717/peerj.12338/fig-1

therapy may not be effective in treating mCRC, indicating that a subset of CRC is resistant
to the anti-EGFR treatment (Bokemeyer et al., 2009; Van Cutsem et al., 2009). Common
molecular mechanisms associated with the resistance are KRAS, NRAS, BRAF and PI3KCA
mutations (De Roock et al., 2010; Diaz et al., 2012). In CRC which is quadruple wild-type
for KRAS, NRAS, BRAF and PI3KCA genes, HER2 gene amplification and activating
mutations at the phosphorylation sites of the catalytic domain have been shown to bypass
EGFR blockade by activating a compensatory signallingmechanism for cell survival (Kavuri
et al., 2015; Belli et al., 2019). It has been reported that HER2 could form heterodimers with
either EGFR or ERBB3 with consequent activation of ERK and Akt signalling respectively,
in which the latter has been shown to promote anti-EGFR resistance (Zhang et al., 2014a;
Zhang et al., 2014b). Besides, it has been found that aberrant ERBB2 activation could result
in the stimulation of ERK 1/2 signalling that mediates cetuximab resistance (Yonesaka et
al., 2011).

B-Raf is a MAPKKK that mediates cell growth and differentiation via the ERK/MAPK
subfamily of MAPK pathway, in response to growth factors andmitogens (Morrison, 2012).
B-Raf mutations, more often BRAF V600E, occur in approximately 8% of CRC and are
associated with poor prognosis (Davies et al., 2002; Richman et al., 2009). BRAF V600E
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mutation leads to conformational changes at the catalytic domain which renders B-Raf
constitutively active, independent of Ras-GTP activation and dimerization with Raf-1 (also
known as C-Raf) (Durrant & Morrison, 2018). This results in prolonged phosphorylation
and activation of MEK1/2 and ERK1/2 kinases which, in turn, activates downstream
substrates that mediate cell growth and survival (Fang & Richardson, 2005). It has been
reported that targeting BRAF V600E using mono-therapeutic agents, such as vemurafenib
(a B-Raf inhibitor, also known as PLX4032) which binds to the ATP-binding site of
BRAF V600E to inhibit its activity, shows limited therapeutic response in CRC (Prahallad
et al., 2012). This is because targeting BRAF V600E results in feedback activation of
EGFR characterised by enhanced phosphorylation of RAS and CRAF upstream of MAPK
pathway and downstream activation of RAF, MEK and ERK (Corcoran et al., 2012). In
order to circumvent resistance to B-Raf inhibition, B-Raf inhibitor is used in combination
with EGFR inhibitor or MEK inhibitor or both which were initially shown to offer
therapeutic benefit of at least 12% response rate to the drugs and improve the suppression
of ERK/MAPK pathway (Bendell et al., 2014; Corcoran et al., 2014; Tabernero et al., 2014).
Despite the initial success in suppressing B-Raf resistance using the multi-target approach,
there is compelling evidence that BRAF V600E mutant CRC patients could also develop
resistance to the new treatment (Oddo et al., 2016). Ahronian et al. (2015) has shown that
the reactivation of theMAPK pathway confers cross-resistance to the combined RAF/EGFR
or RAF/MEK inhibition in BRAF-mutant CRC and further demonstrated that the use of
ERK inhibitor could overcome the resistance by suppressing the MAPK signalling.

On the other hand, it has been reported that treatment using ATP-competitive inhibitors
produces opposing mechanisms of action that is dependent on the cellular context and
genotype of the tumour. It was found that RAF inhibitors effectively block MAPK pathway
in BRAF V600E cells but activate the MAPK pathway in wild-type BRAF tumours by
inducing RAF dimerization and MEK/ERK phosphorylation leading to enhanced tumour
growth, suggesting that other strategies to block RAF activation are needed to improve
the treatment efficacy (Hatzivassiliou et al., 2010). Furthermore, RAS mutant tumours are
also known to exhibit poor response to RAF inhibitors. A time-course phosphoproteomic
analysis of vemurafenib-treated RAS mutant CRC cell lines has found potential cross-talk
between ERK signalling with Hippo and Rho pathways and revealed novel functional
targets downstream of ERK (Kubiniok et al., 2017).

Apart from post-translational regulation of proteins as a regulatory checkpoint for
cellular signalling, microRNAs (miRNAs) also exhibit a functional role in the regulation
of MAPK pathway in CRC drug resistance (Rasmussen et al., 2016; Angius et al., 2019).
A previous miRNA profiling study has uncovered the link between high expression of
miRNA-625-3p and poor clinical response towards oxaliplatin-based therapy (Arango et
al., 2004; Rasmussen et al., 2013). Mechanistically, it has been demonstrated that miRNA-
625-3p mediates oxaliplatin resistance by targeting MAPK kinase MAP2K6 and abrogates
MAPK14 signalling, leading to increased cell cycle progression and reduced apoptosis
(Rasmussen et al., 2016).

As one of the most frequently altered signalling pathways and its important roles in
CRC drug resistance, MAPK pathway represents a promising target for cancer therapy.
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Significant progress has been made on the development of therapeutics targeting MAPK
kinases with considerable clinical success (Bendell et al., 2014). Notably, the combination
of BRAF and MEK inhibitors has been shown to improve response rates and may offer
potential therapeutic benefit in BRAF-mutated CRC (Corcoran et al., 2014). Nevertheless,
it is clear that we are still far from any complete understanding of the MAPK pathway.
Moreover, the emergence of new resistance mechanisms prompts more further research
to provide a deeper understanding on the complex regulation and interconnectivity of the
underlying biological processes to overcome resistance and increase therapeutic efficacy.

Phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB, also known as
AKT) pathway
The PI3K/PKB pathway regulates cell metabolism, cell growth and cell survival. In normal
condition, PI3K/PKB pathway is activated by four major sensors upstream of the pathway,
namely (i) receptor tyrosine kinases (RTKs) which bind to growth factors (Hemmings,
1997), (ii) cytokine receptors (Chang et al., 2003), (iii) G protein-coupled receptors
(GPCRs) that are activated by various biological molecules (Murga et al., 1998), and (iv)
integrins which detect cell–cell or cell–matrix communication (Su et al., 2007). Upon ligand
binding, these receptors, together with their cofactors, will activate PI3K family proteins.
There are three classes of PI3K family proteins, among which only class I PI3Ks and the
signalling networks they regulate are covered in this review (Fig. 2). Information about
Class II and Class III PI3Ks and their roles in cellular signalling are covered in other reviews
or journal articles (Falasca & Maffucci, 2012; Okkenhaug, 2013; Backer, 2016; Hawkins &
Stephens, 2016). Within the class I PI3K subfamily itself, there are four catalytic isoforms
(p110α, p110β, p110γ and p110δ encoded by PIK3CA, PIK3CB, PIK3CG, and PIK3CD
respectively) which catalyse the phosphorylation of phosphatidylinositol-4,5-bisphosphate
(PI(4,5)P2) to phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) or PIP3. p110α and
p110β are expressed ubiquitously while p110γ and p110δ are expressed in immune cells.
Each catalytic isoform forms a dimer with a regulatory subunit that controls the activity
and subcellular localisation of the PI3K complex (Fig. 2). In response to specific external
stimuli, PIP3, which acts as a secondary messenger, will recruit cytoplasmic proteins with
PIP3 binding domains (typical examples of which are phosphoinositide-dependent kinase-1
(PDK1) and PKB) to specific cell membrane locations. Shortly after the transmission of
the signal to downstream effectors, PIP3 is then metabolised by phosphatase and tensin
homolog (PTEN), which is a tumour suppressor that negatively regulates the PI3K signal by
removing 3′-phosphate from PIP3 (Danielsen et al., 2015; Fruman et al., 2017). Activation
of PKB is a two-step process, whereby PDK1 phosphorylates PKB on threonine-308
to partially activate PKB (Alessi et al., 1997), followed by phosphorylation of PKB by
mTORC2 on serine-473 to fully activate PKB (Sarbassov et al., 2005). The activated PKBwill
subsequently regulate the phosphorylation of the target substrates (the most well-known
examples are glycogen synthase kinase 3 beta (GSK3β), BCL2-antagonist of death (BAD),
mouse double minute homolog 2 (MDM2), forkhead box O (FOXO) and mechanistic
target of rapamycin complex (mTORC1)) which mediate important cellular functions,
such as glucose uptake, protein synthesis, cell survival and cell cycle progression (Manning
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& Cantley, 2007). The activity of PKB is also negatively regulated by protein phosphatase
2A (PP2A), PH domain leucine-rich repeat protein phosphatase 1/2 (PHLPP1/2) and
carboxyl-terminal modulator protein (CTMP) (Hemmings & Restuccia, 2012) (Fig. 2).
In multidrug-resistant CRC, PI3K signalling is prolonged by PIK3CA mutations, null
mutation of PTEN, and RAS mutations upon treatment with standard chemotherapeutic
drugs and targeted therapeutic agents (Laurent-Puig et al., 2009; De Roock et al., 2010; Kim
et al., 2013; Hamada, Nowak & Ogino, 2017).

PIK3CA is regarded as one of the most frequently mutated genes in CRC, which
accounts for approximately 10–30% of all CRC cases (Samuels et al., 2004; Velho et al.,
2005; Hamada, Nowak & Ogino, 2017). It is reported that non-random somatic mutations
occurring in the coding region, mainly exon 9 (helical domain) and exon 20 (catalytic
domain), have heightened basal PI3K and PKB activities which then promote cancer
progression (Kang, Bader & Vogt, 2005; Ikenoue et al., 2005). Furthermore, it has been
shown that PIK3CAmutations (E545K, E542K and E545D on exon 9; H1047R and H1047L
on exon 20) could mediate resistance to standard chemotherapy (FOLFOX and FOLFORI)
by inducing phosphorylation of PKB and expression CRC stem cell markers (LGR5) via
sustained PI3K signalling, thereby promoting cancer cell survival and proliferation (Wang
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et al., 2018). Interestingly, PIK3CA mutations have also been found to mediate acquired
cetuximab resistance in mCRC complementary to the previously reported RAS mutations.
A recent circulating tumourDNA sequencing analysis frommCRCpatients has revealed five
novelmutations on exon 19 of PIK3CA (K944N,V955I, F930S, V955G andK966E) thatmay
potentially drive resistance to cetuximab via EGFR-mediated activation of the PI3K/PKB
signalling pathway, suggesting that combined regimens of PI3K/mTOR inhibitors (PP242
and NVP-BEZ235) with anti-EGFR therapy may be beneficial to overcome the resistance
(Xu et al., 2017).

Apart from PIK3CA mutations, there is increasing evidence of the emergence of
mutations involving components of MAPK and PI3K/PKB signalling pathways when
treated with targeted therapeutic agents (De Roock et al., 2010; Vitiello et al., 2019).
Although anti-EGFR based therapy is commonly prescribed for KRAS wild-type CRC
patients, clinical evidence has indicated that the KRAS mutation status alone is insufficient
to predict therapeutic response to the therapy (Allegra et al., 2009). Retrospective cohort
studies of CRC cases have identified several key players in the EGFR signalling pathway
(which is a signalling network shared by both MAPK and PI3K/PKB pathways) that hinder
the effectiveness of anti-EGFR monoclonal antibodies in KRAS wild-type CRC patients
(Sartore-Bianchi et al., 2009; Laurent-Puig et al., 2009; De Roock et al., 2010). It has been
previously reported that BRAF, NRAS, PTEN and PIK3CA mutations are associated with
the efficacy and clinical outcome of EGFR-targeted therapy but their exact roles in driving
the resistance are still unclear (Laurent-Puig et al., 2009;De Roock et al., 2010). Surprisingly,
KRAS mutations also negatively affect the outcome of treatment against PIK3CA mutant
CRC. Kim et al. (2013) have shown that KRAS and PIK3CAmutations attenuate sensitivity
to treatment with a dual inhibitor of PI3K and mTOR by suppressing BIM-induced
apoptosis via activation of PI3K/MTOR pathway, leading to cell survival.

