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Multifractality and cross-
correlation analysis of streamflow 
and sediment fluctuation at the 
apex of the Pearl River Delta
Yao Wu1,2, Yong He1,2, Menwu Wu1,2, Chen Lu1,2, Shiyou Gao1,2 & Yanwen Xu3

The fluctuation and distribution of hydrological signals are highly related to the fluvial and geophysical 
regime at estuarine regions. Based on the long daily streamflow and sediment data of Makou (MK) and 
Sanshui (SS) stations at the apex of the Pearl River Delta, the scaling behavior of the streamflow and 
sediment is explored by multifractal detrended fluctuation analysis (MF-DFA). The results indicated 
that there was significant multifractal structure present in the fluctuations of streamflow and sediment. 
Meanwhile, the multifractal degree and complexity of sediment were much stronger than streamflow. 
Although the scaling exponents of streamflow were larger than sediment at both MK and SS, no evident 
differences have been found on the scaling properties of streamflow and sediment for the ratios MK/SS. 
Moreover, the cross-correlation between streamflow and sediment is further detected by Multifractal 
Detrended Cross-Correlation Analysis (MF-DXA). The multifractal response between streamflow and 
sediment at small timescale is characterized by long-range correlations whereas it exhibits random 
behavior at large timescale. The interaction of the broadness of probability density function and the 
long-range correlations should be responsible for the multifractal properties of hydrological time series 
as the multifractal degree of surrogate and shuffled data was significantly undermined.

The fluctuation of fluvial dynamic and sediment structure, associated with the identification of various geophys-
ical and hydrological characteristics, can exert substantial control on the natural system of alluvial deltas and 
estuaries1,2. Due to distinct regional regime and anthropic interference, the hydrological phenomena generally 
display self-affine and self-similar fractal behaviors over multiple time scales3. As recommended by the National 
Research Council, substantial attention should be paid to the invariance property across scales in the hydrological 
processes, which contribute considerably to the management of water resource and the predication of morpho-
logical evolution4,5.

The streamflow fluctuation with dynamical input (precipitation) and output (evaporation) is generally char-
acterized by long-range power-law correlation. Analogously, the sediment fluctuation is closely intertwined with 
the pattern of depletion (deposition) and supply (proximal/distal erosion)6,7, implicating the fractal properties of 
the underling sediment dynamics8. Exploration and determination of such correlation are of help to the under-
standing of the intrinsic behavior of the corresponding hydrological fluctuation and to predict their future events. 
More than half a century ago, Hurst first proposed that the annual streamflow records in the Nile River exhibited 
“long-range statistical dependencies”. Similar long-range correlations have also been found in a remarkably wide 
variety of natural phenomena in later researches9,10. However, the intrinsic fluctuations of hydrological process 
are fairly vulnerable to the non-linearity and non-stationarity such as artificial noises and trend patterns, which 
may lead to spurious or at least unreliable results in the analysis of the long-range correlations. Hurst’s original 
R/S analysis was thus criticized, since it failed to distinguish trend from the hydrological fluctuations11,12.

In order to obtain a robust detection of the long-range correlations associated with the fractal behavior of 
the hydrological alteration, detrended fluctuation analysis (DFA) was introduced to analyze non-stationary time 
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series in the presence of trend13. Although such monofractal approach proved to be useful, a full characteriza-
tion of the fluctuations was required on the fractal properties studies14, because as a modified version of DFA, 
the multifractal detrended fluctuation analysis (MF-DFA) allows a reliable multifractal characterization of the 
fluctuation pattern15. This multifractal description can be regarded as a “fingerprint”, which has been widely 
applied to a wide range of fields, including pathological states in biomedical signals16,17, stock market efficiency 
in financial records18, streamflow and precipitation in hydrological data3. Furthermore, since two synchronous 
time series, recorded temporally or spatially in the natural system, have the potential to be cross-correlated and 
possess multifractal characteristics, Multifractal Detrended Cross-Correlation Analysis (MF-DXA) was thus 
introduced by Zhou to explore the power-law cross-correlations between two non-stationary series with multiple 
orders detrended covariance19. Based on the state-of-the-art algorithm of MF-DXA, long-range cross-correlation 
between the underlying streamflow data and typical climate criteria, such as precipitation20, ENSO21 and sunspot 
numbers8, has been revealed.

