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Abstract

In this study, we developed a gray level co‐occurrence matrix‐based 3D texture

analysis method for dual‐echo steady‐state (DESS) magnetic resonance (MR) images

to be used for knee cartilage analysis in osteoarthritis (OA) studies and use it to

study changes in articular cartilage between different subpopulations based on their

rate of progression into radiographically confirmed OA. In total, 642 series of right

knee DESS MR images at 3T were obtained from baseline, 36‐ and 72‐month follow‐

ups from the OA Initiative database. At baseline, all 214 subjects included in the

study had Kellgren‐Lawrence (KL) grade <2. Three groups were defined, based on

time of progression into radiographic OA (ROA) (KL grades ≥2): control (no pro-

gression), fast progressor (ROA at 36 months), and slow progressor (ROA at 72

months) groups. 3D texture analysis was used to extract textural features for fe-

moral and tibial cartilages. All textural features, in both femur and tibia, showed

significant longitudinal changes across all groups and tissue layers. Most of

the longitudinal changes were observed in progressors, but significant changes were

observed also in controls. Differences between groups were mostly seen at baseline

and 72 months. The method is sensitive to cartilage changes before and after ROA. It

was able to detect longitudinal changes in controls and progressors and to distin-

guish cartilage alterations due to OA and aging. Moreover, it was able to distinguish

controls and different progressor groups before any radiographic signs of OA and

during OA. Thus, texture analysis could be used as a marker for the onset and

progression of OA.
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1 | INTRODUCTION

Magnetic resonance imaging (MRI) is an optimal modality for non-

invasive evaluation of articular cartilage thickness, integrity, and

quality in osteoarthritis (OA) studies, because of its superior soft‐

tissue contrast, and multiplanar capability.1 Compared to radio-

graphic detection of joint space narrowing, MRI is more sensitive to

cartilage loss.2 Earlier studies have shown that quantitative MRI

(qMRI), like T2 and T1ρ mapping, can be used to detect changes

within the cartilage extracellular matrix.3,4

Gray level co‐occurrence Matrix (GLCM) based texture analysis

provides a way to extract textural features from an image. These features

are statistical measures of the arrangement of pixel intensities in a region

and provide information on spatial heterogeneity,5 which tends to in-

crease in biological tissue as structural disorganization caused by an un-

derlying pathology progresses. Although originally designed for analyzing

aerial photographs,5,6 this image processing method has been taken into

use in the field of medical image processing.7–21 Texture analysis studies

have been applied in 2D, i.e., separately on single slices, using quantitative

T2 and T1ρ maps and those have shown that the method can detect

signs of OA in cartilage.10,21,22 Furthermore, texture analysis studies ap-

plied on brain T1 and T2 weighted images, and knee dual‐echo steady‐

state (DESS) images, have shown the potential in analyzing non-

quantitative images.23,24 Texture analysis can provide information about

localized variations in cartilage collagen matrix, thus providing the ability

to differentiate healthy subjects from subjects at risk for OA progres-

sion.13,17 In earlier 3D texture analysis studies,19 GLCMs were con-

structed across multiple slices (the third dimension) using the original 3D

volumetric data without transformations and rotations of the pixel co-

ordinates. However, this approach has limited directions for neighboring

pixels, and it is not possible to follow the geometry of the cartilage and its

laminar structure. Neither 2D nor 3D texture analysis approach has been

employed for cartilage laminar analysis. Hence, in this study we propose a

new method developed to perform more complex textural analyses of

the cartilage in 3D. The new method extracts textural features for three

different subsets of cartilage layers and the full thickness cartilage.

