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Abstract: Due to the redox properties closely related to numerous physiological and pathological
processes, biothiols, including cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), have
received considerable attention in biological science. On account of the important physiological
roles of these biothiols, it is of profound significance to develop sensitive and selective detection of
biothiols to understand their biological profiles. In this work, we reported an efficient fluorescent
probe, PHPQ-SH, for detecting biothiols in vitro and vivo, based on the phenothiazine-HPQ skeleton,
with DNBS (2,4-dinitrobenzenesulfonate) as the response unit. Probe PHPQ-SH exhibited brilliant
sensing performances toward thiols, including a large Stokes shift (138 nm), excellent sensitivity
(for GSH, LOD = 18.3 nM), remarkable fluorescence enhancement (163-fold), low cytotoxicity, rapid
response (8 min), and extraordinary selectivity. Finally, the probe PHPQ-SH illustrated herein was
capable of responding and visualizing biothiols in MCF-7 cells and zebrafish.

Keywords: MCF-7 cells; fluorescent probe; biothiols; phenothiazine

1. Introduction

Biothiols including cysteine (Cys), homocysteine (Hcy), and glutathione (GSH) are
vital members of amino acids, which have received considerable attention in biological
science because of the redox properties closely related to numerous physiological and
pathological processes [1–3]. For instance, cysteine (Cys), as a precursor of acetyl CoA
and taurine, plays important functions in protein functionality and metabolism. Aber-
rant levels of Cys are correlated with poor growth, muscle and fat loss, skin lesions and
lethargy [4,5]. Glutathione (GSH), as the most abundant endogenous biothiol, is essential
for maintaining biological redox homeostasis by scavenging free radicals and peroxides.
Data studies showed that many clinical diseases, such as human immunodeficiency disease
(HIV), liver damage, leukopenia, and some cancers are directly associated with irregular
levels of GSH [6–8]. Homocysteine (Hcy) is an important influencing factor of cardiovas-
cular and Alzheimer’s disease. In addition, elevated levels of Hcy in plasma will lead to
folate and vitamin B12 deficiency, nervous system defects, and osteoporosis [9–11]. On
account of the important physiological roles of these biothiols, it is of profound significance
to develop sensitive and selective detection methods for biothiols to understand their
biological profiles.

In recent years, several detection techniques have been exploited for the detection of
biothiols, such as high-performance liquid chromatography (HPLC), chemiluminescence
method, colorimetric assays, electrochemical analysis and fluorescent detection [12–16].
Among them, fluorescence detection approaches, owing to their advantages of excellent
sensitivity, low cost, high spatiotemporal resolution, ease of observation and noninvasive
detection, have attracted interest in biological imaging analysis, clinical disease diagnosis,
food detection, and environmental detection [17–20]. At present, a number of fluorescent
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probes have been designed for biothiols imaging [21–29]. Despite great efforts, some defects
associated with current sensors, including low selectivity, complicated syntheses, low
biocompatibility or a small Stokes shift (<100 nm), still remain. In fact, fluorophores with
large Stokes shifts can vastly reduce autofluorescence and self-quenching, resulting from the
minimal overlap of emission and excitation spectra, to improve detection accuracy [30–32].
Therefore, developing a sensitive and specific fluorescent probe with improved sensing
performance for monitoring the existence of biothiols in biological systems is still in
high demand.