However, few reports are available that addresses scale invariance and cross-correlation between streamflow 
and sediment load fluctuations, which are generally regarded as aggregate signals representing the overall hydro-
logical alteration. Although the discharge is the main driver of the transport of sediment since the bulk annual 
variations of sediment load nearly matches that of the discharge, sediment storage is also an important control22. 
The complex governing processes of sediment dynamics are characterized by advection-diffusion mechanisms 
related to frequent settlement and resuspension. Sediments are thus stored during low discharge events and are 
delivered at high flow rates. The resistance and resilience of the sediment deposits are strongly steered by the flow 
field during flushing events23. In addition to flow capacity, the origin of sediment supply and homogeneity of 
sediment mixtures play an important role on the sediment transport. The type of hysteretical loop between flow 
and sediment depends on the availability of local in-channel stored sediment relative to the distal incoming sedi-
ment6, which is associated with the morphological evolution of the riverbed. These diverse physical mechanisms 
contributed to complex fluctuant features in time-varying sediment, which is probably different from streamflow 
fluctuation in the same channel reach. The objective of this study is therefore to characterize the multifractality 
of streamflow and sediment fluctuations and their multifractal response. Powerful tools including MF-DFA and 
MF-DXA allow for the exploration of multifractal structure and cross-correlation for concurrent streamflow and 
sediment.

Field Site Location
The Pearl River is the second largest river in China, flowing through the highly economic development region. Its 
three main tributaries, namely West River, North River and East River, branch out into one of the most complex 
river networks in the world24 (Fig. 1). The tie channel of the West and North River is the apex of the Pearl River 
Delta and the first order bifurcation of the river network. The streamflow and sediment division at the bifurcation 
exerts a vital influence on the hydrodynamic and geomorphologic processes, fresh water offtake and channel 
navigability in the lower reach and the nearshore region25. The hydrological fluctuation associated with the mul-
tifractal behavior and long-range correlations thus needs to be explored in detail. In this study, two main gauging 
stations of the West and North River near the bifurcation, namely Makou (MK) and Sanshui (SS), are selected to 
characterize the flow and sediment fluctuation at the apex of the Pearl River Delta. Although the two hydrological 
stations are geographically close, their fluvial regimes primarily depend on the distinct characteristics of river 
basins, which provides an interesting case to explore different multifractal properties of hydrological signals in 
adjacent stations. Uninterrupted daily streamflow (Fig. 2) and suspended sediment concentration (SSC) (Fig. 3) 
were concurrently collected from 1994 to 2014 in Makou (MK), Sanshui (SS). The ratios between the values of 
the two gauging stations (MK/SS) were further calculated (Figs 2 and 3). Based on MF-DFA and MF-DXA, we 
decoded these data and characterized the multifractal properties and cross-correlation of the streamflow and 
sediment fluctuation.

Figure 1.  The map of Pearl River Estuary and the location of hydrological stations.
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Analysis Techniques
Generally, natural time series are readily subjected to non-stationarities, including artificial noises and tendency, 
which may lead to unreliable or even spurious results in the process of data analysis26. Many intrinsic fluctua-
tions, such as stock index in economy27,28, heart beat in biomedicine16,29, streamflow in hydrology15,30, plasma 
fluctuations in chemistry31 and cosmic radiations in physics32, exhibit substantially non-stationary behaviors. 
Multifractal Detrended Fluctuations Analysis (MF-DFA) has been widely applied to explore multifractal proper-
ties and scaling behaviors of nonstationary time series. Furthermore, Multifractal Detrended Cross-Correlation 
Analysis (MF-DXA) has been proposed to study the mutual influence with respect to two non-stationary time 
series19, which is similar to the MF-DFA. Suppose that xk is a time series of length N for MF-DFA (xk and yk for 
MF-DXA). Both MF-DFA and MF-DXA procedures consist of five steps33,34:
•	 Step 1: Calculate the profile of time series as:
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where 〈 〉x  and 〈 〉y  are the mean of xk and yk, respectively.