The 3D DESS is a combination of T1 and T2 weighted images, where

the signals from two consecutive echoes, the FID‐signal of a FISP se-

quence (fast imaging steady precession) and the echo‐signal of a PSIF

(reversed FISP), are separately acquired and the combined. The PSIF part

of the sequence provides a high T2 contrast, and the FISP part provides

representative morphological images with T1/T2 ratio dominated

contrast.25 All in all, DESS provides images with high contrast between

cartilage and fluids, it has the advantage to combine morphological and

quantitative analysis of cartilage from the same dataset with high

resolution, and the imaging time is relatively short.25–28 The possibility of

isotropic resolution of DESS and the optimal contrast for cartilage suit

well for automated segmentation.29 Previously, the GLCM‐based 3D

texture analysis method has not been applied to clinical MRI images of

articular cartilage, and only one study used the method on MRI of joints

to assess vertebral trabecular bones using sagittal T1‐weighted MR

images.30 For 3D texture analysis, isotropic coverage creates less dis-

tortion in coordinate transformations and rotations. Compared to qMRI

methods, the DESS sequence is available for most clinical MRI scanners

and sites, and it allows complete coverage of knee cartilage typically in

less than 6min. Thus, the 3D texture analysis method can be applied

directly to DESS images without the need for mono‐exponential fitting

like in the case of T1ρ and T2.

There are currently no established imaging biomarkers able to

diagnose OA at an early stage and predict its progression rate, which

can vary considerably between patients.31 Generally, the radiological

progression of OA is slow and can take several years or even

decades.32–38 However, it has been reported that in some cases,

progress can be rapid and within 12 months, subjects with normal

knee radiographs can develop radiographic OA (ROA),39 or incident

OA subjects can progress to advanced‐stage ROA.40

The purpose of this study was to develop a 3D texture analysis

method to be used for knee cartilage analysis in OA studies and

clinical trials. Currently, there are no validated methods to predict the

development of ROA from morphological images or any imaging

markers. OA progresses at different rates and the longitudinal clinical

Osteoarthritis Initiative (OAI) dataset enables us to study this, by

creating different groups based on their time of progression into

ROA. Earlier, 2D texture analysis for qMRI has shown promising re-

sults in finding differences between regions of interest (ROI) of

healthy and degenerated cartilage before radiographic signs of OA.

We hypothesize that 3D texture analysis of DESS images, given their

higher resolution and 3D nature, would be even more sensitive to

early cartilage changes and it could be used to predict the develop-

ment of OA before any radiographic signs.

2 | MATERIALS AND METHODS

2.1 | Study population

The proposed method was applied on a selected subset from a

longitudinal cohort study, the OAI, enrolling 4796 subjects in total

(https://nda.nih.gov/oai/study-details).41 The OAI database is di-

vided into three cohorts: a Progression cohort consisting of symp-

tomatic knee OA patients with definite tibial‐femoral osteophyte

(OARSI grades 1–3) at baseline and pain, aching or stiffness on most

days of a month in the past year; an Incidence cohort including

subjects with frequent knee symptoms without ROA but with two or

more other eligibility risk factors; and a Control cohort with no

symptoms, no ROA in either knee at baseline and no risk factors.

A total of 214 subjects were selected for our study from the OAI

participants aged 65 years or younger with Kellgren‐Lawrence42 (KL)

grade <2 at baseline and DESS MR images of the right knee available

at baseline (00m), 36‐month (36m), and 72‐month (72m) follow‐ups

(Figure 1). They were classified in three groups based on the time of

progression into ROA (KL ≥2). The control group (N = 65) included

subjects selected from the OAI Control cohort with KL grade <2 at all

time points (N = 65). Subjects in the slow progressor group were

selected from the OAI Incidence and Progression cohorts diagnosed

with ROA only at 72m (N = 71). Subjects in the fast progressor group
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were selected from OAI Incidence and Progression cohorts diag-

nosed with ROA already at 36m (N = 78).

2.2 | MRI acquisition and data preprocessing

MR images were acquired using 3T Siemens clinical MR systems (Siemens

Healthcare) according to the OAI kneeMRI protocol.41 In total, 642 DESS

images of right knees were segmented using the automatic deep learning‐

based method that was previously trained and validated against manual

segmentations.43 As an output, the software produced separate seg-

mentation masks for femoral, tibial, and patellar cartilage tissues, as well

as menisci. Subsequently, the full cartilage masks were automatically

segmented into the MOAKS‐based compartments via elastic registration

to a multiatlas of 10 scan‐segmentation pairs.44 For 3D texture analysis,

full cartilage segmentations, and central medial and lateral compartments

for femur and tibia are used. The average local thickness of cartilage

was measured for the aforementioned compartments.45 The mean

thickness of full femoral and tibial cartilage tissues was determined from

the compartmental measurements. Thickness data was used as a re-

ference, to assess whether the textural feature changes were following

the changes in the cartilage thickness.