More recently, miRNAs have also been reported to control CRC pathogenesis via the
modulation of PI3K/PKB pathway (Soleimani et al., 2019). Based on previous studies, it has
been shown that miR-29a could induce or suppress tumour progression in drug-resistant
cancer cells (Zhong et al., 2013; Liu et al., 2018). Yuan et al. (2018) showed that higher
level of miR-29a is expressed in CRC cell lines resistant to paclitaxel which resulted in
downregulation of PTEN and upregulation of phosphorylated AKT. This suggests that
miR-29a has a regulatory function to PI3K/PKB pathway via inhibition of PTEN which
reduces drug sensitivity and supports cancer growth. In contrast, miR-29a could potentially
reduce P-gp-mediated chemoresistance via modulation of PTEN and P-gp expression in
doxorubicin-resistant CRC cell lines. This means that miR-29a exerts tumour suppressive
function by inhibiting membrane transporter activity through PI3K/PKB pathway (Shi
et al., 2020). These seemingly contradictory roles of miR-29a have also been observed in
other malignancies. In the context of regulation of drug resistance, miR-29a has been
reported to increase sensitisation to gemcitabine in pancreatic cancer cells (Kwon et al.,
2016) as well as sensitization to tamoxifen in breast cancer cells (Muluhngwi et al., 2017).
On the other hand, miR-29a was shown to play a role in mediating adriamycin resistance
in breast cancer cells via inhibiting the PTEN/AKT/GSK3β pathway (Shen et al., 2016).
It is unclear whether the opposing results are due to heterogeneity in the cancer cells
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or that miR-29a could exhibit multifaceted functions in a context dependent manner.
Nevertheless, these paradoxical findings demand the need for further work to clarify and
elucidate the function of miR-29a more comprehensively. Similar to miR-29a, miR-543
has recently been identified as the mediator of chemoresistance in CRC cells, also by
suppressing the expression of PTEN which activates PI3K/PKB pathway (Liu, Zhou &
Dong, 2019). Interestingly, miR-4689 which has been identified as a negative regulator of
KRAS and AKT is downregulated in KRAS mutant CRC cells and confers resistance to
molecular-targeted therapy, suggesting that miR-4689 could be a promising therapeutic
agent to control multidrug resistance in CRC via modulation of PI3K/PKB pathway and
MAPK pathway (Hiraki et al., 2015).

Taken together, current evidence clearly shows that mutations of the MAPK/PI3K/PKB
signalling pathway components are frequently observed in cancer drug resistance. However,
the signalling mechanisms associated with these mutations are still not well elucidated
which necessitate further investigation. Importantly, distinct molecular events that regulate
drug resistance such as in KRAS wild-type and mutant CRC suggests the importance of
identifying relevant drug targets in CRC with different mutational status. Moreover, future
research should also focus on dissecting the link of miRNAs with cancer drug resistance
and their underlying molecular mechanisms.

Wnt/β-catenin pathway
The Wnt/β-catenin pathway is an evolutionarily conserved system that regulates cell
development, cell differentiation, cell proliferation and cell migration. The Wnt/β-catenin
pathway can be grouped into β-catenin-dependent Wnt pathway (canonical Wnt pathway)
and β-catenin-independent Wnt pathway (non-canonical Wnt pathway) which are further
divided into the planar cell polarity Wnt pathway and the Wnt/Ca2+ pathway (Komiya
& Habas, 2008). The canonical Wnt/β-catenin pathway is made up of the membrane
proteins, degradation complex and β-catenin protein. In the absence of Wnt ligands, the
degradation complex which comprises of adenomatous polyposis coli (APC), Axin, GSK3
and CK1α is formed through phosphorylation of Axin and APC by GSK3 and casein
kinase 1α (CK1α). As a result, β-catenin is ubiquitinated by E3-ligase protein βTrCP
(β-transducin repeats-containing proteins) through phosphorylation and targeted for
proteasomal degradation (Van Kappel & Maurice, 2017) (Fig. 3). In the presence of Wnt
ligands, lipoprotein receptor-related protein 5/6 (LRP5/6) co-receptor and Frizzled (Fzd)
receptor are activated which leads to phosphorylation of LRP5/6 co-receptors and binding
of adaptor protein disheveled (Dvl) to the phosphorylated LRP5/6. This is followed by
the recruitment of the remaining degradation complex components to the Fzd-LRP5/6
complex to inactivate the degradation complex (Janda et al., 2012) (Fig. 3). The molecular
mechanism for Wnt-mediated degradation complex inactivation is still heavily disputed
due to conflicting findings on the inhibition of GSK3 in the presence of Wnt signal.
Several models have been proposed: (1) blockade of GSK3 catalytic site by binding to the
phosphorylation motif of LRP5/6 (Wu et al., 2009). (2) Wnt-mediated dissociation of APC
fromGSK3 (Valvezan et al., 2012). (3) sequestration of GSK3 in endosomal vesicles through
endocytosis of Fzd-LRP5/6 complex (Taelman et al., 2010). Disruption of the degradation
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complex integrity in the presence ofWnt signal promotes stabilisation of β-catenin, leading
to accumulation of newly synthesised β-catenin in the cytoplasm and their subsequent
translocation to the nucleus. Interestingly, it is also known that, in the presence of Wnt
signal, the degradation complex could remain intact to target β-catenin for degradation via
phosphorylation, but ubiquitination of β-catenin is impaired which inhibits its degradation
by the degradation complex (Gerlach et al., 2014). Within the nucleus, β-catenin binds to
T-cell factor/lymphoid enhancing factor (TCF/LEF) which are the transcription factors that
activate Wnt-responsive genes required for cell growth and survival (e.g., c-Myc, Cyclin
D1). In addition, β-catenin interacts with TCF/LEF to recruit transcriptional co-activators
(p300/CBP and BCL9) to the transcription factors to activate gene expression (Kretzschmar
& Clevers, 2017; Taciak et al., 2018) (Fig. 3). In multidrug-resistant CRC, Wnt/β-catenin
pathway is reprogrammed by overexpression of Dvl protein and non-coding RNAs that
interfere with the activities of downstream signalling mediators (Yue et al., 2016; Han et
al., 2017; Bian et al., 2017; Zhang et al., 2017b; Jiang et al., 2019).

Dysregulation in the key Wnt/β-catenin pathway components such as upstream
regulator (Dvl protein), β-catenin degradation complex and its downstream targets
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(β-catenin and TCF/LEF) instigate tumour progression in many types of cancer (Van
Kappel & Maurice, 2017). Moreover, recent studies indicate that aberrant Wnt/β-catenin
signalling could trigger anti-cancer drug resistance (Zhang et al., 2017a). Zhang et al.
(2017b) reported that DVL1-3 proteins are overexpressed in CRC resistant to vincristine
(a chemotherapeutic drug that interferes with microtubule synthesis leading to cell cycle
arrest) which results in overexpression of ABC transporters (P-glycoprotein (P-gp),
MRP2 and BCRP) and anti-apoptotic proteins (Survivin and Bcl-2). Contrary to previous
findings which suggest that DVL promotes β-catenin accumulation and subsequent
translocation to the nucleus, it was found that DVL1-3 translocate to the nucleus and bind
to β-catenin to form a transcriptional complex, independent of β-catenin accumulation
and nuclear translocation (Gao & Chen, 2010; Shang, Hua & Hu, 2017). Moreover, the
study also showed that silencing DVL1-3 could re-sensitise CRC cells to vincristine,
5-FU and oxaliplatin, suggesting that DVL could be a potential therapeutic target in
multidrug-resistant CRC.