•	 Step 2: Divide the profile X(i) and Y(i) into non-overlapping intervals Ns with equal timescale s 
( =N N sint( / )s ). Generally, a part of the data has the tendency to be left at the end of the profile when the 
length of time series cannot be an integer multiple of the timescale. Hence, for the purpose of not leaving out 
the aliquant part, it is necessary to repeat the same division procedure from the opposite end of the time 
series. This data processing method guarantees that 2 Ns non-overlapping segments are attained.

•	 Step 3: Determine the local trend for 2Ns segments with least squares fit method. The variance is defined as:
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Figure 2.  Temporal variations of daily streamflow at MK (a), SS (b) and the ratio MK/SS (c).

Figure 3.  Temporal variations of daily SSC at MK (a), SS (b) and the ratio MK/SS (c).
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For each segment v = 1, …, Ns (equation (2) for MF-DFA and equation (3) for MF-DXA), and
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For each segment v = Ns + 1, …, 2Ns (equation (4) for MF-DFA and equation (5) for MF-DXA), where xv(i) 
and yv(i) are the fitting polynomial in segment vth. Any order polynomial can be applied to the fitting procedure.
•	 Step 4: Average the qth-order fluctuation function, Fq(s) over all segments. Fq(s) is expressed as:
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where ≠q 0 and s ≥ m + 2. Generally, the variable q can take any real value apart from zero15. In terms of q = 2, 
the standard MF-DFA and MF-DXA are retrieved.
•	 Step 5: Calculate the slope of log-log plots of Fq(s) versus s. The scaling exponent h(q) is described as:

~F s s( ) (7)q
h q( )

The slope of log-log plots of Fq(s) versus s, h(q), is the generally Hurst exponent. The h(q = 2) is known as the 
Hurst exponent for stationary data. Furthermore, the dependence of h(q) on q indicates the multifractal behavior 
of time series, while the monofractal data behave as independence of h(q) on q. In terms of positive q, the scaling 
behavior of the segments with huge fluctuations is characterized by the general Hurst exponent. However, nega-
tive h(q) characterizes the scaling behavior of the segments with mild fluctuations30.

Additionally, the mass exponent function τ q( ) can be calculated by the generalized Hurst exponent h(q):

τ = −q qh q( ) ( ) 1 (8)

Furthermore, the singularity spectrum D(α), can be derived by conducting first-order Legendre 
transformation:

α τ= −D q q q( ) ( ) (9)

where α τ= ′ q( ). The relationship between the singularity spectrum D(α) and the singularity exponent α can be 
expressed by integrating Equation (7):

α= − +D q q h q( ) [ ( )] 1 (10)

The width of the singularity spectrum (∆α = αmax − αmin) implies degree of multifractality of the time series, 
which is related to the dependence of h(q) on q. The singularity spectrum collapses a single point so the width of 
the singularity spectrum will be zero, indicating a monofractal series. Accordingly, h(q) is independent of q. The 
wider the singularity spectrum, the more multifractal is the spectrum.