2.3 | 3D texture analysis

The proposed method for 3D texture analysis of cartilage DESS

images was developed in‐house using Matlab (MathWorks Inc.). The

software extracts textural features from a 3‐dimensional area defined

by the DESS MR image and the segmentation mask. After anatomical

normalization, the GLCM matrices for each configured direction

are generated from neighboring pixels, which are layered on a plane

parallel to the bone‐cartilage interface (BCI). These GLCMs are

summed for the full cartilage thickness data (SUM). Additionally,

the 1‐pixel thick layers, at 10% (L10), 50% (L50), and 90% (L90) of

relative cartilage thickness from the BCI (Figure 2), have their own a

GLCMs. Thickness in this context should not be confused with the

average local cartilage thickness, because anatomical normalization

requires interpolation and extrapolation of scattered data to grid‐

aligned data, where pixel coordinates are rounded up to pixel level.

More details about anatomical normalization and GLCM populating

are provided in the Supporting Information B document.

For this study, 19 textural features5–7 were extracted from the

full femoral and tibial cartilages and the central medial and lateral

compartments using our novel 3D texture analysis. Textural features

were extracted for four different layers: for three one‐pixel thick 3D

layers, L10, L50, and L90 (Figure 2), and 3D full cartilage thickness

(SUM). Pixel intensities were divided into eight linear analysis bins

using a gray level range of 0–300, where pixel intensities greater than

300 are placed in the eighth bin. Pixel offset value was set to 1, and

the number of analysis directions (angles) to 8 (0°, 45°, 90°, 135°,

180°, 225°, 270°, and 315°).

2.4 | Statistics

Statistical analysis was performed using Matlab. Differences between

groups at the same time points were analyzed using the

F IGURE 1 Flow chart of the subgroups selection based on the time of progression into radiologic osteoarthritis (Kellgren‐Lawrence ≥2),
from the cohorts of the Osteoarthritis Initiative database for controls, fast progressors, and slow progressors
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Kruskal–Wallis test and longitudinal changes within the groups using

Friedman's test. All p values were adjusted with Bonferroni correc-

tion for multiple comparisons for both textural features and thick-

ness. The Bonferroni correction was used in triplets for each textural

feature: at each time point and in each layer for the group compar-

isons, and in each layer within each group for the longitudinal com-

parisons. In addition, the Benjamini‐Hochberg method with a 10%

false discovery rate was applied to textural feature p values of each

group comparison, in each time point in each layer, and p values of

the longitudinal comparisons between each time point in each layer.

The correlation between body mass index (BMI) and texture features

was assessed using Spearman's correlation.

3 | RESULTS

3.1 | Full cartilage textural features

All textural features, from femoral and tibial cartilage, showed significant

longitudinal changes across all groups and layers. Most, but not all,

longitudinal changes were observed in progressor groups. Several fea-

tures, like contrast (Figure 3) and entropy (Figure 4), increased over

time, in both cartilages; on the other hand, features like energy

(Figure 5) and homogeneity (Figure 6) decreased over time. Other

features such as correlation (Figure 7), did not show a monotonic trend

and showed less longitudinal changes. In a number of features, including

contrast, energy, entropy, and homogeneity, the larger differences

between time points were found in the tibia. Differences between

groups were seen mostly at baseline and 72 months.

At baseline, significant differences between controls and pro-

gressor groups were found in several textural features and layers.