It has been increasingly recognised that long non-coding RNA (lncRNA, a non-coding
regulatory RNA with greater than 200 nucleotides in length) regulates Wnt/β-catenin
pathway in multidrug-resistant CRC (Ma et al., 2016; Lu et al., 2017). Recent studies have
shown that lncRNA cytoskeleton regulator RNA (CYTOR, also known as LINC00152) is
overexpressed in CRC which confers resistance to oxaliplatin-induced apoptosis (Yue et
al., 2016). In addition, elevated expression of LINC00152 is also observed in CRC that gives
rise to 5-FU resistance and cancer metastasis (Bian et al., 2017). However, the regulatory
mechanism of LINC00152 in theWnt/β-catenin pathway of mCRC is still unknown (Yue et
al., 2016). In a recent study, Yue et al. (2018) demonstrated that LINC00152 competitively
binds to β-catenin to prevent CK1α from phosphorylating β-catenin. As a result, β-catenin
accumulates and translocates to the nucleus to activate the expression of epithelial-
mesenchymal transition (EMT) markers (N-cadherin and Vimentin) which are hallmarks
of metastatic cancer. Reciprocally, β-catenin/TCF4 transcriptional complex promotes the
expression of LINC00152 to sustain Wnt/β-catenin signalling in mCRC.

Likewise, miRNA is also known to influence cancer growth and the sensitivity of
cancer cells towards anti-cancer drugs (Jansson & Lund, 2012; Piletič & Kunej, 2016). Jiang
et al. (2019) have demonstrated that overexpression of miR-30-5p negatively regulates
the expression of Wnt/β-catenin pathway target genes (Axin2 and c-Myc) and inhibits
chemoresistance in CRC cells by targeting ubiquitin-specific peptidase 22 (USP22).
Mechanistically, it has been reported that USP22 induces β-catenin nuclear localisation and
upregulates FoxM1 expression to promote G1/S cell cycle transition and cell proliferation
(Ning et al., 2014). In another study conducted byChen et al. (2019), miR-103/107 has been
shown to repress the activity of Axin2 leading to sustained activation of Wnt/β-catenin
signalling that potentiates cancer stemness and chemotherapeutic resistance. Nevertheless,
despite that non-coding RNAs such as lncRNA and miRNA are known to promote
resistance to therapeutic agents in CRC, the interaction network between LncRNA
and miRNA is not well defined (Gao et al., 2019). Han et al. (2017) has reported that
lncRNA Colorectal Neoplasia Differentially Expressed (CRNDE) binds to miR-181a-5p to
repress its expression, resulting in increased levels of its downstream targets β-catenin and
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transcription factor TCF4 in theWnt/β-catenin signaling pathway. It was also demonstrated
that CRNDE knockdown andmiR-181a-5p overexpression inhibitWnt/β-catenin signaling
and could reduce chemoresistance and attenuate cell proliferation in CRC cells, suggesting
that it could be a novel cancer therapeutic strategy.

Over the years, substantial efforts have been directed to studying the molecular
mechanisms and functional effects of Wnt signalling pathway. Accumulating studies
confirm the critical role Wnt signalling in drug resistance and convey important insights
into its underlying mechanisms that confer resistance to different therapies. Notably,
such knowledge could be potentially harnessed to facilitate the development of specific
inhibitors or drug combinations to improve anticancer efficacy. Nevertheless, owing to the
complexity of Wnt signalling, there are still numerous details remain be uncovered with
regard to its connections to therapy resistance that warrant further investigation.

Notch pathway
Similar to other signalling pathways (Wnt/β-catenin, Hedgehog (Hh), and transforming
growth factor-beta (TGF-β)/bone morphogenic protein (BMP)), the Notch pathway is
highly conserved across species and is known to control cell development, apoptosis, cell
differentiation and proliferation (Artavanis-Tsakonas, Rand & Lake, 1999). Notch receptors
(Notch 1–4) are synthesised as precursors from mRNAs (known as pre-Notch receptor)
which then undergo fucosylation (a type of glycosylation) in the endoplasmic reticulum. In
the Golgi apparatus, Notch receptors are further modified by enzymes (one typical example
is Fringe) and cleaved at site 1 (S1) by furin-like convertase to induce heterodimerisation of
Notch receptors (Siebel & Lendahl, 2017) (Fig. 4). At the cell surface, Notch receptors bind
to Notch ligands (e.g., Jagged1, Jagged2, Delta-like ligand 1 (Dll1), Delta-like ligand 3 (Dll3)
and Delta-like ligand 4 (Dll4)) of neighbouring cells. This initiates subsequent cleavages
of Notch receptors by ADAM10/17 metalloproteases and presenilin–γ-secretase enzyme
complex at the outer side (site 2 (S2)) and inner side (site 3 (S3)) of the cellmembrane (Bray,
2006) (Fig. 4). The end product of the proteolytic cleavages of Notch receptors known
as Notch intracellular cleaved domain (NICD, an active form of the molecules which
acts as transcriptional activators), travels to the nucleus to displace co-repressors (e.g.,
recombining binding protein J-kappa (RBPJκ) or CSL) and interacts with transcriptional
co-activators (e.g., mastermind-like (MAML), histone acetyltransferase (HAT), p300),
in order to activate the transcription of Notch target genes (e.g., Hes and Hey family
proteins, cyclin D3, c-Myc). Notch signalling is terminated when the intracellular domain
of Notch (ICN or NICD) is targeted for proteasomal degradation through a ubiquitin
pathway (Vinson et al., 2016; Siebel & Lendahl, 2017) (Fig. 4). In multidrug-resistant CRC,
cross-regulation of signalling pathways, post-transcriptional regulation and overexpression
of genes in the Notch signalling pathway are among the common mechanisms underlying
the development of resistance towards targeted or chemotherapeutic regimens (Rodilla et
al., 2009;Majidinia et al., 2018; Negri et al., 2019).