A few fluorescent probes with an eligible Stokes shift for thiols were reported in our
previous works [24,33], which exhibited outstanding characteristics such as high selectivity,
sensitivity and rapid detection. As an extension of our work, by incorporating the phenoth-
iazine moiety into the 2-(2′-hydroxyphenyl)-4(3H)- quinazolinone (HPQ), we developed a
novel chromophore 2-(10-butyl-2-hydroxy-10H-phenothiazin-3-yl) quinazolin-4(3H)-one,
PHPQ, which exhibited strong green fluorescence, simple synthesis route, good photosta-
bilities and a remarkable Stokes shift. These prominent optical characteristics led us to
conclude that PHPQ could serve as an ideal candidate for the construction of fluorescent
sensors. Moreover, studies have proven that 2, 4-dinitrobenzenesulfonate (DNBS) is a
highly selective and sensitive response site for biothiols [33]. Thus, an efficient fluorescent
probe PHPQ-SH for detecting biothiols in vitro and vivo has been exploited, with PHPQ
as the fluorophore linked to DNBS as the response unit. Free probe PHPQ-SH showed little
fluorescence in the green region because of a remarkable photo-induced electron transfer
(PET) effect from PHPQ to DNBS moiety. Once biothiols were added, the conversion of
PHPQ-SH to PHPQ destroyed the PET process, giving the promising fluoresces in the
green region. Importantly, by laser confocal microscope, the capability of PHPQ-SH for
imaging biothiols in living MCF-7 cells and zebrafish models was successfully achieved.
Compared with our previous works (Table S1), probe PHPQ-SH in this work had the fol-
lowing advantages: (1) A large Stokes shift (138 nm); (2) a significant turn-on fluorescence
response (163-fold); (3) PHPQ-SH showed high sensitivity towards thiols (the detection
limit was as low as 18.3 nM); and (4) probe PHPQ-SH was successfully applied to monitor
levels of GSH in realistic samples.

2. Results
2.1. Design and Synthesis of PHPQ-SH

Due to its intense luminescence, good biocompatibility, large Stokes shift, and excellent
photostability, 2-(2′-hydroxyphenyl)-4(3H)-quinazolinone (HPQ) has gathered significant
interest [34,35]. Herein, probe PHPQ-SH was designed to use HPQ derivative PHPQ
(Figure 1) as the chromophore and the DNBS group as the response site (Scheme 1). When
the probe was subjected to biothiols, the masking DNBS moiety can be facilely cleaved
from PHPQ-SH to release the highly fluorescent PHPQ (Figure 2), leading to the turn-on
detection of biothiols (Scheme 2). On account of above considerations, a phenothiazine-
HPQ based fluorescent probe PHPQ-SH, with a large Stokes shift for sensing biothiols,
was synthesized. The chemical structures of PHPQ and PHPQ-SH were characterized by
1H NMR, HRMS and 13C NMR (Figures S7–S12).



Molecules 2021, 26, 2337 3 of 12

Molecules 2021, 26, 2337 3 of 13 
 

 

 

 
Figure 1. Absorption spectra (black) and emission spectra (red) of PHPQ. 

 
Scheme 1. The synthesis route of PHPQ-SH. 

 
Figure 2. The absorption spectra of probe PHPQ-SH reacted with (red lines) and without GSH 
(Glutathione) (black lines). 

Figure 1. Absorption spectra (black) and emission spectra (red) of PHPQ.

Molecules 2021, 26, 2337 3 of 13 
 

 

 

 
Figure 1. Absorption spectra (black) and emission spectra (red) of PHPQ. 

 
Scheme 1. The synthesis route of PHPQ-SH. 

 
Figure 2. The absorption spectra of probe PHPQ-SH reacted with (red lines) and without GSH 
(Glutathione) (black lines). 

Scheme 1. The synthesis route of PHPQ-SH.

Molecules 2021, 26, 2337 3 of 13 
 

 

 

 
Figure 1. Absorption spectra (black) and emission spectra (red) of PHPQ. 

 
Scheme 1. The synthesis route of PHPQ-SH. 

 
Figure 2. The absorption spectra of probe PHPQ-SH reacted with (red lines) and without GSH 
(Glutathione) (black lines). 

Figure 2. The absorption spectra of probe PHPQ-SH reacted with (red lines) and without GSH
(Glutathione) (black lines).

Molecules 2021, 26, 2337 4 of 13 
 

 

 

 
Scheme 2. The mechanism of PHPQ-SH towards biothiols. 