Most of the differences were found between controls and slow pro-

gressors in the femur L90, while differences between controls and

fast progressors were found often in the tibia L10. Correlation, cluster

prominence, information measure of correlation 2, sum of squares,

and sum variance, showed significant differences between controls

and both progressors in all layers in femur and tibia. In several fea-

tures, most differences occurred either in the femur (energy, entropy,

sum entropy, maximum probability, and autocorrelation) or in the

tibia (contrast, cluster shade, difference variance). Other features

differed between controls and either fast or slow progressors in dif-

ferent tissues and layers. For example, difference entropy, dissim-

ilarity, homogeneity, inverse difference, and sum average had

significances between controls and slow progressors, but not between

controls and fast progressors. On the other hand, cluster shade in the

femur had significances between controls and fast progressors but

not between controls and slow progressors. Finally, information

measure of correlation 1 had significances between controls and slow

progressors only in the femur (all layers) but between controls and fast

progressors in the tibia (all layers); while entropy and sum of entropy

in the tibia differentiated controls from fast progressors in L10 and

controls from slow progressors in L90. At 36 months, almost all the

significant differences were observed between fast progressors and

controls, mostly in the femur in L10 and L50. The only feature

showing differences at 36 months, between controls and slow pro-

gressors, occurring only in the tibia (all layers except L90), was

information measure of correlation 1. At 72 months, significant dif-

ferences between controls and progressors were found for all textural

features and most of the layers, with the majority of the significances

seen between controls and fast progressors. Finally, significant dif-

ferences between slow and fast progressors were observed only at

72 months in the tibia SUM. Descriptions of full cartilage results per

textural feature, medians, interquartile ranges, and group comparison

p values of each textural feature for all groups, layers, and time points

are presented in the Supporting Information C document

(Tables SC1–SC6).

3.2 | Textural features of central medial
and central lateral compartments

All textural features, from femoral and tibial cartilage, showed sig-

nificant longitudinal changes across all groups, layers, and compart-

ments. Most of the significant longitudinal changes were observed in

progressor groups. The control group showed significant longitudinal

changes mostly between baseline and 36 months. On the other hand,

both progressors showed significant changes also between 36 and

72 months, the majority of them observed in the fast group. Textural

features for the SUM behaved similarly as in full cartilage data: for

example, contrast and entropy statistically significantly increased

over time, energy and homogeneity statistically significantly de-

creased, and correlation showed less longitudinal significant changes

compared to other features. The majority of the longitudinal sig-

nificant changes in the control group in the tibia were found on the

lateral side, otherwise significant longitudinal changes were spread

more evenly between lateral and medial compartments.

F IGURE 2 Sagittal view of 3D DESS MR image slice with femoral
cartilage in blue. The textural features are extracted from one‐pixel thick
3D layers L10, L50, and L90. The SUM contains textural features from
all cartilage data. The positions of the layers, thickness wise, are
illustrated in the zoomed part of the cartilage, which is also showing
collagen orientation. DESS, dual‐echo steady‐state; MR, magnetic
resonance
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All the baseline significances in the femur were observed be-

tween controls and slow progressors, and the majority of them on the

lateral side. However, most baseline significances in the tibia, like

cluster prominence, cluster shade, correlation, information measure

of correlation 1 and 2, sum of squares, and sum variance, were

observed between controls and fast progressors, on the medial side.

At 36 months textural features like contrast, difference entropy,

dissimilarity, entropy, homogeneity, and inverse difference showed

significances between controls and both progressors in the lateral

tibia. At 72 months, most of the significant differences in the femur

were observed on the medial side, but in the tibia, most of the sig-

nificances were on the lateral side. Finally, at 72 months, the majority

of textural features showed significances between controls and

progressors, but only energy, entropy, maximum probability, sum

entropy, sum of squares, and sum variance showed significances

between slow and fast progressor in the tibia on the central lateral

compartment. Descriptions of compartmental SUM results per tex-

tural feature, medians, interquartile ranges, and group comparison

p values of each textural feature for all groups, layers, and time points

are presented in the Supplemental C document (Tables SC7–SC18).

