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Commen t a r y

Oscillations are everywhere in biology—the cell cycle, 
the heart beat, circadian rhythms, fertility cycles—life 
could not exist without them. They arise from time  
delays in the feedback circuits essential for regulating 
biological processes. As important as oscillations are to 
normal physiology, however, too many oscillators can 
spoil the broth of life. In the heart, the master oscillator 
is the sinus node, to which excitation–contraction  
coupling and the metabolic machinery supporting  
cardiac energetics are both entrained. In this issue, 
Ganitkevich et al. describe how a classical biological  
oscillator, the glycolytic oscillator, can come into play 
during ischemia, and in doing so, compound its patho-
physiological consequences.

Previous studies have shown that glycolysis is capable 
of oscillating periodically, thought to be driven by the 
feedback loop in regulation of the key glycolytic enzyme 
phosphofructokinase by adenine nucleotides and  
other metabolites. Glycolytic oscillations have been 
most extensively characterized in yeast (Higgins, 1964; 
Hess and Boiteux, 1968), skeletal muscle extracts (Hess 
and Boiteux, 1971), and pancreatic  cells (Westermark 
and Lansner, 2003; Silva and Yunes, 2006). Glycolytic 
oscillations in isolated cardiac myocytes were first  
described by O’Rourke et al. (1994), who showed that 
myocytes deprived of glucose developed oscillations 
in action potential duration (APD) mediated by activa-
tion of sarcolemmal ATP-sensitive K (KATP) channels, 
metabolic sensors that shorten APD to reduce energy 
consumption when the ATP/ADP ratio falls. Recently, 
Yang et al. (2008) defined the conditions promoting 
glycolytic oscillations in cardiac myocytes more exten-
sively. Using chemical metabolic inhibitors, they found 
that when the capacity of oxidative phosphorylation 
and the creatine kinase (CK) system to stabilize the 
cellular ATP/ADP ratio becomes compromised, gly-
colysis is enabled to oscillate due to the feedback of 
adenine nucleotides on phosphofructokinase when 
the ATP/ADP ratio is no longer clamped by normally 
dominant aerobic metabolism.

However, in these prior studies (O’Rourke et al., 
1994; Ryu et al., 2005; Yang et al., 2008), metabolic  
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oscillations were induced under physiologically artifi-
cial conditions, involving complete glucose removal or 
chemical metabolic inhibition. Although some of the 
latter conditions are relevant to acute myocardial ische-
mia and anoxia, they are not identical to the real thing. 
The significance of the Ganitkevich et al. (2010) study 
is their demonstration that glycolytic oscillations occur 
under conditions directly relevant to clinical cardiac 
pathophysiology. Their elegant picochamber technique 
allows a single isolated patch-clamped myocyte to be  
imaged with fluorescent dyes during severe anoxia.  
Because the myocyte is bathed in only a very small  
volume of extracellular fluid, anoxic metabolites and 
ions such as lactate, protons, and K accumulate progres-
sively during anoxia. Thus, an isolated myocyte can be 
patch-clamped and imaged under conditions that re-
capitulate fairly accurately the features of genuine 
acute ischemia (anoxia with metabolite and ion accu-
mulation) in intact cardiac muscle.

Under normoxic conditions, mitochondria produce 
>95% of ATP used by the beating heart, with glycolysis 
and glycogenolysis generating <5%. High levels of  
creatine phosphate in heart cells facilitate ATP delivery 
evenly throughout the cytoplasm by regenerating ADP 
locally via CK. Adenlyate kinase, which converts two 
ADPs to AMP and ATP, serves a complementary role in 
preserving a high ATP/ADP ratio throughout the cyto-
plasm. However, during acute ischemia or anoxia, mito-
chondrial control of the ATP/ADP ratio is suppressed 
by lack of oxygen, and CK is progressively inactivated  
by reactive oxygen species (ROS) and other factors  
(Mekhfi et al., 1996; Dolder et al., 2001). Anaerobic gly-
colysis becomes the major source of energy production, 
despite an inherently limited capacity to meet the full 
energy needs of the beating heart. The onset of irrevers-
ible injury after 20–30 min of acute ischemia coincides 
with the progressive inhibition of glycolysis due to  
lactate accumulation and acidosis (Ichihara et al., 1984; 
Weiss et al., 1996; Geraldes et al., 1997; Schaefer and 
Ramasamy, 1997; Rehring et al., 1998). During anoxia 
with maintained coronary perfusion, removal of exoge-
nous glucose as a substrate for glycolysis dramatically 
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oscillations are thought to be mediated by mitochondrial 
ROS–induced ROS release, involving either inner mem-
brane anion channels (Romashko et al., 1998) or mito-
chondrial permeability transitions pores (Brady et al., 
2004). Because of the requirement for ROS generation, 
mitochondrial  oscillations are more likely to occur 
during reperfusion than ischemia, when reoxygenation 
stimulates a burst of ROS production. However, the evi-
dence for mitochondrial  oscillations during genuine 
ischemia is still indirect (Akar et al., 2005).

In summary, when excitation–contraction–metabolism 
uncoupling occurs, rebellious metabolic oscillators 
become potentially important factors compounding 
ischemia reperfusion injury in the heart. The study by 
Ganitkevich et al. (2010) documents that one form of 
these metabolic oscillations, arising from glycolysis, is 
directly relevant to acute anoxia and ischemia in  
isolated cardiac myocytes. The next frontier is to  
determine whether such metabolic oscillations can 
be detected during acute ischemia in the intact heart, 
and if so, whether they play a role in hastening cell 
death. Detection of metabolic oscillations in intact  
tissue is technically challenging. Due to electrotonic 
coupling, APD in tissue represents the average of thou-
sands of cells, so that unless the phase of the underlying 
cellular metabolic oscillations is synchronized in a  
region of tissue, APD would not appear to oscillate.  
Attempts to directly visualize metabolic oscillations  
during acute ischemia or anoxia in intact cardiac muscle  
using confocal imaging have so far been unrevealing 
(Matsumoto-Ida et al., 2006). Moreover, changes in 
 or NADH accompanying glycolytic oscillations 
are expected to be small. New genetically encoded fluo-
rescent ATP/ADP sensors (Berg et al., 2009; Imamura 
et al., 2009) may be the ideal bioprobes to detect 
whether metabolic oscillations become at odds with 
the heart beat during acute ischemia/reperfusion in 
intact heart. If so, the relationship of such oscillations 
to cardioprotective signaling will become an interesting 
topic for study.
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acute ischemia and anoxia is crucial in protecting cells 
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remains entrained to the heart beat, the myocyte has a 
chance to regulate energy balance appropriately. If  
glycolysis begins to oscillate independently, however, 
the myocyte loses its ability to match cellular energy  
demands to energy needs, further exacerbating energy 
supply–demand imbalance and potentially accelerating 
the onset of irreversible injury.
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tions, the mitochondrial network secondarily oscillates 
in response. As glycolytic ATP production waxes, mito-
chondrial F1-F0 ATP synthase reverses and consumes 
ATP to support mitochondrial membrane potential 
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mitochondria are less able to maintain  and par-
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cardioprotection includes the finding that elevated  
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phosphate levels (Runnman et al., 1990), that the gly-
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protective (Lopaschuk and Stanley, 2006).
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