There is growing evidence that upregulation of Notch receptors, Notch ligands and
Notch target genes could lead to the maintenance of CRC stem cell populations and the
acquisition of metastatic phenotype which are strongly related to poor survival of CRC
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patients and drug resistance (Mohamed et al., 2019;Weber et al., 2019; Shaik et al., 2020). It
has been previously reported that Notch-1 signalling pathway induces EMT in non-small
cell lung cancer resistant cells with acquired resistance to EGFR tyrosine kinase inhibitor,
suggesting that Notch signalling may contribute to cancer drug resistance (Xie et al., 2013).
In another study, Mirone et al. (2016) has reported that CRC cells that are resistant to
regorafenib (a small-molecule multi kinase inhibitor) showed significant upregulation of
Notch-1 and the target genes (HES1 and HEY1). The study demonstrated that knockdown
of Notch-1 could partially restore the sensitivity to regorafenib and inhibit cell growth,
indicating that Notch-1 may play a role in tumour resistance. In mCRC patients treated
with bevacizumab-based therapy, high NICD expression was found to be associated with
poorer response whereas no correlation was observed between Dll-4 expression and clinical
response (Negri & Ardizzoni, 2015). In a follow-up study,Negri et al. (2019) has shown that
high expression levels of NICD and CD44 are linked to cancer stemness in patients with
advanced CRC treated with bevacizumab. Notably, the study demonstrated that NICDs
(the functional components of Notch signalling pathway) instead of Dll-4 induce resistance
to anti-angiogenic therapy in CRC via activation of Notch-induced regulation of colon
cancer stem cells. Nevertheless, the functional roles of NICDs and CD44s in the CRC
microenvironment during anti-angiogenic treatment are still unclear (Negri et al., 2019).
HES1, which is a downstream target of Notch pathway and one of the important markers
of CRC stem cells, is known to contribute to tumour relapses in CRC patients after
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5-FU based chemotherapy, but the role of HES1 in chemoresistant CRC has not yet been
elucidated (Gao et al., 2014). A recent study by Sun et al. (2017) has shown that HES1
modulates gene expression related to drug metabolism and EMT, notable overexpression
of ABC transporters (ABCC1, ABCC2 and P-gp1) with depressed E-cadherins and elevated
N-cadherins in CRC cell lines treated with 5-FU, supporting the crucial role of HES1 in
promoting chemoresistance.

miRNAs are known to regulateNotch signalling pathwaywhich results in various tumour
pathology, such as metastasis, tumour relapses, cancer stemness and low survival rate
(Majidinia et al., 2018; Khan et al., 2019). Recently, accumulating evidence also suggests
that cross-regulation between miRNAs and Notch signalling pathway plays a critical role
in cancer drug resistance. miR-139-5p is a tumour suppressor that has been found to be
frequently downregulated in CRC (Shen et al., 2014). It has been reported that miR-139-5p
targets Notch-1 and regulates its signal transduction to exert tumour suppressive effect
in CRC (Zhang et al., 2014b). Furthermore, miR-139-5p/Notch-1 signalling has also been
correlated with drug resistance in CRC. Liu et al. (2016) has shown that miR-139-5p
sensitises CRC cells to 5-FU by inhibiting Notch-1 and its downstreammultidrug-resistant
genes (MRP-1 and BCL-2). Similarly, miR-195-5p is known to suppress cancer growth
by inhibiting cell cycle progression, cell proliferation and cell migration (Luo et al., 2014).
A recent study by Jin et al. (2018) has revealed that miR-195-5p could inhibit CRC cell
stemness and 5-FU resistance by targeting the Notch signalling proteins Notch-2 and RBPJ,
suggesting that miR-195-5p could be a potential therapeutic target in chemoresistance. On
the other hand, a recent study by Xie et al. (2020b) reported that miR-34a could negatively
regulatemultidrug resistance protein ABCG2 viaDLL1-mediated Notch signalling pathway
and demonstrated that overexpression of miR-34a could overcome 5-FU resistance in CRC
cells.

Overall, these findings suggest the critical role of Notch signalling pathway in cancer drug
resistance. Notably, recent evidence indicates that Notch contribute to the maintenance of
CRC stem cells and resistance to therapeutic agents, hence targeting Notch pathway may
hold a promising prospect for cancer therapy. Thus, further studies are needed to elucidate
the underlying mechanisms and the crosstalk between Notch and other signalling pathways
to facilitate the design of better therapeutic approach.

Crosstalk of signalling pathways
Besides deregulated signalling events mediated by single pathway during CRC treatment,
the pathological link between the crosstalk of signalling pathways and the acquisition of
drug resistance in CRC has also been documented in numerous studies (Fig. 5) (Hiraki
et al., 2015; Ahmed et al., 2015; Zou et al., 2017; Mesange et al., 2018). It has been shown
that MAPK-mediated pathway interacts with other signalling pathways to induce drug
resistance in CRC (Watanabe et al., 2011). Tyrosine kinase inhibitors such as gefitinib
(EGFR inhibitor) desensitises CRC cells to the antitumour effect of the drugs by promoting
the heterodimerisation of EGFR and IGF1Rβ, leading to cross-regulation of the IGFR1β and
MAPK signalling pathways (Yang et al., 2011). The EGFR signalling pathway has also been
reported to cooperate with the MAPK signalling pathways mediated by RTKs (MET, Axl,
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and IGF1R) to promote resistance against EGFR inhibitors such as cetuximab (Hu et al.,
2016). In addition to MAPK-based signalling involving RTKs, KRAS-mediated activation
of the MAPK signalling pathway in CRC has also been demonstrated to confer resistance
to MEK inhibition by instigating STAT1 phosphorylation and the activation of IFN/STAT
signalling (Sakahara et al., 2019). Additionally, research findings also suggest that BRAF
V600E regulates the crosstalk of the KRAS-mediated MAPK signalling pathway with other
signalling pathways in multidrug-resistant CRC (He et al., 2018; Duong et al., 2018). BRAF
V600E promotes the expression of endosomal protein CEMIP via a β-catenin-dependant
pathway that sustains ERK1/2 activation after MEK1 inhibition. The crosstalk between
the Wnt/β-catenin and MAPK signalling pathways that involves CEMIP enhances the
expression of c-Myc to promote cell survival (Duong et al., 2018). Inhibition of mTORC1
in BRAF V600E CRC has also been shown to disrupt the S6K1-IRS-2/PI3K negative
feedback loop, leading to ERK-dependant Mcl-1 stabilisation which blocks apoptosis (He
et al., 2018).