Results
Multifractal Detrended Fluctuation Analysis.  The scaling behavior of the streamflow and SSC at MK 
and SS is illustrated in Fig. 4. It is obvious that crossover points with about one-year can be found in all log-log 
plots of F2(s) versus s of time series. This may be an indication of the annual periodicity and the competition 
between noise and sinusoidal trend35. The curves of the log-log plot of F2(s) versus s are divided into two scal-
ing regions by crossover points, both of which are fitted by numerical techniques (Fig. 4). Below the crossover, 
the slope values of streamflow log-log curves at MK and SS are nearly equal on small timescale (1.22 ± 0.01 for 
MK and 1.23 ± 0.01 for SS), which implies similar periodicity properties. The intercept values of the fitted lines 
are obviously different, indicating distinct changing magnitude of streamflow between MK and SS. For large 
timescale of more than one year, the slope value of streamflow fitted line at MK is 0.44 ± 0.05, which is relatively 
larger than the slope value at SS (0.29 ± 0.05). Furthermore, the slope value of SSC fitted line at MK (1.07 ± 0.01) 
is larger than that at SS (0.89 ± 0.01) at the shorter time scale. In contrast, the slope value at MK (0.43 ± 0.05) is 
smaller than SS (0.52 ± 0.04) at large timescale, implying that the scaling behavior of SSC at SS is relatively more 
consistent than MK station. Interestingly, scaling properties between the MK/SS ratios of the streamflow and 
SSC are nearly uniform. The slope value of streamflow ratio at MK (1.03 ± 0.01) is close to the slope value at SS 
(1.01 ± 0.01) for the time scale less than one year. Meanwhile, larger difference is found for the time scale of more 
than one year (0.45 ± 0.05 at MK and 0.53 ± 0.05 at SS).
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The multifractal spectrums of daily streamflow and SSC are displayed in Fig. 5. Figure 5(a,d) clearly exhibit 
that the generalized Hurst exponents, h(q), vary with q of the streamflow and SSC series, suggesting the multifrac-
tal properties as indicated by predominant q-dependence of h(q). Furthermore, different relationships between 
the mass exponent function τ(q) and q for −10 < q < 0 and 0 < q < 10 can be found in Fig. 5(b,e). The slope values 
of τ(q) versus q are fitted and showed in Table 1. The degree of the nonlinearity of the mass exponent function 
τ(q) virtually implies the degree of multifractal behaviors36. The difference between the slope values of q < 0 and 
q > 0 for SSC is substantially larger than streamflow series, indicating that the SSC possesses higher multifrac-
tality. The τ(q) of the ratio MK/SS in SSC (2.02) shows the largest difference between the slope values of q < 0 
and q > 0, while the τ(q) of the ratio MK/SS in streamflow is the smallest (1.20), indicating significantly distinct 
multifractality between the allocation of streamflow and SSC at MK and SS.

The asymmetric singularity spectrum D(α) and singularity exponent α of the time series are displayed in 
Fig. 5(c,f). The singularity spectrum with a long right tail and left tail reflects that the multifractal structure 
of time series is sensitive to the local fluctuations with large magnitudes and to those with small magnitudes, 
respectively37. The singularity spectrum of streamflow at MK is characterized by right truncation, whereas the 
singularity spectrum of streamflow at SS is by left truncation. Furthermore, pronounced left truncations exist 

Figure 4.  Scaling properties of log-log plots of F2(s) versus s of daily streamflow (left column) and SSC (right 
column) of MK (top row), SS (middle row) and MK/SS (bottom row). The slope values and associated errors of 
the fitting lines have been displayed.
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for the singularity spectrum of the ratios MK/SS in streamflow and SSC, which means that the ratios MK/SS in 
streamflow and SSC are sensitive to the small magnitude of local fluctuations. The multifractal spectrum widths 
(αmax-αmin) of SSC are significantly larger than streamflow series, implying that the temporal fluctuations of SSC 
present high degree of multifractality. Moreover, the singularity spectrums of streamflow and SSC at SS show a 
wider range than MK and MK/SS.

Multifractal Detrended Cross-Correlation Analysis.  The MF-DXA procedure is employed to detect 
the multifractal properties and the cross-correlation of streamflow and SSC fluctuations (Fig. 6). The time series 

Figure 5.  The multifractal spectrums of streamflow (left column) and SSC (right column) at MK, SS and MK/SS. 
The relationships of (1) the generalized Hurst exponent h(q) and q (top row); (2) the mass exponent function τ(q) 
and q (middle row); and (3) the singularity spectrum D(α) and singularity exponent α (bottom row).