2.2. Spectral Response of Probe PHPQ-SH towards Biothiols 
First, we investigated the sensing properties of PHPQ-SH toward thiols in a 

PBS/CH3CN solution (v/v = 1/1, pH 7.4). As seen in Figure 3, the free PHPQ-SH (10.0 µM) 
displayed an extremely weak fluorescence (Φ = 0.01). After adding GSH (0.0–100.0 µM), a 
green-colored fluorescence emission peak at 535 nm gradually increased. About a 163-
fold enhancement in the emission intensity was obtained in the presence of 10.0 equiv. of 
GSH. Notably, the Stokes shift for PHPQ-SH (10.0 µM) in response to GSH (100.0 µM) 
was as high as 138 nm, which was positive for bioimaging in living systems. The large 
fluorescence changes in spectral properties in PHPQ-SH solution after the addition of 
GSH indicated that PHPQ (Φ = 0.22) was produced. The strategy in this work was also 
verified by the HRMS spectra (Figure S13). The mixture of PHPQ-SH with GSH (m/z = 
416.1421) and PHPQ (cal. 416.1433) nearly had a same molecular weight. The excellent 
linear response in Figure 4 indicated that the emission intensity at 535 nm increased line-
arly with the concentration of GSH (y = 1.138 + 6.572x, R2 = 0.9917), increasing from 0.0 to 
7.0 µM (for Cys, y = 3.721 + 7.334x, R2 = 0.9900) (for Hcy, y = −0.195 + 4.739x, R2 = 0.9931) 
(Figures S1–S4). The detection limit of probe PHPQ-SH for GSH was further calculated to 
be 18.3 nM (for Cys, LOD = 20.1 nM) (for Hcy, LOD = 20.6 nM), based on the LOD = 3 σ/s. 
Probe PHPQ-SH demonstrated high sensitivity for the identification of biothiols, with a 
large Stokes shift in a turn-on mode. 

 
Figure 3. Fluorescent spectral changes of PHPQ-SH (10.0 µM) with different concentrations of 
GSH (0.0–100.00 µM) (insert: the color of fluorescent responses of PHPQ-SH towards GSH). 

Scheme 2. The mechanism of PHPQ-SH towards biothiols.

2.2. Spectral Response of Probe PHPQ-SH towards Biothiols

First, we investigated the sensing properties of PHPQ-SH toward thiols in a PBS/CH3CN
solution (v/v = 1/1, pH 7.4). As seen in Figure 3, the free PHPQ-SH (10.0 µM) displayed an
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extremely weak fluorescence (Φ = 0.01). After adding GSH (0.0–100.0 µM), a green-colored
fluorescence emission peak at 535 nm gradually increased. About a 163-fold enhancement in
the emission intensity was obtained in the presence of 10.0 equiv. of GSH. Notably, the Stokes
shift for PHPQ-SH (10.0 µM) in response to GSH (100.0 µM) was as high as 138 nm, which was
positive for bioimaging in living systems. The large fluorescence changes in spectral properties
in PHPQ-SH solution after the addition of GSH indicated that PHPQ (Φ = 0.22) was produced.
The strategy in this work was also verified by the HRMS spectra (Figure S13). The mixture of
PHPQ-SH with GSH (m/z = 416.1421) and PHPQ (cal. 416.1433) nearly had a same molecular
weight. The excellent linear response in Figure 4 indicated that the emission intensity at 535 nm
increased linearly with the concentration of GSH (y = 1.138 + 6.572x, R2 = 0.9917), increasing
from 0.0 to 7.0 µM (for Cys, y = 3.721 + 7.334x, R2 = 0.9900) (for Hcy, y = −0.195 + 4.739x,
R2 = 0.9931) (Figures S1–S4). The detection limit of probe PHPQ-SH for GSH was further
calculated to be 18.3 nM (for Cys, LOD = 20.1 nM) (for Hcy, LOD = 20.6 nM), based on the
LOD = 3 σ/s. Probe PHPQ-SH demonstrated high sensitivity for the identification of biothiols,
with a large Stokes shift in a turn-on mode.
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2.3. Selectivity and Interference Studies of PHPQ-SH