On the hand, several reports have shown that there is crosstalk between Notch and other
signalling pathways that are involved in the development of chemoresistance. It has been
demonstrated that Notch-1 signalling pathway could activate Wnt/β-catenin pathway by
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NICD-1-mediated translocation of β-catenin to the nucleus upon binding of Notch-1 to its
ligands (Ishiguro et al., 2017). On the other hand, it has been reported that the activation of
Notch signalling pathway in CRC cell lines is mediated by β-catenin through up-regulation
of Jagged1 (Rodilla et al., 2009). Furthermore, it has been shown that β-catenin promotes
the expression of Jagged2 in CRC and contributes to tumour resistance to chemotherapy
through modulation of p21 (Vaish, Kim & Shim, 2017). Besides, it has been reported that
Notch and Wnt pathways were both upregulated and associated with the development of
chemoresistance inCRCcells by upregulatingHES1 expression (Kukcinaviciute et al., 2018).
Interestingly, a recent study has revealed that Dvl scaffold protein acts as a key regulator of
the Wnt and Notch crosstalk (Zhao et al., 2020). Findings from the study highlighted that
Dvl-3 might have a functional role in the acquisition of Methotrexate (MTX, an inhibitor
of the dihydrofolate reductase (DHFR) enzyme) resistance and stem cell-like properties in
CRC cell lines, although themechanistic details of the resistance still remain unknown. Also,
it has been found that Notch pathway could mediate chemoresistance via crosstalk with
KRAS pathway. It has been previously reported that KRASmutations regulate growth factor
shedding following chemotherapy treatment via theMEK/Erk/ADAM17 signalling axis and
contribute to drug resistance in CRC tumours (Van Schaeybroeck et al., 2011). In a recent
study conducted by Pelullo et al. (2019), it has been demonstrated that Jagged-1-ICDs
(Jag1-ICDs) are produced by aberrant Jagged1 processing via KRAS/Erk/ADAM pathway
in CRC tumours with mutant KRAS. The study highlighted a novel role of Jag1-ICD
beyond the canonical Notch signalling in mediating the oncogenic KRAS pathway, which
promotes malignant behaviour and confers chemoresistance to CRC cells.

Besides the crosstalk between theWnt/β-catenin andNotch signalling pathways, research
evidence also suggests that TGF β1 induces the expression of FOXQ1 to promote the nuclear
translocation of β-catenin. FOXQ1-mediated crosstalk of the Wnt/β-catenin and TGFβ1
signalling pathways results in resistance to chemotherapy drug-induced apoptosis, EMT
and tumour invasion (Peng et al., 2015). In view of the importance of the crosstalk of
signalling pathways in CRC drug resistance, future research therefore should aim to
identify key regulators that mediate the such interaction to provide a holistic view of the
resistance mechanism.

CHALLENGES AND FUTURE PERSPECTIVES
A variety of signalling pathways have also been demonstrated to induce drug resistance
in CRC, other than the four signal transduction pathways discussed above (Lazzari
et al., 2019; Kadioglu et al., 2021). For example, the activation of Hedgehog (Hh)-GLI
pathway has been found to mediate the acquisition of chemoresistance via GLI-induced
upregulation of ABC transporters in CRC (Po et al., 2020). It has also been reported
that bone morphogenetic protein-2 (BMP-2) signalling activates STAT3 and promotes
EMT and colon cancer stemness in CRC, which contribute to drug resistance (Kim et al.,
2015). Likewise, studies have also suggested that Smad3/4 and IFN play important role in
regulating multidrug-resistant CRC via STAT signalling (Moon et al., 2015; Sakahara et al.,
2019). Some studies also feature other signalling events such as Hedgehog signalling in CRC
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during chemotherapy or molecular-targeted therapy, implying the underlying complexity
of signalling mechanisms in multidrug-resistant CRC (Tang et al., 2018; Park et al., 2019).

On top of non-coding RNAs-based regulation of therapeutic resistance in CRC,
epigenetic changes that involve DNA methylation and histone modifications have also
increasingly been reported (Shen et al., 2018; Mahalakshmi, Husayn Ahmed & Mahadevan,
2018; Porcellini et al., 2018; Rezapour et al., 2019). For instances, hypermethylation of
genes such as MEIS2, SLFN11 and B4GALT1 are associated with cancer progression
and resistance to chemotherapy (cisplatin or oxaliplatin-based therapy) and anti-EGFR
therapy (Baharudin et al., 2017; He et al., 2017; Picardo et al., 2019; Wang et al., 2019).
Mechanistically, DNA methylation regulates the expression of miRNAs which influence
the activity of signalling proteins in CRC with MSI-H to initiate anti-cancer drug resistance
and cancer development (Shi et al., 2018). In addition, the regulatory function of histone
methylation in multidrug-resistant CRC is also documented in studies that report the
relationship between H3K27me3 level and oxaliplatin-induced apoptosis (Wang et al.,
2020b), as well as the cancer-driving nature of histone methyltransferase SETDB1 in CRC
resistant to cetuximab (Hou et al., 2020).

Besides cell-autonomousmechanisms of drug resistance, the association between tumour
microenvironment (TME)-driven CRC pathogenesis and therapeutic failure has also been
detailed in various studies (Hu et al., 2020; Ren et al., 2018; Hu et al., 2019; Jackstadt et al.,
2019). Cancer-associated fibroblasts (CAFs), which constitute a main cellular component
of the TME, have been identified as a keymediator of drug resistance in CRC by transferring
exosomes to CRC cells (Kahlert & Kalluri, 2013; Herrera et al., 2018). Research evidence
suggests that the transportation of exosomal miR-92a-3p from CAFs to CRC activates
the Wnt/β-catenin pathway and inhibits mitochondrial apoptosis by targeting FBXW7
and MOAP1, contributing to cancer progression and chemotherapy resistance (Hu et
al., 2019). The crosstalk between CAFs and CRC also involves the transfer of exosomal
lncRNA H19 from CAFs to CRC cells (Ren et al., 2018). H19 activates the Wnt/β-catenin
pathway by acting as a RNA sponge for miR-141, which inhibits the stemness of CRC cells
(Ren et al., 2018). Correspondingly, exosomes derived from CRC cells also contain factors
essential for reprogramming normal colonic fibroblast into CAFs which may in turn lead
to chemoresistance in CRC (Rai et al., 2019). Potential strategies for CAFs-induced drug
resistance in CRC include (i) suppressing the transformation of CAFs using small-molecule
MSI-N1014 (Yadav et al., 2020), (ii) blocking tumoral IL1β-mediated signalling in normal
colonic fibroblasts to thwart inflammatory CAF activation (Díaz-Maroto et al., 2021), and
(iii) selective targeting of CAFs by engineered nanoparticles loaded with pro-apoptotic drug
(Sitia et al., 2021). However, the failure to identify CRC subclones that mediate functional
reprogramming of CAFs remains a big therapeutic hurdle for treating drug resistance
in CRC that needs to be addressed. Furthermore, the components within the TME have
also been reported to interact via multiple signal transduction pathways to confer drug
resistance in CRC (Margolin et al., 2011). Paracrine signalling initiated by IL-17 derived
from TH17 cells involves the crosstalk of the ERK pathway and NF-κB pathway to induce
G-CSF expression, leading to the recruitment of immature myeloid cells to the TME
and tumour resistance to anti-angiogenic therapy (Chung et al., 2013). Noncanonical
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TGFβ pathway interacts with PI3K/PKB pathway to sustain fibroblast activation during
molecular-targeted treatment that inhibits IL-1β/TGF β signalling (Díaz-Maroto et al.,
2019).