Streamflow SSC

MK SS MK/SS MK SS MK/SS

−10 < q < 0 2.10 2.32 2.03 2.48 2.43 2.66

0 < q < 10 0.86 0.86 0.83 0.76 0.72 0.64

Table 1.  Slope values of mass exponent function τ(q) for daily streamflow and SSC of MK, SS and the ratio MK/SS.
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are synchronized to attain reliable results. Log-log plots of F2(s) versus s introduced by MF-DXA for streamflow 
and SSC series are characterized by two scaling regions, which display the multi-scale response of streamflow 
and SSC. About one-year crossover divides the scaling regimes into small and large periods. Linear fittings are 
conducted on different scaling regions to acquire scale exponents.

On small timescale, the scaling exponents for MK, SS and MK/SS correspond to 1.19 ± 0.01, 1.11 ± 0.01 and 
1.15 ± 0.01, respectively. All of them are larger than 1, implying positive long-range correlation between stream-
flow and SSC. SSC has the tendency to increase (decrease) synchronously with the increasing (decreasing) load 
of streamflow. For the large scale, the scaling exponents of MK, SS and MK/SS are 0.42 ± 0.04, 0.47 ± 0.04 and 
0.49 ± 0.05, respectively. The scaling exponents are close to 0.5, indicating a random behavior with no obvious 
correlations between streamflow and SSC fluctuations for the time scale larger than one-year. The dominant 
long-range correlation shifts to random behavior or slightly anti-persistent long-range correlation as the time 
scale increases.

Figure 6.  The log-log plots of fluctuation function given by the MF-DXA of daily streamflow and SSC at MK 
(a), SS (b), and MK/SS (c).
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Discussion
The causes of multifractality.  There are, in general, two main reasons that may result in the multifractal 
behaviors of hydrological data15,38: (1) the broadness of probability density function (PDF) of the time series and, 
(2) the long-range correlations of the time series, which are known as the Noah phenomenon and the Joseph 
phenomenon, respectively39. In order to distinguish the type of multifractality of the hydrological data, the shuf-
fled and surrogate methods could be employed. The surrogate data could maintain different correlations in small 
and large-scale fluctuations while the broadness of PDF shifts to Gaussian distribution. In contrast, the shuffled 
data would be able to remove the multifractality caused by the long-range correlations without affecting the mul-
tifractal behavior caused by the broadness of PDF. If the multifractality of the hydrological data is solely caused 
by the broadness of PDF, then the generalized Hurst exponent h(q) derived from the surrogate data should have 
the potential to be q-independent. Also, the generalized Hurst exponent h(q) obtained by the shuffled procedure 
would be equal to 0.5 when the long-range correlations exert an overwhelming impact on the multifractality of 
the hydrological data. Weaker multifractality would be found in both surrogate and shuffled data if two types of 
causes are responsible for the multifractal behavior. The surrogate and shuffled data are thus applied to explore 
the causes of multifractality.

It is obvious that the multifractality of the surrogate and shuffled data of streamflow and SSC for MK, SS and 
MK/SS is substantially weaker in comparison to the original data (Fig. 7). The multifractality of hydrological data 
thus is caused by both the long-range correlations and the broad probability density. The generalized Hurst 