To evaluate the availability of a fluorescent probe selective towards biothiols, the
reactivity of PHPQ-SH towards various amino acids was studied. As displayed in Figure 5,
upon the addition of representative amino acids (including Ala, Arg, Glu, Asp, Ser, Lys,
Thr, Val, Tyr, Pro, Trp, Leu, Phe, Gly, Ile, Met, His, Gln, Asn), the fluorescence intensities
of the testing solution (100.0 µM) were barely varied compared with that of the initial
probe PHPQ-SH (10.0 µM). On the contrary, a prominent enhancement of the fluorescence
intensity was only triggered in the case of biothiols (GSH, Cys, Hcy). Furthermore, the
performance of PHPQ-SH (10.0 µM) for recognizing GSH in the presence of (100.0 µM)
competitive amino acids (Ala, Arg, Glu, Asp, Ser, Lys, Thr, Val, Tyr, Pro, Trp, Leu, Phe,
Gly, Ile, Met, His, Gln, Asn, GSH) was investigated (Figure 6). As expected, no significant
interference of PHPQ-SH in the detection of GSH with other coexisted amino acids was
observed. As shown in Figure S5, the presence of relevant ions (100.0 µM for Cl−, NO3

−,
SO4

2−, PO3
4−, Ca2+, Cu2+, Na+) also caused no effect on the fluorescence intensity of

PHPQ-SH. The result indicated that PHPQ-SH can be served as a specific indicator for
biothiols rather than other amino acids.
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2.4. Effects of Response Time and pH

The kinetic spectra analysis of probe PHPQ-SH upon introducing biothiols (GSH,
Cys and Hcy) was monitored at 25/37 ◦C temperature (Figure 7). The time-dependent
fluorescence intensity of PHPQ-SH (10.0 µM) at 535 nm indicated that the probe itself
had high photostability, with no fluorescence change at test temperature. However, the
fluorescence intensities can increase rapidly at the beginning and level out within 8 min
after adding GSH (100.0 µM) to the solution of PHPQ-SH (10.0 µM) at 25 ◦C. Moreover,
a similar quick fluorescence intensity enchantment appeared with probe PHPQ-SH in
response to Cys and Hcy at 25 ◦C. It is obvious that probe PHPQ-SH could be used as a real-
time candidate for biothiols’ determination. In addition, the reaction time of probe PHPQ-
SH with thiols at 37 ◦C was investigated. The results are shown in Figure 8, indicating
that the reaction was accelerated compared with the reaction at room temperature. The
observed rated constants at 37 ◦C were found to be 4.458, 4.124 and 7.312 min−1 for Cys,
Hcy and GSH, respectively.
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In order to assess the possibility of practical use for probe PHPQ-SH in biological
systems, the effect of pH is considered an essential factor. The behavior of probe PHPQ-SH
at various pH values was conducted through recording the fluorescence spectra. As shown
in Figure 9, in the absence of GSH, an almost horizontal fluctuation curve of fluorescence
intensity was observed for free PHPQ-SH (10.0 µM) over a broad pH range from 2.0 to
12.0, which demonstrated a strong stability of PHPQ-SH with pH. After adding biothiols
(GSH, Cys, Hcy, respectively) (100.0 µM), remarkable fluorescence signal enhancements
of systems were seen in the pH range of 6.0–9.0. The optimal working range suggested
that probe PHPQ-SH could be used to detect biothiols in biological systems. Meanwhile,
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the changes of fluorescence intensity in different concentrations of buffer solution were
studied (Figure S6). They indicated that the fluorescence intensity of the reaction system
increased slightly with the increase of buffer concentration, which had a negligible impact
on the fluorescence response of the test system.
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2.5. Cell Imaging

Inspired by the aforementioned excellent fluorescent characteristics of PHPQ-SH,
cell imaging performance for biothiols determination was investigated with MCF-7. As
presented in Figure 10, standard MTT assays showed that cell viability was estimated to
be as high as 91% after 24 h of incubation at different concentrations of 0.0–20.0 µM of
PHPQ-SH, which confirmed that PHPQ-SH had low cytotoxicity and was suitable for
intracellular biothiols detection. Next, fluorescence imaging experiments were carried
out to evaluate the capability of sensing biothiols in living cells. When the cells were
stained with 10.0 µM PHPQ-SH alone, a strong green fluorescence was captured under the
confocal microscope (Figure 11A1,A2). In contrast, the cells were preincubated with NEM
(as thiol scavenger, 1.0 mM) and treated with probe PHPQ-SH (10.0 µM); no fluorescence
output in the cells was observed (Figure 11B1, B2). Moreover, after further treatment of
the cells with increasing concentrations of GSH (15.0 µM, 50.0 µM, 100.0 µM), fluorescence
intensity enhanced significantly (Figure 11C1,D1,E1), indicating that PHPQ-SH has the
potential to be applied in the quantification of biothiols with dose dependently intensified.
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2.6. Imaging Biothiols in Zebrafish