In recent decades, in addition to the conventional chemotherapy and targeted therapy,
immunotherapy such as immune checkpoint blockade (ICB) has emerged as a promising
strategy for cancer therapeutic. ICB works by inhibiting immune checkpoints to facilitate
the activation of cytotoxic T cells and enhance anti-tumour immune response (Dosset et al.,
2018; Woolston et al., 2019). The acquisition of resistance against ICB therapy, including
those targeting cytotoxic T lymphocyte-associated protein 4 (CTLA-4), programmed death
1 (PD-1) and programmed death-ligand 1 (PD-L1), is well documented in numerous
studies but the underlying mechanisms are still not well characterized (Gurjao et al.,
2019; Liao et al., 2019). Molecular events associated with resistance against anti-PD-1
therapy include (i) suppressing IFN-γ-Stat1-Irf1 signalling in CRC and reducing cytotoxic
tumour-infiltrating CD8+T cells by m6A methyltransferases-mediated downregulation
of STAT1 (Wang et al., 2020a), (ii) the reduction of tumour suppressive myeloid cells via
intracellular signalling initiated by myeloid receptor TREM2 (Molgora et al., 2020) and (iii)
activating oncogenic myeloid-derived suppressor cells and regulatory T cells by enhanced
transcription of the gene that encodes lactate transporter which induces lactate secretion (Li
et al., 2020a; Li et al., 2020b). Emerging studies have also highlighted that several oncogenic
signalling pathways that are involved in regulating immune response that renders resistance
to ICB. Activation of the Wnt/β-catenin signalling pathway has been reported to be
associated with a lack of T-cell infiltration within the tumour microenvironment in cancer
patients (Spranger, Bao & Gajewski, 2015). This immunological defect was found to be
mediated by decreased production of chemokine CCL4 that suppresses the recruitment
of CD103+ dendritic cells, resulting in resistance to the immunotherapy. The interferon
(IFN) signalling is another signalling pathway that has been implicated in resistance to
ICB therapy. Patients that did not respond to anti-CTLA-4 antibody ipilimumab therapy
was reported to harbour mutations in the interferon gamma (IFN-γ) pathway genes
leading to the ability of the tumour cells to escape from T cells, which was identified as
a primary resistance to anti-CTLA-4 therapy (Gao et al., 2016). Nevertheless, the roles of
other signalling pathways that are involved in modulating the sensitivity and resistance to
ICB are still largely unknown and require further studies. The current strategy to tackle
anti-PD1 resistance involves reprogramming immunosuppressive myeloid cells to promote
the expansion of tumour suppressive M1 macrophages (Lu et al., 2021).

In addition to CAFs and immune cells as the regulators of drug resistance in CRC,
the emerging role of gut microbiota in the regulation of innate immune signalling and
autophagy, which leads to chemoresistance in CRC, has also been reported. This suggests
that crosstalk between different components of the TME has functional relevance in CRC
development and clinical outcome, which prompts further investigation (Yu et al., 2017).

Tumour heterogeneity which is the cornerstone for the maintenance of cancer cell
populations has been strongly correlated with therapy resistance (Schumacher et al.,
2019). Mounting evidence has demonstrated the existence of various forms of tumour
heterogeneity with the most frequently observed type being the genetic heterogeneity (Di

Yeoh et al. (2021), PeerJ, DOI 10.7717/peerj.12338 23/55

https://peerj.com
http://dx.doi.org/10.7717/peerj.12338


et al., 2019; Loeb et al., 2019). Intra-tumour or inter-tumour genetic status was shown to
influence the prognostic outcome and drug response and are determinants of resistance
to anti-cancer therapy (Russo et al., 2016; De Angelis et al., 2016; Galofré et al., 2020; Bruun
et al., 2020). Other types of tumour heterogeneity include cell type heterogeneity which is
found between CRC subpopulations in the TME, as reported by Yoon et al. (2019) which
showed that T-cell densities is highly variable in DNA mismatch repair-deficient tumour
as compared to DNA mismatch repair-proficient tumour.

Tumour heterogeneity can be further classified into metabolic heterogeneity due to
metabolic reprogramming in cells that contributes to disease development (Katoh, 2017).
Metabolic reprogramming or alterations in the cellular metabolism is an important cancer
hallmark to meet the increased energy and nutrient demand of malignant cells to promote
tumour development. Notably, emerging evidence suggests that metabolic reprogramming
could also contribute to resistance to antitumor drugs (Teng et al., 2017; Yu et al., 2021).
The underlying mechanisms of metabolic adaptation during the development of drug
resistance are still unclear, but available data implies that activation of oncogenic pathways
are involved in the regulation of metabolic reprogramming implicated in resistance.
Vellinga and colleagues (Vellinga et al., 2015) demonstrated that tumour metabolism
was shifted from glycolysis towards oxidative phosphorylation in colon cancer cells that
were exposed to chemotherapy to support tumour survival during treatment. It was
discovered that the enhanced oxidative metabolism was mediated by histone deacetylase
sirtuin-1 (SIRT1) and its substrate, the transcriptional coactivator PGC1α [239]. The study
further showed that knockdown of SIRT1 or PGC1α sensitized the tumour cells to the drug
treatment, suggesting that the SIRT1/PGC1α is a novel pathway of drug resistance that may
be targeted for therapy.More recently,Barisciano et al. (2020) reported the role formiR-27a
as a key regulator of metabolic reprogramming and enhancing drug resistance in CRC cells.
The study revealed that miR-27a modulates several tumour-associated pathways that link
metabolic rewiring with chemoresistance in CRC. It was found that miR-27a negatively
regulates AMPK and positively regulates mTOR pathway to force anaerobic glycolytic
metabolism supporting tumour growth and chemoresistance (Barisciano et al., 2020).
Interestingly, a recent study has shown the colorectal tumour-derived exosomes could
activate hepatic stellate cells in the liver to enhance lactate metabolism of tumour cells via
the IL-6/STAT3 pathway to confer the resistance of SN38 (active metabolite of irinotecan)
(Li et al., 2020a; Li et al., 2020b). Hence, this indicates a novel mechanism in which the
tumour-derived exosomes are involved in regulating the metabolic reprogramming
between the tumour cells and the microenvironment to promote drug resistance (Li
et al., 2020a; Li et al., 2020b). Previous studies suggest that hypoxia-induced metabolic
reprogramming of CRC can be reversed by targeting valine catabolism and the inhibition
of PTEN/AKT/HIF1α signalling pathway to interferewith energy production inCRC (Wang
et al., 2018; Shan et al., 2019). Alternative strategies to tackle metabolic heterogeneity in
CRC warrant further investigation, given that the signalling mechanisms that contribute
to metabolic reprogramming in CRC are complex.