Figure 7.  The generalized Hurst exponent h(q) verse q for the streamflow (left column) and SSC (right column) 
at MK, SS and MK/SS for original, shuffled and surrogate data.
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exponents h(2) of the shuffled data for all time series roughly equal to 0.5, but the h(q) is dependent on the q and 
exhibits a monotonically decreasing trend, which indicates the broad probability density is responsible for the 
multifractal behavior. Similarly, the curves of surrogate data, which is higher than the shuffled data, also show no 
substantial independence of the h(q) values on q, indicating the multifractality is partly caused by the long-range 
correlations of the hydrological data. To further identify the contribution of the correlation and the broadness of 
PDF, the multifractal spectrum widths (∆α = αmax − αmin) of the surrogate and shuffled data are applied to eval-
uate degree of multifractality. The ∆α values of shuffled and surrogate date are significantly less than the original 
∆α, which corroborates that both the correlation and the broad probability density lead to the multifractality 
(Table 2). The ∆α of surrogate data for streamflow at MK, SS and the ratio MK/SS are 0.566, 0.478 and 0.279, 
respectively, which are larger than the corresponding shuffled data, implying that the impact of the correlation on 
the multifractal behavior is relatively stronger than the broadness of PDF for streamflow data. Conversely, for SSC 
at MK and SS, since the shuffled ∆α values are larger than the surrogate ∆α values, it can be concluded that the 
broadness of PDF plays a dominant role in the multifractality. However, opposite characteristics are found on the 
ratio MK/SS in SSC. The influence of the correlation is relatively more pronounced than the broadness of PDF as 
the surrogate ∆α (0.367) is larger than the shuffled ∆α (0.238).

The implication of multifractal properties.  The multifractal properties of the hydrological data are sub-
jected to the climate fluctuation3,8, anthropic interferences40–42 and the characteristic of drainage basin, such as 
topography43, land cover44, drainage area45. Generally, hydrological processes are highly vulnerable to the chang-
ing pattern of precipitation. Although the seasonal and annual variations of streamflow is mainly influenced 
by the precipitation changes, the long-term persistence of the streamflow is barely related to the persistence in 
precipitation3. Based on the long daily records from 99 meteorological stations and 42 hydrological stations in the 
world, Kantelhardt demonstrated that the fluctuation exponents of streamflow varied in a broad range, indicating 
significant autocorrelation, while precipitation records displayed a fast decay of the autocorrelation function.

Intensive human activities have significantly changed the hydrological regime in the last several decades, 
especially reservoirs constructions. Reservoirs are constructed for navigation, irrigation, energy production and 
providing safety against flood and drought events. Coarser sediments have the potential to settle down with the 
decreasing flow velocity and transport capacity when incoming discharges and sediments are trapped, while 
the fine sediment storage is removed by reservoir release and flushing. The annual cycle of storage and release 
is closely intertwined with the multifractal response between streamflow and sediment fluctuations, indicating 
the long-range correlation on less than one-year timescale. However, the prevalence of reservoirs sedimentation 
can give rise to continuous decrease of sediment load and clogging the outlet structure, which generally exerts 
detrimental impacts on the coherent continuum of natural sediment cycle46. Additionally, the upstream reservoirs 
entrapment also modulates the distal sediment supply and sediment size related to different hysteresis types of 
streamflow and sediment6. These patterns may account for the out-of-phase response between streamflow and 
sediment fluctuations.

For the West River, the reservoir’s storage capacity was about 38.4 × 109 m3, which was much higher than the 
storage capacity at the North River (6.6 × 109 m3)47. Thus, to a certain degree, tiny streamflow and sediment fluc-
tuations are virtually eliminated due to reservoir storage40, which sheds some light on higher multifractal degree 
of streamflow and sediment at SS. Furthermore, although reservoir storage associated with river regulation has 
the potential to flatten the intra-annual fluctuation of hydrological signals, the seasonal difference of sediment is 
larger than streamflow. Similar phenomenon can be found in the East River, the most regulated tributary of the 
Pearl River48. Zhang corroborated that the intra-annual distribution of sediment was much more uneven than 
streamflow. These results indicate higher degree of multifractality in sediment fluctuation, which is accordant well 
with the finding in the previous section (Fig. 5).