Based on the cell imaging performance for biothiols determination, the capability
of PHPQ-SH to visualize biothiols in zebrafish was carried out using a laser confocal
microscope. As shown in Figure 12, when zebrafish were incubated with PHPQ-SH
(10.0 µM) for 30 min, an intense green fluorescence appeared (Figure 12a,c), suggesting
that endogenous biothiols could be conveniently detected with PHPQ-SH. In a control
experiment, zebrafish were pretreated with NEM (1.0 mM) for 30 min, and then incubated
with PHPQ-SH (10.0 µM) for another 30 min; negligible fluorescence (Figure 12e,g) in
green channel was obtained. These data clearly implied that PHPQ-SH could successfully
detect biothiols in zebrafish, with a brilliant performance.
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2.7. Detection of GSH in Real Sample

Finally, the practical application of the probe PHPQ-SH was evaluated by measuring
GSH in spiked urine sample. The recoveries and the relative errors of the proposed methods
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are listed in Table S2. Probe PHPQ-SH exhibited a recovery range (98.6%–101.4%) for GSH
detection in samples, and the relative standard deviations (RSD) were all less than 2.13%.
The results indicated that the probe PHPQ-SH, as a fluorescent sensor, could be used for
the detection of GSH with good recovery and precision.

3. Materials and Methods
3.1. Materials and Instruments

All reagents were commercially available and were not further depurated for use.
The UV-Vis spectra and emission spectra were obtained on a UV-2450 (Shimadzu, Tokyo,
Japan) spectrophotometer and a RF5301PC (Shimadzu, Tokyo, Japan) spectrophotometer,
slit: 5/5 nm. 1H NMR and 13C NMR spectra, mass spectrometric experiments, confocal
fluorescence imaging and pH measurements were output from Bruker Avance 600 MHz
spectrometer (Karlsruhe, Germany), Waters ® Xevo G2-S QTof™ mass spectrometer (Shang-
hai, China), and laser scanning confocal microscope (Zeiss LSM710, Wetzlar, German),
PHS-3C pH meter (Shanghai, China), respectively.

3.2. Spectrum Analysis

The stock solution of PHPQ-SH (1.0 mM) was the prepared in CH3CN. Amino acid
solutions (including Ala, Arg, Glu, Asp, Ser, Lys, Thr, Val, Tyr, Pro, Trp, Leu, Phe, Gly,
Ile, Met, His, Gln, Asn, GSH, Cys, Hcy) for measurement were each prepared in twice-
distilled water (10.0 mM). Then, the test solution was prepared by placing PHPQ-SH stock
solution and appropriate testing analyte in phosphate buffered saline (PBS) buffer solution
(pH = 7.4, containing 50% acetonitrile). The resulting mixtures were incubated well for
8 min at room-temperature and recorded by spectral measurements. The parameters of
fluorescence spectra were set to λex/em = 397/535 nm.

3.3. Cell Cytotoxicity Assay and Fluorescence Imaging

The fluorescence imaging tests to biothiols were performed in MCF-7 cells. The cells
were cultured in Dulbecco’s modified Eagle’s medium (DMEM) at 5% CO2 and 37 ◦C for
24 h until the cells were overgrown. For the toxicity of PHPQ-SH, the cells were separately
incubated with various concentrations (0.0–20.0 µM) of PHPQ-SH for 24 h in a 96-well
plate, and then cell viability of the treated cells was measured by the MTT staining method.
For confocal imaging, the MCF-7 cells were loaded on a confocal dish. The experiments
were divided into three groups. The first group of MCF-7 cells was stained with PHPQ-
SH (10.0 µM) for 30 min and photographed after washing the excess PHPQ-SH with
PBS. Compared with the first group, the second group of MCF-7 cells was preincubated
with NEM (1.0 mM) for 30 min and treated with PHPQ-SH (10 µM) for 30 min. In the
third group, the MCF-7 cells were pretreated with NEM (1.0 mM) for 30 min, followed
by incubation with PHPQ-SH (10.0 µM) for 30 min, and, after being placed in GSH at
concentrations of 15.0, 50.0, 100 µM respectively, for another 30 min, the fluorescence
imaging was performed.

