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Abstract

Background

Gene shaving (GS) is an essential and challenging tools for biomedical researchers due to

the large number of genes in human genome and the complex nature of biological networks.

Most GS methods are not applicable to non-linear and multi-view data sets. While the kernel

based methods can overcome these problems, a well-founded positive definite kernel

based GS method has yet to be proposed for biomedical data analysis.

Methods and findings

Since the kernel based methods on genomic information can improve the prediction of dis-

eases, here we proposed a noble method, “kernel based gene shaving” which is based on

the influence function of kernel canonical correlation analysis. To investigate the perfor-

mance of the proposed method in comparison to state-of-the-art-method in gene saving,

we analyzed extensive simulated and real microarray gene expression data set. The perfor-

mance metrics including true positive rate, true negative rate, false positive rate, false nega-

tive rate, misclassification error rate, the false discovery rate and area under curves were

computed for each methods. In colon cancer data analysis, the proposed method identified

a significant subsets of 210 genes out of 2000 genes and suggestive superior performance

compared with other methods. The proposed method can be applied to the study of other

disease process where two view data is a common task.

Conclusions

We addressed the challenge of finding unique kernel based GS methods by using the influ-

ence function of kernel canonical correlation analysis. The proposed method has shown to

have better performance than state-of-the-art-methods in gene saving and has identified

many more significant gene interactions, suggesting that genes function in a concerted
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effort in colon cancer. In similar biomedical data analysis, kernel based methods could be

applied to select a potential subset of genes. The positive definite kernel based methods

can overcome the non-linearity problem and improve the prediction process.

Introduction

Gene shaving (GS), to identify significant subsets of the genes, is an important research area in

the analysis of DNA microarray gene expression data for biomedical discovery. GS methods

aim to remove redundant and irrelevant genes so that performing in supervised learning will

be more accurate [1, 2]. It leads to gene discovery relevant for a particular target annotation

and contributes to better medical diagnosis and prognosis. GS is not relevant to the hierarchi-

cal clustering and other widely used methods for analyzing gene expression in the genome-

wide association studies. GS leads to gene discovery relevant for a specific target annotation.

The selected genes using GS play an important role in the gene expression data analysis since

they can differentiate samples from different populations [3–6]. Despite their successes, these

studies are often hampered by their relatively low reproducibility, nonlinearity and multi-view

data.

The incorporation of various statistical machine learning approaches into genomic analysis

is a rather recent area of study. Since large-scale microarray data presents significant challenges

for the statistical data analysis, in addition the classical approaches, there is a need for an

advanced method. The kernel methods (methods based on positive definite kernel) are the

appropriate tools to deal with such data set that map data from a high dimensional space to a

feature space using a nonlinear feature map. The main advantage of these methods is to com-

bine statistics and geometry in an effective way [7–9]. As a machine learning approach, kernel

canonical correlation analysis (kernel CCA) have been extensively studied for decades to ana-

lyze multi-view data set [10–12]. Using the influence function (IF) of kernel canonical correla-

tion analysis, we proposed a novel kernel method to select a significant subset of genes of

biomedical data analysis.

Nowadays, IF based methods (e.g., sensitivity analysis) have been used to detect an influ-

ence observation. IF is used to find a set of vectors that have much greater effect on the estima-

tor of the parameter [13]. A visualization method for detecting influential observations using

the IF of Kernel principal component analysis has been proposed by Debruyne et al. [14].

Filzmoser et al. also developed a method for outlier identification in high dimensions [15].

However, these methods are limited to a single view data set. Due to the properties of eigen-

decomposition, kernel CCA and its variant are still well used methods for the biomedical data

analysis [16–18].