Apart from the reservoir storage, the characteristics of drainage basin can be also incorporated to interpret the 
difference of multifractal degree. On one hand, the storage processes in the soil, which is related to the buffering 
effect, have been corroborated to control the long-term persistent fluctuations of hydrological data. In this study, 
most of the streamflow and sediment at MK and SS come from the upper reaches of the West and North River, 
which is characterized by distinct land covers and soil types. The West River, the primary tributary of the Pearl 
River, flows through the largest karst rocky desertification region in the world47. The weathered limestone plays a 
dominant role at the West River basin while the geomorphological types at the North River basin consist of sev-
eral rocks, including shales, granite and clastic rocks49. The different origins of sediment related to nonuniform 
sediment mixtures and grain sizes at the West and North River basins may give rise to distinct cross-correlation 
and hysteresis types between flow and sediment6. Furthermore, vulnerable land types aggravate soil erosion at 
the West River basin, leading to the failure of water and sediment maintenance and the mitigation of the buff-
ering effect, while better water and soil conservation are found at the North River basin. Therefore, the distinct 

Data

Streamflow SSC

MK SS MK/SS MK SS MK/SS

Original 1.366 1.591 1.334 1.816 2.105 1.851

Shuffled 0.361 0.405 0.257 0.532 0.695 0.238

Surrogate 0.566 0.478 0.279 0.269 0.314 0.367

Table 2.  The multifractal spectrum widths (∆α = αmax − αmin) of the streamflow and SSC at MK, SS and the 
ratios MK/SS.
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multifractality and persistence of streamflow and sediment at MK and SS can be partially interpreted as the 
upstream land cover. On the other hand, the different multifractal spectrum widths at MK and SS also depend on 
drainage areas of the West and North River. Based on the analysis of 18 typical rivers in Germany and 23 inter-
national rivers, Koscielny discovered that the multifractal width, as the “fingerprints” of the hydrological data, 
decreased slightly with the increase of drainage area45. According to the daily records from five river basins, Özger 
further corroborated that larger basin areas had the potential to present higher persistence structure and smaller 
multifractality26. In this study, the drainage area of the West River is 30.5 × 104 km2, which is considerably larger 
than the North River (5.2 × 104 km2). This may partially reveal that degree of multifractality of both streamflow 
and sediment at SS is discernibly stronger than that at MK.

Conclusions
Based on long daily streamflow and sediment data at the apex of the Pearl River Delta, the multifractality and 
multi-scale cross-correlation between the streamflow and sediment were explored by the MF-DFA and MF-DXA. 
Due to the annual periodicity and the competition between noise and sinusoidal trend, about one-year crossover 
points are prevalent in all log-log plots of F2(s) versus s of time series. Although the scaling properties of stream-
flow between MK and SS are almost identical on less than one-year scale, evident divergences of the scaling 
exponents occur in the SSC fluctuation. Interestingly, despite distinct scaling exponents between streamflow and 
SSC fluctuation at MK and SS, the ratios MK/SS in streamflow and SSC have the tendency to present similar peri-
odicity properties and fluctuation behavior at full scales. Moreover, the singularity spectrums display pronounced 
left truncations, implying the ratios MK/SS in streamflow and SSC are sensitive to the small magnitude of local 
fluctuations.

Similar crossover points were found on the multi-scale cross-correlation analysis between streamflow and 
SSC. The scaling exponent is larger than 1 at small timescale while it is close to 0.5 for the large timescale, which 
indicates the dominant long-range persistent shifts to random behavior or slightly anti-persistent long-range 
correlations as the time scale increases. Additionally, the multifractal spectrum widths of surrogate and shuffled 
data were compared with the original data to evaluate the contribution of the broadness of PDF and the 
long-range correlations. The multifractal spectrum widths of both shuffled and surrogate data are significantly 
undermined, implying that the integrating impacts of broad probability density and long-range correlations 
should be responsible for the multifractality. The long-range correlations play a dominant role on the multifractal 
behavior for streamflow at MK and SS with larger surrogate ∆α. In contrast, the multifractal behavior of SSC 
fluctuation depends heavier on the broadness of PDF. Although two hydrological stations are adjacent in terms of 
geographical location, the temporal fluctuations of streamflow and SSC at SS present higher multifractal degree 
and complexities than at MK, which can be partly contributed to the much larger drainage area of the West River. 
Furthermore, distinct land covers and the magnitude of anthropic interference, especially reservoirs construc-
tions, should be incorporated to explain the difference in multifractal structure at West and North River basin.
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