Given the increasing complexity of molecular networks in multidrug-resistant
CRC, multi-omics approaches encompassing genomics, epigenomics, transcriptomics,
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proteomics and metabolomics are applied to facilitate cancer biomarker discovery and
guide cancer treatment strategies (Tong et al., 2016; Satoh et al., 2017; Ressa et al., 2018;
Ishaque et al., 2018). Integrated multi-omics analyses of CRC cell lines have reported
genetic and epigenetic alterations in the molecular landscape for CRC carcinogenesis such
as (i) the identification of BRCA1-centred gene-miRNA-protein regulatory network as the
main driver for liver metastasis of CRC and chemoresistance (Gerovska et al., 2020), (ii)
co-occurrence of genetic alteration events in CRC that affects drug response (Zhou et al.,
2020), (iii) heterogeneous Wnt/β-catenin activity that supports Runt-related transcription
factor 2 (RUNX2)-based epigenetic regulation of EMT as the molecular implication for
poor survival of CRC patients and failure of anti-cancer therapy (Yi et al., 2020), and
(iv) the characterisation of CRC patients’ drug response patterns based on differential
DNA methylation profiles in CRC stem cell populations (Visone et al., 2019). To better
understand the relationship between immune landscape in the TME and drug efficacy
against CRC, computational methods such as (i) the development of artificial intelligence
platform to predict immunological responses to ICB therapy in MSI-H tumour (Cao et
al., 2020) and (ii) the reconstruction of the intercellular network according to consensus
molecular subtypes of CRC (Lee et al., 2020), have enabled the selection of better treatment
options for individuals resistant to immunotherapy. Comprehensive analysis of multi-
omics data such as metagenomic and metabolomic has also reported the role of gut
microbiota in CRC progression and their influences on the DNA methylome of CRC,
implying that the metabolic output of gut microbiota and the host’s epigenetic signatures
could be important diagnostic targets for CRC management (Yachida et al., 2019; Sobhani
et al., 2019; Zouggar, Haebe & Benoit, 2020).

Cancer biopsy-based bulk analysis of CRC is gradually replaced by patient-derived
cancer organoid (PDCO) to study therapy resistance in vitro. This is because PDCO can
recapitulate tumour heterogeneity in the patient tumourwhich potentiates the study ofCRC
at the single-cell level (Jeppesen et al., 2017; Chen et al., 2018c; Pasch et al., 2019; Demmers
et al., 2020). However, limitations such as the time and cost to grow the organoids as well as
limited amount of organoids available prompts the shift of focus to cancer tissue-originated
spheroid (CTOS) as an alternative method for measuring chemotherapeutic heterogeneity
and high-throughput drug screening for CRC patients (Jeppesen et al., 2017; Kondo et
al., 2019). Technical advancement to improve the study of tumour heterogeneity in the
spatial context is exemplified by RNA-based in situ hybridisation which complements the
current genetic method to ease the detection of rare subclones in CRC (Baker et al., 2017).
Non-invasive methods such as comprehensive genotyping of circulating tumour DNA
(ctDNA) and integrated multi-omics data analyses for gene alteration events relating to
drug responses, are also useful in identifying druggable mutational targets for personalising
cancer medicine (Cao et al., 2019; Zhou et al., 2020). Besides improving on experimental
methods to better understand tumour heterogeneity in CRC, the application of modern
bioinformatic practice (e.g., reference component analysis of single-cell transcriptomes)
and machine learning algorithm (e.g., deep learning for the prediction of treatment efficacy
on CRC patients) are equally important to the management of increasingly complex cancer

Yeoh et al. (2021), PeerJ, DOI 10.7717/peerj.12338 25/55

https://peerj.com
http://dx.doi.org/10.7717/peerj.12338


research data which influences cancer treatment policy (Li et al., 2017; Skrede et al., 2020;
Vera-Yunca et al., 2020).

CONCLUSIONS
Therapy resistance in CRC remains amajor obstacle to CRCmanagement due to alterations
in themolecular landscape that drive the survival of cancer cells. In particular, dysregulation
of MAPK pathway, PI3K/PKB pathway, Wnt/β-catenin pathway and Notch pathway are
frequently reported to induce resistance to anti-cancer drugs targeting CRC cells. On the
other hand, other signal transduction pathways such as TGFβ/Smad, BMP and Hedgehog
pathways have also been implicated in the development of therapeutic resistance in CRC
but are not well studied yet. The complexity of drug resistance mechanisms is further
widened by pre-existing genetic heterogeneity in CRC and cellular components of the
TME (e.g., stromal cells, immune cells and gut bacteria) which results in the evolution of
drug-resistant tumour subclones. To address this problem, integrated multi-omics data
analysis using modern computational methods, three-dimensional cell culture model and
other robust experimental methods are needed to identify new cancer biomarkers and
drug targets for CRC treatment. Despite the effort in combating multidrug-resistant CRC,
further studies are warranted to generate quality results for better cancer care delivery.

DISCLAIMER
Most experimental findings discussed this review are derived from studies using laboratory-
based cancer cell lines. Hence, the results should be interpreted with caution and be further
validated in animal models and human clinical studies.
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