The contribution of this paper is three-fold. First, we address the IF of kernel CCA. Second,

we use the distribution based methods to confirm the influential observations. Finally, the pro-

posed method is applied to identify a set of genes in both synthesized and gene expression

data. The accuracy of the proposed method shows superior performance compared to the the

state-of- the-art-method in gene saving based on the area under curves (AUC). In colon cancer

data analysis, we used the proposed method to identify genes and perform pathway analysis

[the gene ontology (GO) of biological process categories, Kyoto Encyclopedia of Genes and

Genomes (KEGG)] and gene-gene interaction networks. We found that identified genes

function in a concerted effort and have biological relevance to colon cancer. In addition, the

selected genes based classification is superior than selected genes by other methods as well as
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classification using all genes. For any biomedical data analysis, the proposed method could be

applied to select a potential subset of genes.

The remainder of the paper is organized as follows. In the materials and methods section,

we provide a brief review of positive definite kernel, kernel CCA and IF of kernel CCA. The

utility of the proposed method is demonstrated by both simulated and real data analysis from

an colon cancer study in the experimental results section. In the discussion section, we also

summarize our findings and give a perspective for future research.

Materials and methods

Positive definite kernel

In kernel methods, a nonlinear feature map is defined by positive definite kernel. It is known

that a positive definite kernel k is associated with a Hilbert space H, called reproducing kernel

Hilbert space (RKHS), consisting of functions on X so that the function value is reproduced

by the kernel [19]. For any function f 2 H and a point X 2 X , the function value f(X) is

f ðXÞ ¼ hf ð�Þ; kð�;XÞiH; where h; iH in the inner product of H is called the reproducing prop-

erty. Replacing f with kð�; ~XÞ yields kðX; ~XÞ ¼ hkð�;XÞ; kð�; ~XÞiH for any X; ~X 2 X . A symmet-

ric kernel k(�, �) defined on a space X is called positive definite, if for an arbitrary number of

points X1;X2 . . . ;Xn 2 X the Gram matrix (k(Xi, Yj))ij is positive semi-definite. To transform

data for extracting nonlinear features, the mapping Φ : X ! H is defined as Φ(X) = k(�, X),

which is a function of the first argument. This map is called the f feature map, and the

vector Φ(X) in H is called the feature vector. The inner product of two feature vectors is then

hΦðXÞ;Φð~XÞiH ¼ kðX; ~XÞ: This is known as the kernel trick. By this trick the kernel can eval-

uate the inner product of any two feature vectors efficiently without knowing an explicit form

of Φ(�) [7–9].

Kernel canonical correlation analysis

Kernel CCA has been proposed as a nonlinear extension of linear CCA [10]. Researchers have

extended the standard kernel CCA with an efficient computational algorithm [20]. Over the

last decade, kernel CCA has been used for various tasks [21–23]. Given two sets of random var-

iables X and Y with two functions in the RKHS, fXð�Þ 2 HX and fYð�Þ 2 HY , the optimization

problem of the random variables fX(X) and fY(Y) is

r ¼ max
fX 2 HX; fY 2 HY

fX 6¼ 0; fY 6¼ 0

CorrðfXðXÞ; fYðYÞÞ: ð1Þ

The optimizing functions fX(�) and fY(�) are determined up to scale.

Using a finite sample, we are able to estimate the desired functions. Given an i.i.d sample,

ðXi;YiÞ
n
i¼1

from a joint distribution FXY, by taking the inner product with elements or

“parameters” in the RKHS, we have features fXð�Þ ¼ hfX;FXðXÞiHX
¼
Pn

i¼1
aiXkXð�;XiÞ and

fYð�Þ ¼ hfY ; �YðYÞiHY
¼
Pn

i¼1
aiYkYð�;YiÞ, where kX(�, X) and kY(�, Y) are the associated

kernel functions for HX and HY , respectively. The kernel Gram matrices are defined as

KX ≔ ðkXðXi;XjÞÞ
n
i;j¼1

and KY ≔ ðkYðYi;YjÞÞ
n
i;j¼1

. We need the centered kernel Gram matrices

MX = CKXC and MY = CKYC, where C ¼ In � 1

nBn with Bn ¼ 1n1
T
n and 1n is the vector with

n ones. The empirical estimate of Eq (1) is then given by

r̂ ¼ max
fX 2 HX; fY 2 HY

fX 6¼ 0; fY 6¼ 0

dCovðfXðXÞ; fYðYÞÞ
½dVarðfXðXÞÞ�

1=2
½dVarðfYðYÞÞ�

1=2
;