3.3 | Textural features versus BMI and cartilage
thickness

Correlation coefficients between texture features and BMI were

mostly nonsignificant or very weak‐to‐weak. Cartilage thickness,

conversely to texture analysis, was significantly different at baseline

F IGURE 3 Full cartilage femoral and tibial box plots of textural feature contrast for controls (ctrl), slow progressors, and fast progressors at
baseline (00m), 36‐month (36m), and 72‐month (72m) follow‐ups. L10, L50, and L90 indicate results of one‐pixel thick 3D layers at 10%, 50%,
and 90% of relative cartilage thickness from the bone‐cartilage interface. The SUM contains results from full cartilage thickness. Horizontal lines
inside the boxplots indicate median values, boxplot edges indicate interquartile range, whiskers indicate 1.5 times the interquartile range, and
diamonds indicate the outliers (***p < 0.001, **p < 0.01, *p < 0.05)
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only between controls and slow progressors in femur. Significant

differences in cartilage thickness between fast progressors and ctrl

were observed only at 36 months in femur. For cartilage thickness

results and transversal and longitudinal p‐values, see the Supple-

mental A document (Tables SA1 and SA2, Figures SA1–SA3).

4 | DISCUSSION

In the present study, we compared 3D textural features of 3D DESS

MR images between a control group and two progressor groups with

different rates of progression into ROA. The fast progressor group

developed ROA within 3 years, while the slow progressor group

developed ROA between three and 6 years. Nineteen textural

features were extracted from full cartilage, and medial and lateral

central compartments, in the femur and tibia. Textural features were

extracted from four different layers. Three of them are one‐pixel

thick 3D layers at a certain depth of cartilage thickness (L10, L50, and

L90) and one is the 3D full cartilage thickness (SUM). 3D texture

analysis was able to detect longitudinal changes in both progressor

groups, but also in controls, suggesting worsening of cartilage health

due to OA or aging, in all layers. The earliest changes from baseline

were observed already at 36 months in all the three groups and in all

layers in both femur and tibia and no particular layer seemed to be

more frequently affected than other. Differences between controls

and progressors were slightly more frequent in femur than in tibia. At

baseline, several textural features showed significant differences

between control and progressor groups, enabling the possibility of

F IGURE 4 Femoral and tibial box plots of textural feature entropy for controls (ctrl), slow progressors, and fast progressors at baseline
(00m), 36‐month (36m), and 72‐month (72m) follow‐ups. L10, L50, and L90 indicate results of one‐pixel thick 3D layers at 10%, 50%, and 90% of
relative cartilage thickness from the bone‐cartilage interface. The SUM contains results from full cartilage thickness. Horizontal lines inside the
boxplots indicate median values, boxplot edges indicate interquartile range, whiskers indicate 1.5 times the interquartile range, and diamonds
indicate the outliers (***p < 0.001, **p < 0.01, *p < 0.05)
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early diagnosis and prediction of OA development. Compared to

controls, early changes at baseline in both progressor groups were

seen in all layers. Those changes were most frequently found in su-

perficial femur in slow progressors, which is consistent with the

current understanding that early OA changes often start in the most

superficial layer of cartilage.46,47 In fast progressors, changes were

also most frequently seen in superficial femur as well as in deep tibia,

which might be indicating a possible role of changes occurring in

deep layer of tibial cartilage in accelerating the OA onset. Changes in

textural features did not follow changes in cartilage thickness, which

suggests that cartilage thickness is not a confounding factor. Ex-

tracting textural features from femoral and tibial central lateral and

central medial compartments did not increase the sensitivity of 3D

texture analysis and resulted in a reduced number of significant

differences compared to full cartilage analysis. Findings from later

time points at 36 and 72 months indicate that 3D texture analysis has

the potential to monitor cartilage changes associated with OA onset

and progression.