3.4. Zebrafish Imaging

The 4-day-old zebrafish were fed in E3 embryo culture water to conduct imaging
study. For zebrafish imaging experiment, zebrafish were stained with PHPQ-SH (10 µM)
for 30 min. For the control case, zebrafish were pretreated with NEM (1.0 mM) for 30 min,
followed by treatment with PHPQ-SH (10 µM) for another 30 min. Each fluorescence
image of zebrafish was performed with confocal microscope after adopting E3 media to
wash away the excess incubate reagents.

3.5. Sample Determination

The urine sample was treated with N-ethyl maleimide (NEM) to block the thiol groups
for 1.5 h, then was diluted (1:10, v/v) with Tris-HAc buffer. For the analysis, each stock
solution was added with probe PHPQ-SH and a known concentration of GSH (ranged



Molecules 2021, 26, 2337 10 of 12

from 1.0 to 20.0 µM). The resulting solution was shaken well, and then the fluorescence
spectra were recorded.

3.6. Synthesis of PHPQ

2-Aminobenzamide 54.5 mg (0.4 mmol), compound 1 [36] (119 mg, 0.4 mmol) and
10 mL of anhydrous ethanol were added to a 100 mL round bottom single neck round
bottom flask under argon atmosphere. The resulting mixture was stirred at refluxing
temperature for 50 min. Then, 5 mg of p-toluenesulfonic acid was added and the resulting
mixture was stirred at refluxing temperature for 2 h. After cooling to the room temperature,
90.8 mg of DDQ was added and the mixture was stirred at room temperature for 2 h. Finally,
the reaction solution was filtered and washed with anhydrous ethanol. Dried and purified
by column chromatography (mixtures of dichloromethane and ethyl acetate as eluent; 30:1,
v/v) to obtain the probe PHPQ (53.8%). 1H NMR (600 MHz, DMSO) δ 14.28 (s, 1H), 12.31
(s, 1H), 8.12 (d, J = 7.2 Hz, 1H), 8.06 (s, 1H), 7.87–7.77 (m, 1H), 7.70 (d, J = 8.1 Hz, 1H), 7.50
(t, J = 7.4 Hz, 1H), 7.26–7.13 (m, 2H), 7.08 (d, J = 8.1 Hz, 1H), 6.99 (t, J = 7.4 Hz, 1H), 6.59
(s, 1H), 3.92 (t, J = 7.0 Hz, 2H), 1.79–1.63 (m, 2H), 1.42 (dd, J = 14.9, 7.4 Hz, 2H), 0.90 (t,
J = 7.4 Hz, 3H). 13C NMR (150 MHz, DMSO) δ 161.86, 153.38, 150.07, 146.51, 143.33, 135.53,
128.11, 127.61, 126.95, 126.53, 126.02, 125.55, 123.74, 123.57, 120.84, 116.85, 113.00, 107.77,
104.75, 46.93, 28.48, 19.80, 14.10. HRMS (EI) m/z calcd for [C24H21N3O2S+H]+: 416.1433,
Found: 416.1422.