Positive definite kernel based gene shaving

PLOS ONE | https://doi.org/10.1371/journal.pone.0217027 May 23, 2019 3 / 17

https://doi.org/10.1371/journal.pone.0217027


where

dCovðfXðXÞ; fYðYÞÞ ¼
1

n
aTXMXMYaY

dVarðfXðXÞÞ ¼
1

n
aTXM

2

XaX

dVarðfYðYÞÞ ¼
1

n
aTYM

2

YaY ;

where aX and aY are the directions of X and Y, respectively.

Influence function of the kernel canonical correlation analysis

Since 1974, the IF plays an important role for detecting outlying multivariate observations in

statistical analysis. The IF can usually be defined on first order approximation for estimators of

parameters in a multivariate population which indicates where in the n-dimensional space of

observations. The observed vectors should have a large effect on the value of the estimator of

the parameter. For a sample of observation vectors, we can define the IF based on empirical

distribution (EIF) to find set of these vectors that have much greater effect on the estimator.

This vector is called set of outline vector [13]. In many situation outliers are often the special

point of interest and their recognition is the main goal of the investigation. Although, there are

several approaches to identify outliers in multivariate data analysis. The goal of this paper is to

identify a set of outline observations for two view data set using IF of kernel CCA.

Using the idea of IF of the linear PCA, the kernel PCA, and the linear CCA, the IF of kernel

CCA has been proposed by Alam et al., [18]. To define, given two sets of random variables

(X, Y) having the distribution FXY and the j-th kernel CC (ρj) and kernel CVs (fjX(X) and

fjX(Y)), the influence functions of kernel CC at Z0 = (X0, Y0) is given by

IFðZ0; r2

j Þ ¼ � r
2

j
~f 2

jXðX
0Þ þ 2rj

~f jXðX
0Þ~f jYðY

0Þ � r2

j
~f 2

jYðY
0Þ;

where ~f XðXÞ ¼ hfX; ~kXð�;XÞ and ~f YðYÞ ¼ hfY ; ~kXð�;YÞ. The above theorem has been proved on

the basis of previously established ones, such as the IF of linear PCA [24, 25], the IF of linear

CCA [26], and the IF of kernel PCA, respectively. The details proof is given in [18].

Let ðXi;YiÞ
n
i¼1

be a sample from the empirical joint distribution FnXY. The EIF of kernel CC

at (X0, Y0) for all points (Xi, Yi) is defined as

EIFðXi;Yi;X
0;Y0; r2

j Þ ¼
bIFðX0;Y0; r̂2

j Þ ¼ � r̂
2

j
~̂f 2

jXðX
0Þ þ 2r̂2

j
~̂f jXðX

0Þ~̂f jYðY
0Þ � r̂2

j
~̂f 2

jYðY
0Þ ð2Þ

Using the above result, we can identify a set of observations based on its influence values.

To demonstrate, we proposed a noble method, with application to DNA microarray gene

expression data. This novel method can be applied to the study any disease processes, where

two-view data analysis is a common task. The proposed approach consists of two basic parts: a

step that aims to calculate influence value of each gene and a step that aims to determine the

outline gene. For the first step, we use EIF in Eq (2) and we can use a any univariate outliers

detection tools. To extract the outliers of the genes, we have considered distribution based

tools.

Kernel choice

In kernel based learning, choosing a suitable kernel is key for favorable results. Most of unsu-

pervised kernel methods suffer from the problem of kernel choice. The liner kernel is just used

the underlying Euclidean space to define the similarity measure. Whenever the dimensionality
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of the input space, X is very high, this might allow for more complexity in the function class

than what we could measure and assess otherwise. It has limitation of linearity. Using a poly-

nomial kernel it is possible to use the higher order correlation between the data in the different

purposes. But, due to the finite bounded degree such kernel will not provide us with guarantees

for a good dependency measure. In addition both liner and polynomial kernels are non-

robust.