Overall, the current study supports several findings from earlier

2D texture analysis studies using qMRI T2 and T1ρ. However, a

comparison of our findings to earlier studies, which were using only

one or two slices of knee cartilage, is not so straightforward. In the

case of a 2D slice, the number of pixels is in hundreds, and in our case

of full femoral cartilage, we are on a scale of over one hundred

thousand pixels. Besides the differences in the number of pixels,

many of the earlier 2D studies are not following the curvature of the

cartilage, which means the texture analysis direction is not on a plane

parallel, as in our case, or perpendicular to the bone cartilage

F IGURE 5 Femoral and tibial box plots of textural feature energy for controls (ctrl), slow progressors, and fast progressors at baseline (00m),
36‐month (36m), and 72‐month (72m) follow‐ups. L10, L50, and L90 indicate results of one‐pixel thick 3D layers at 10%, 50%, and 90% of
relative cartilage thickness from the bone‐cartilage interface. The SUM contains results from full cartilage thickness. Horizontal lines inside the
boxplots indicate median values, boxplot edges indicate interquartile range, whiskers indicate 1.5 times the interquartile range, and diamonds
indicate the outliers (***p < 0.001, **p < 0.01, *p < 0.05)
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interface. Offsets and the number of analyzing directions also vary.

With 3D DESS MR images, there is also a significant difference in

image contrast, compared to T2 and T1ρ.

Blumenkrantz et al.10 reported a decrease in energy and an in-

crease in entropy of cartilage T2 and T1ρ for OA patients. Our ana-

lysis of DESS images shows similarity only at a 72 months time point

in L90 in the femur, where both progressors are significantly different

from control. At 72 months in the tibia, energy and entropy in SUM

can distinguish slow and fast groups, but L90 shows significance only

between control and fast. Longitudinally, but only in a 9‐month time

frame, Blumenkrantz et al.10 reported that entropy of cartilage T2

significantly decreased in OA patients, but controls showed no sig-

nificant changes in energy or entropy. However, we found out that

over time, energy values are decreasing, and entropy values are

increasing, in both progressor and control groups. We observed the

biggest longitudinal changes between energy and entropy in the fe-

mur in the control group in L90, where entropy has significant change

only between baseline and 36 months, and energy has significant

change only between 36 and 72 months.

Joseph et al.13 used subjects from OAI incidence and control cohorts

to extract textural features of T2, at baseline. In the incidence group,

entropy, contrast, and variance were increased differentiating it from

control. In our study textural features can differentiate controls from

progressors, especially variance (sum of squares) has strong significances

between control and both progressors at baseline. The least amount of

significance at baseline can be seen in the contrast in the femur.

Baum et al.16 conducted a longitudinal study, using baseline and

36 months time points from OAI data. They reported a normal

F IGURE 6 Femoral and tibial box plots of textural feature homogeneity for controls (ctrl), slow progressors, and fast progressors at baseline
(00m), 36‐month (36m), and 72‐month (72m) follow‐ups. L10, L50, and L90 indicate results of one‐pixel thick 3D layers at 10%, 50%, and 90% of
relative cartilage thickness from the bone‐cartilage interface. The SUM contains results from full cartilage thickness. Horizontal lines inside the
boxplots indicate median values, boxplot edges indicate interquartile range, whiskers indicate 1.5 times the interquartile range, and diamonds
indicate the outliers (***p < 0.001, **p < 0.01, *p < 0.05)
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control group and subjects with OA risk factors stratified into three

groups based on BMI. At baseline, subjects with risk factors for OA

had no ROA (KL grade <2). Baum et al.16 reported constantly ele-

vated T2 entropy in overweight and obese subjects over 36 months.

In their study on average over all compartments, entropy is showing a

significant difference between control and two highest BMI value

groups at 36 months, but not at baseline. Our results, at baseline, are

showing significant differences between control and progressors in

both femoral and tibial layers. However, at later time points, there are

no significant differences until 72 months. Over time, Baum et al.16

reported an increase in contrast and variance and a decrease in en-

tropy. Our longitudinal findings agree with the contrast and variance

findings of Baum et al.16 but do not agree with the entropy, which is

increasing over time.