3.7. Synthesis of Probe PHPQ-SH

Under argon atmosphere, PHPQ 21.0 mg (0.05 mmol), 2, 4-dinitrobenzenesulfonyl
chloride 17 mg (0.065 mmol) and 30 µL triethyl amine were dissolved in 6 mL CH2Cl2.
Then, the resulting mixture was stirred for 4 h at room temperature. Finally, the solvent
was evaporated under reduced pressure and crude product was purified with silica gel
chromatography (dichloromethane and ethyl acetate as eluent; 40:1, v/v) to afford probe
PHPQ-SH (88.6%). 1H NMR (600 MHz, DMSO) δ 12.40 (s, 1H), 8.62 (d, J = 2.2 Hz, 1H),
8.22 (dd, J = 8.7, 2.2 Hz, 1H), 7.99 (dd, J = 13.8, 8.3 Hz, 2H), 7.74–7.63 (m, 1H), 7.48–7.40 (m,
2H), 7.36 (d, J = 8.1 Hz, 1H), 7.30–7.23 (m, 1H), 7.23–7.16 (m, 1H), 7.13 (d, J = 8.2 Hz, 1H),
7.03 (dd, J = 14.3, 6.8 Hz, 2H), 3.92 (t, J = 6.8 Hz, 2H), 1.67 (s, 2H), 1.41 (d, J = 7.4 Hz, 2H),
0.90 (s, 3H). 13C NMR (150 MHz, DMSO) δ 160.97, 150.28, 149.28, 148.00, 147.44, 145.95,
134.28, 132.94, 131.39, 128.50, 128.15, 127.33, 127.11, 126.95, 125.53, 123.59, 123.44, 122.19,
121.34, 120.59, 120.10, 116.46, 111.21, 46.50, 27.95, 19.22, 13.49. HRMS (EI) m/z calcd for
[C30H23N5O8S2 + Na]+: 668.0886, Found: 668.0879.

4. Conclusions

In conclusion, an efficient fluorescent probe, PHPQ-SH, for detecting biothiols in vitro
and vivo, based on the phenothiazine-HPQ skeleton, with the DNBS as the response unit,
was synthesized. By taking advantage of the transformable PET process, probe PHPQ-
SH was shown to be capable of sensitively monitoring biothiols in a turn-on signaling
mode. Meanwhile, the probe PHPQ-SH features remarkable fluorescence enhancement
(163-fold), rapid response (8 min), a large Stokes shift (138 nm), excellent sensitivity
(for GSH, LOD = 18.3 nM), low cytotoxicity, and extraordinary selectivity in response
to biothiols. Probe PHPQ-SH was also applied to monitor levels of GSH in realistic
samples. Furthermore, the fluorescence imaging data clearly implied that PHPQ-SH could
successfully detect biothiols in MCF-7 cells and zebrafish, with brilliant performances.

Supplementary Materials: The following are available online. Table S1: Fluorescent probes for
biothiols. Figure S1: Fluorescence response of probe PHPQ-SH (10.0 µM) upon the addition of
Cys (0.0–100.0 µM) in PBS buffer. Figure S2: Fluorescence response of probe PHPQ-SH (10.0 µM)
upon the addition of Hcy (0.0–100.0 µM) in PBS buffer. Figure S3: Fluorescence intensity of probe
PHPQ-SH (10.0 µM) at 535 nm as a function of Cys concentration (0.0–100.0 µM) in PBS buffer. Insert:
the linear relationship between fluorescence intensity and Cys at low concentrations. Figure S4:
Fluorescence intensity of probe PHPQ-SH (10.0 µM) at 535 nm as a function of Hcy concentration
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(0.0–100.0 µM) in PBS buffer. Insert: the linear relationship between fluorescence intensity and Hcy
at low concentrations. Figure S5: The selectivity at 535 nm of PHPQ-SH (10.0 µM) with the reaction
of the various analytes (1–7: 100.0 µM for Cl−, NO3−, SO4

2−, PO3
4−, Ca2+, Cu2+, Na+). Figure S6:

The fluorescence intensities at 535 nm of PHPQ-SH (10.0 µM) with different concentration (10.0,
20.0, 30.0, 40.0, 50.0 mM) PBS. Figure S7: 1H NMR spectrum of PHPQ in DMSO-d6. Figure S8: 13C
NMR spectrum of PHPQ in DMSO-d6. Figure S9: Mass spectrum of PHPQ. Figure S10: 1H NMR
spectrum of PHPQ-SH in DMSO-d6. Figure S11: 13C NMR spectrum of PHPQ-SH in DMSO-d6.
Figure S12: Mass spectrum of PHPQ-SH. Figure S13: Mass spectrum of PHPQ-SH + GSH. Table S2:
Determination of GSH in spiked urine sample (n = 5).
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