The Gaussian kernel, is a radial basis function kernels that maps X into an infinite dimen-

sional space. The Gaussian kernel is defined as:

kGðX; ~XÞ ¼ e
1

2s2
� jjX� ~X jj2

; ðs > 0Þ:

This most applicable kernel in kernel methods has a number of theoretical properties (e.g.,

boundedness, consistent, characteristic, universality, robustness etc.) [27]. In this paper we

consider the Gaussian kernel and use the median of the pairwise distance as a bandwidth

[28, 29].

The assumption of kernel methods (methods based on positive definite kernel) is that the

data should be a non-empty set. The kernel methods are independent of the dimensions. Its

allow us to construct spaces of functions on an arbitrary set with the appropriate structure of a

Hilbert space. By the reproducing property, computing the inner product on RKHS is easy

and the computational cost only depends on the sample size. It is true that kernel methods

may have computational issues for very large data set in handling Gram matrices of sample

size. However, recent developments on approximation methods such as random Fourier fea-

tures enables us to apply kernel methods to data size of millions.

Relevant approaches

While the proposed approach is designed for two view data set, we compare its performance

against other relevant algorithms in univariate data or multivariate data (one view data) set

only, since a two view data comparison is not feasible. To demonstrate the performance of the

proposed method in a comparison, we examine four popular gene selection methods: T-test,

significance analysis of microarrays (SAM), Linear Models for Microarray and RNA-Seq Data

(LIMMA) and principal components to identify outliers (PCout) [15, 30–32]. Computing a t-

test statistic can be problematic because the variance estimates can be skewed by genes having

a very low variance [30]. For each gene, SAM gives a score on the basis of change in gene

expression relative to the standard deviation of repeated measurements. For genes with scores

greater than an adjustable threshold, SAM uses permutations of the repeated measurements to

estimate the percentage of genes identified by chance, the false discovery rate (FDR) [31].

LIMMA contains rich features for handling complex experimental designs and for informa-

tion borrowing to overcome the problem of small sample sizes. This linear modelling strategy

(beyond the intended analysis of gene expression data) has been found to have many applica-

tions [32]. A computationally fast procedure for identifying outliers is presented that is partic-

ularly effective in high dimensions. This algorithm not only utilizes simple properties in the

transformed space but also needs less computational time than existing methods for outliers

detection, and is suitable for use on very large data sets [15]. But it has limitation of linearity

and a single view data set. We used all of these methods to compare to the proposed method.

Experimental results

We have used both simulated and real microarray gene expression data set of colon cancer

[33]. To compare relevant approaches (T-test, SAM, LIMMA and PCout) we used four R
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packages including STATS, SAMR, LIMMA and PCout, respectively. The performance mea-

sures including true positive rate (TPR), true negative rate (TNR), false positive rate (FPR),

false negative rate (FNR), misclassification error rate (MER), FDR and AUC have been evalu-

ated for each of the methods as previously described [34]. To compute the performance mea-

sures, we used R packages, which are available in the comprehensive R archive network or

bioconductor.

Simulation study

To investigate the performance of the proposed method in comparison with four popular

methods as mentioned above with k = 2 groups, we considered gene expression profiles from

both normal distribution and t-distribution. We also considered data set of both small-and-

large-sample cases with different percentages of differently expressed (DE) genes.

Simulated gene expression profiles generated from normal distribution

We used a one-way ANOVA model to generate simulated data sets from normal distribution

xijk ¼ mik þ �ijk;

ði ¼ 1; 2; � � � ;G; j ¼ 1; 2; � � � ; nk; k ¼ 1; 2; � � � ;mÞ
ð3Þ

where xijk, i is the expression of the ith gene for the jth samples in k group, μik is the mean of all

expressions of ith gene in the kth group and �ijk is the random error which usually follows a

normal distribution with mean zero and variance σ2.