Kretzschmar et al.48 investigated compositional changes of knee

cartilage at the site of newly appearing cartilage lesions and the

surrounding cartilage. Their method requires a specific ROI in a

specific slice, to be able to detect the difference. They used the

longitudinal OAI data and reported that local cartilage ROIs had

higher T2‐values compared to the surrounding cartilage, 4 years

before lesion onset. They also reported of the 57 new cartilage le-

sions studied, most occurred in the medial femoral condyle (30%),

and the lateral tibia (25%). Even though our study is not focused on

finding lesions, similarities between the distribution of significances

between medial and lateral compartments can be seen. In our tex-

tural features, at 72 months in the femur, the majority of significances

were found in the central medial compartment. However, at

72 months in the tibia, the majority of the significances, and only

F IGURE 7 Femoral and tibial box plots of textural feature correlation for controls (ctrl), slow progressors, and fast progressors at baseline
(00m), 36‐month (36m), and 72‐month (72m) follow‐ups. L10, L50, and L90 indicate results of one‐pixel thick 3D layers at 10%, 50%, and 90% of
relative cartilage thickness from the bone‐cartilage interface. The SUM contains results from full cartilage thickness. Horizontal lines inside the
boxplots indicate median values, boxplot edges indicate interquartile range, whiskers indicate 1.5 times the interquartile range, and diamonds
indicate the outliers (***p < 0.001, **p < 0.01, *p < 0.05)
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significances between slow and fast progressors, were observed on

the central lateral compartment.

Peuna et al.21 studied compartmental two‐dimensional T2 tex-

tural features of symptomatic and asymptomatic subjects. Their

method follows the cartilage surface and executes textural analysis

parallel to the BCI. They reported significant differences between

groups in femoral and tibial cartilage in medial and lateral central

compartments. Our findings, in contrast, correlation, energy, entropy,

homogeneity, and variance agree with results from Peuna et al.21 in

terms of the direction of change of parameter values in progressor

groups.

Carballido‐Gamio et al.11 reported that the subdivision of lateral

and medial femoral compartments into weight‐bearing and

nonweight‐bearing regions did not improve discrimination between

healthy controls and subjects with mild OA, in two‐dimensional

textural features of T2 and T1ρ. Our findings agree with this. In both,

femur and tibia, when we compare significances between full carti-

lage data and medial and lateral compartments, it can be observed

that full cartilage data provides more significances between groups at

baseline. This could suggest that early cartilage changes, seen by

texture analysis, might not be solely on weight‐bearing compart-

ments of the cartilage.

The current study has several limitations. First, the studied groups

were not BMI matched, but on the other hand, BMI did not show a

strong correlation with textural features between groups. Second, dif-

ferent knee radiofrequency coils were used during the OAI study. Most of

the data used in this study was acquired with similar quadrature transmit‐

receive coils (same brand and design), which provided comparable signal‐

to‐noise ratio. However, part of the knee MRIs of the control group at

72‐month follow‐up visit were performed using an eight‐channel phased‐

array coil, with higher performance in terms of signal‐to‐noise ratio

compared to the other coils. This might explain, at least in part, the large

variance of the textural features observed in the control group at the last

time point. After excluding those subjects from the analysis, significant

differences were still observed between control and progressor groups,

although the results changed for individual textural features at 72

months, see the Supporting Information D document (Figures SD1–SD7).

Third, analysis parameters of texture analysis (e.g., gray‐level range,

number of bins, and quantization method) can affect the results and need

to be thoroughly optimized in the future for optimal sensitivity and ro-

bustness. Also, a dataset acquired at isotropic resolution would be pre-

ferred for less distorted coordinate transformations.

In conclusion, our novel method is sensitive to early and late

cartilage degenerative changes in knee articular cartilage. It was able

to distinguish controls and different progressor groups before, and

after, any radiographic signs of OA. Moreover, 3D texture analysis of

DESS images was able to detect longitudinal changes in controls and

progressors, so it is sensitive and capable of distinguishing cartilage

changes due to OA and aging. Thus, it could be used as a possible

marker for predicting OA onset and progression in clinical trials of

new disease‐modifying OA drugs. The method does not have any

special hardware requirements, it works with a standard MR mor-

phological sequence that can be run on any clinical MRI scanner and

does not require acquisition of a separate quantitative image dataset.

Therefore, it can be implemented as an adjunct methodology to any

ongoing clinical trial in OA.
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