To investigate the performance of the proposed method in a comparison of other four

popular methods as early mentioned for k = 2 groups, we generated 100 data sets using 100

times of simulations for both small (n1 = n2 = 3) and large (n1 = n2 = 15) sample cases using

Eq (3). The means and the common variance of both groups were set as (μi1, μi2) 2 (3, 5) and

σ2 = 0.1, accordingly. Each data set for each case represented the gene expression profiles of

G = 1000 genes, with n = (n1+ n2) samples. The proportions of DE gene (pDEG) were set to

0.02 and 0.06 for each of the 100 data sets. We computed average values of different perfor-

mance measures such as TPR, TNR, FPR, FNR, MER, FDR and AUC based on 20 and 60

estimated DE genes by five methods (T-test, SAM, LIMMA, PCout and Proposed) for each

of 100 data sets. Fig 1a and 1b represent the ROC curve based on 20 estimated DE genes by

four methods for both small-and-large-sample cases, respectively. We observe that the pro-

posed method performed better than other four methods for small-sample case (Fig 1a). On

the other hand, for large-sample case (Fig 1b) proposed method keeps almost equal perfor-

mance with other four methods. Fig 2 shows the boxplot of AUC values based on 100 simu-

lated data set estimated by each of the four methods both for small-and-large-sample cases,

respectively. Fig 2a and 2b represent the boxplots of AUC values with pDEG = 0.02 and

0.06, respectively. From these boxplots we obtained similar results like ROC curve for

every pDEG values. We also notice that the performance of the methods increases when we

increase the value of pDEG 0.02 to 0.06. Furthermore, we calculate the average values of dif-

ferent performance measures such as TPR, TNR, FPR, FNR, MER, FDR and AUC based on

20 (pDEG = 0.02) and 60 (pDEG = 0.06) to estimate DE genes by each of the methods. The

results are summarized in Table 1. In this table the results without and within the brackets

indicate average of different performance measures estimated by different methods for

small-and-large sample cases, respectively. We also find the similar interpretations like ROC

curve and boxplots (Table 1).
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Simulated gene expression profiles generated from t- distribution

We also investigated the performance of the proposed method in a comparison of other four

methods for non-normal case. Accordingly we generated 100 simulated data sets from t-distri-

bution with 10 degrees of freedom. We set the mean and variance as previously mentioned.

We estimated different performance measures such as TPR, TNR, FPR, FNR, MER, FDR and

Fig 1. Performance evaluation using ROC-curve produced by the four methods (T-test, SAM, LIMMA, PCout and

Proposed) based on 100 datasets with pDEG = 0.02. Datasets were generated from normal distribution for (a) and

(b) and datasets were generated from t-distribution for (c) and (d), where (a) and (c) represents ROC curve for small-

sample case (n1 = n2 = 3) and (b) and (d) represents ROC curve for large-sample case (n1 = n2 = 15).

https://doi.org/10.1371/journal.pone.0217027.g001
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AUC based on 20 estimated DE genes by four methods for each of 100 data sets. The average

values of performance measures are summarized in Table 2. From this table we mentioned

that the performances of all the methods become progressively worse when the datasets came

from t-distribution. We also observed that the proposed method performed better than the

other four methods. For example, the proposed method produces AUC = 0.469 (0.887)

which is larger than 0.316 (0.830), 0.326 (0.832), 0.411 (0.880) and 0.316 (0.830) for the com-

petitors T-test, SAM, LIMMA and PCout, respectively. The boxplots in Fig 3 and ROC curve

Fig 2. Performance evaluation using boxplot of AUC values produced by the four methods (T-test, SAM, LIMMA,

PCout and Proposed) based on 100 datasets were taken from normal distribution for small-and large-sample cases (a)

Boxplot of AUC values with proportion of DE gene = 0.02. (b) Boxplot of AUC values with proportion of DE

gene = 0.06. Each dataset contains G = 1000 genes.

https://doi.org/10.1371/journal.pone.0217027.g002
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in Fig 1(c) and 1(d) also revealed similar results like Table 2. We also noticed from boxplots

that the proposed method has less variability among the other four methods. From this analy-

sis we may conclude that the performance of the proposed method has improved than the four

well-known gene selection methods.

Application to colon cancer microarray data

The data consists of expression levels of 2000 genes obtained from a microarray study on 62

colon tissue samples collected from colon-cancer patients [33]. Among the 62 colon tissues,

tumor tissues (40) and normal tissues (22) were coded by 2 and 1, respectively. The goal here

is to characterize the underlying interactions between genetic markers for their association

Table 1. Performance evaluation of different methods based on simulated gene expression dataset generated from normal distribution.

Methods With proportion of DE gene (pDEG) = 0.02

TPR TNR FPR FNR MER FDR AUC

T-test 0.702

(0.932)

0.006

(0.001)

0.994

(0.999)

0.298

(0.068)

0.012

(0.003)

0.298

(0.068)

0.702

(0.932)

SAM 0.775

(0.935)

0.005

(0.001)

0.995

(0.999)

0.225

(0.065)

0.009

(0.003)

0.225

(0.065)

0.775

(0.935)

LIMMA 0.810

(0.935)

0.004

(0.001)

0.996

(0.999)

0.190

(0.065)

0.008

(0.003)

0.190

(0.065)

0.810

(0.935)

PCOut 0.838

(0.928)

0.003

(0.001)

0.997

(0.999)

0.162

(0.072)

0.006

(0.003)

0.162

(0.927)

0.837

(0.185)

Proposed 0.890

(0.935)

0.002

(0.001)

0.998

(0.999)

0.110

(0.050)

0.004

(0.002)

0.110

(0.050)

0.890

(0.950)

Methods With proportion of DE gene (pDEG) = 0.06

TPR TNR FPR FNR MER FDR AUC

T-test 0.772

(0.933)

0.012

(0.004)

0.988

(0.996)

0.228

(0.067)

0.023

(0.007)

0.228

(0.067)

0.771

(0.933)

SAM 0.810

(0.933)

0.010

(0.004)

0.990

(0.996)

0.190

(0.067)

0.019

(0.007)

0.190

(0.067)

0.809

(0.933)

IMMA 0.823

(0.933)

0.009

(0.004)

0.991

(0.996)

0.177

(0.067)

0.018

(0.007)

0.177

(0.067)

0.823

(0.933)

PCout 0.837

(0.914)

0.009

(0.005)

0.991

(0.995)

0.163

(0.009)

0.016

(0.009)

0.163

(0.914)

0.837

(0.183)

Proposed 0.911

(0.959)

0.005

(0.002)

0.995

(0.996)

0.089

(0.041)

0.009

(0.004)

0.089

(0.041)

0.911

(0.933)

https://doi.org/10.1371/journal.pone.0217027.t001

Table 2. Performance evaluation of different methods based on simulated gene expression data set generated from t-distribution.

Methods With proportion of DE gene (pDEG) = 0.02

TPR TNR FPR FNR MER FDR AUC

T-test 0.318

(0.830)

0.014

(0.003)

0.986

(0.997)

0.682

(0.170)

0.027

(0.007)

0.682

(0.170)

0.316

(0.830)

SAM 0.328

(0.832)

0.014

(0.003)

0.986

(0.997)

0.672

(0.168)

0.027

(0.007)

0.672

(0.168)

0.326

(0.832)

LIMMA 0.412

(0.880)

0.012

(0.002)

0.988

(0.998)

0.588

(0.120)

0.024

(0.005)

0.588

(0.120)

0.411

(0.880)

PCout 0.318

(0.830)

0.014

(0.003)

0.986

(0.997)

0.682

(0.170)

0.027

(0.007)

0.682

(0.166)

0.316

(0.830)

Proposed 0.470

(0.888)

0.011

(0.002)

0.988

(0.998)

0.530

(0.112)

0.021

(0.004)

0.530

(0.112)

0.469

(0.887)

https://doi.org/10.1371/journal.pone.0217027.t002
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with the colon-cancer patients and the healthy persons. In simulation studies, we observed

that the multivariate approaches (the PCOut and the proposed (KCCOut)) performed better

than univariate approaches. In addition to PCOut and KCCOut, we considered liner CCA

(CCOut) to colon cancer data analysis. To calculate the influence value of each gene, we used

these three methods, respectively. Fig 4. visualizes the plots of absolute influence value for

2000 genes. By the outlier detection technique in the one dimensional influence value of each

method, we obtained 31, 133 and 210 genes using the PCOut, the CCOut and the KCCOut,

respectively. To compare the selected genes, we made a Venn-diagram of the selected genes

Fig 3. Performance evaluation using boxplot of AUC values produced by the four methods (T-test, SAM, LIMMA,

PCout, and Proposed) based on 100 data sets were taken from t-distribution distribution for small-and large-sample

cases (a) Boxplot of AUC values with proportion of DE gene = 0.02. (b) Boxplot of AUC values with proportion of DE

gene = 0.06. Each data set contains G = 1000 genes.

https://doi.org/10.1371/journal.pone.0217027.g003
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from the three methods. Fig 5. presents the Venn-diagram of the PCOut, LCCAOut, and

KCCAOut methods. From this figure, we observed that the disjointedly selected genes of

PCOut, LCCAOut, and KCCAOut are 19, 61, and 144, respectively. The number of common

genes between PCOut and LCCAOut, and PCOut and KCCAOut, and LCCAOut and KCCA-

Out were 7, 1, and 61, respectively. All methods selected 4 common genes: J00231, T57780,

M94132 and M87789.

Genes do not function alone; rather, they interact with each other. When genes share a

similar set of gene ontology (GO), they are more likely to be involved with similar biological

mechanisms. To verify this, we extracted the GO of biological process categories and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway annotations of 210 genes detected by

proposed KCCA using Database for Annotation, Visualization and Integrated Discovery

(DAVID) [35]. The GO analysis revealed that most of genes are significantly enriched in bio-

logical adhesion, cell adhesion, viral process, multi-organism cellular process, regulation of cel-

lular amide metabolic process etc. (see supplementary S1 Table). Table 3 presents the KEGG

pathway analysis. From the table, we found that these genes are mostly enriched in toxoplas-

mosis, antigen processing and presentation, proteoglycans in cancer, neurotrophin signaling

pathway, small cell lung cancer etc. (also see supplementary S2 Table). We also constructed the

gene-gene interaction networks using STRING [36]. The STRING imports protein association

knowledge from databases of both physical interactions and curated biological pathways. In

Fig 4. The influence value of genes using three methods: The principal components analysis (PCOut), the linear

canonical correlation analysis (LCCOut), and the kernel canonical correlation analysis (KCCOut).

https://doi.org/10.1371/journal.pone.0217027.g004
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STRING, the simple interaction unit is the functional relationship between two proteins or

genes that can contribute to a common biological purpose. Fig 6. shows the gene-gene network

based on the protein interactions among the selected 210 genes. In this figure, the color satura-

tion of the edges represents the confidence score of a functional association. Further network

Fig 5. The Venn diagram of the selected genes using three methods: The principal components analysis (PCOut),

the linear canonical correlation analysis (LCCOut), and the kernel canonical correlation analysis (KCCOut).

https://doi.org/10.1371/journal.pone.0217027.g005

Table 3. Top ten significant KEGG pathways for the 210 genes detected by the proposed method for Colon cancer

data set.

ID Name No. of gene p-vlaue

hsa05145 Toxoplasmosis 6 5.63E − 05

hsa04612 Antigen processing and presentation 5 7.79E − 05

hsa05166 HTLV-I infection 8 1.02E − 04

hsa04210 Apoptosis 6 1.46E − 04

hsa05416 Viral myocarditis 4 3.66E − 04

hsa04722 Neurotrophin signaling pathway 5 6.48E − 04

hsa05205 Proteoglycans in cancer 6 1.12E − 03

hsa05222 Small cell lung cancer 4 1.52E − 03

hsa04145 Phagosome 5 1.91E − 03

hsa05164 Influenza A 5 3.34E − 03

https://doi.org/10.1371/journal.pone.0217027.t003
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Fig 6. The network of the selected genes by the proposed method of colon cancer microarray data.

https://doi.org/10.1371/journal.pone.0217027.g006
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analysis shows that the number of nodes, number of edges, average node degree, clustering

coefficient, p-values are 75, 214, 5.71, 0.473 for p� 8.22 × 10−15, respectively. This network of

genes has significantly more interactions than expected, which indicates that they may func-

tion in a concerted effort.

The proposed method can be applied to the study of other disease process, where two view

data is a common task. To confirm, we have applied the proposed method to another real data

set: RNA-sequence study for osteoporosis risk (Source: Tulane Center of Bioinformaties and

Genomics). The details of the data and the results are provided in supplementary material,

S1 File.

In addition, the data set was used to classify the colon cancer patients from the healthy con-

trols via the PCOut and the proposed feature extraction techniques (CCOut and KCCOut)

and followed by the two classifiers (the k-nearest neighbors (KNN) and liner support vector

machine (SVM)). For the proposed approach, we considered the features 31, 133 and 210 that

have influence effects using the PCout, the CCOut and the KCCOut, respectively. The PCOut,

CCOut, and KCCOut serve as a feature extraction tool based on which the classifier is used to

separate patients from healthy controls. Table 4 presents the classification error using cross-

validation (2−fold and 5−fold). From these results, it is evident that the KCCOut based classifi-

cation is significantly more accurate than other methods as well as methods on all features,

demonstrating that the proposed method is a better tool for feature extraction.

Discussion

Kernel based machine learning methods are vital for the biomedical data analysis. The kernel

based methods provide more powerful and reproducible outputs, while the interpretation of

the results remain challenging. In this paper, the influence function of the kernel CCA based

gene shaving method is proposed. The performance of the proposed method was evaluated on

both simulated and real data set. The extensive simulation studies show the power gained by

the proposed method relative to the alternative methods. The utility of the proposed method

is to further demonstrate its application to analyze cancer microarray data, e.g. colon cancer

microarray data. According to the influence values, the proposed method is able to rank the

influence of a gene, and the genes are identified to be highly related to disease. Using an distri-

bution based outlier detection method, the proposed method extracts 210 genes out of 2000

genes, which are considered to have a significant impact on the patients. Incorporating biolog-

ical knowledge information (e.g., GO) can provide additional evidence for the results. By con-

ducting GO, pathway analysis, and network analysis including visualization, we find evidence

that the selected genes have significant influence on the manifestation of colon cancer disease

and can serve as a distinct feature for the stratification of colon cancer patients from the

Table 4. The classification error of discriminating colon cancer patients from healthy controls with cross-validations.

Feature extraction techniques Classifier 2-fold 5-fold

LCCOut SVM 12.903 ± 6.842 6.282 ± 3.598

KNN 22.581 ± 9.124 44.615 ± 24.687

KCCOut SVM 9.678 ± 2.281 9.615 ± 4.362

KNN 29.0323 ± 13.685 41.538 ± 20.059

PCOut SVM 17.742 ± 6.843 19.231 ± 8.584

KNN 12.903 ± 11.405 40.000 ± 19.154

All features SVM 14.516 ± 4.561 12.692 ± 6.853

KNN 33.871 ± 18.247 49.231 ± 14.391

https://doi.org/10.1371/journal.pone.0217027.t004
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healthy controls. This novel method can be applicable to the study of other disease processes

including cancer, where gene shaving is a common task.
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S1 Table. GO biological process categories for 210 genes for Colon cancer data set.

(XLSX)
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(PDF)
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