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Development of organ dysfunction discriminates sepsis from uncomplicated infection. 
The paradigm shift implicated by the new sepsis-3 definition holds that initial impairment 
of any organ can pave the way for multiple organ dysfunction and death. Moreover, the 
role of the systemic inflammatory response, central element in previous sepsis definitions, 
has been questioned. Most strikingly, a so far largely underestimated defense mecha-
nism of the host, i.e., “disease tolerance,” which aims at maintaining host vitality without 
reducing pathogen load, has gained increasing attention. Here, we summarize evidence 
that a dysregulation of critical cellular signaling events, also in non-immune cells, might 
provide a conceptual framework for sepsis-induced dysfunction of parenchymal organs 
in the absence of significant cell death. We suggest that key signaling mediators, such as 
phosphoinositide 3-kinase, mechanistic target of rapamycin, and AMP-activated protein 
kinase, control the balance of damage and repair processes and thus determine the fate 
of affected organs and ultimately the host. Therapeutic targeting of these multifunctional 
signaling mediators requires cell-, tissue-, or organ-specific approaches. These novel 
strategies might allow stopping the domino-like damage to further organ systems and 
offer alternatives beyond the currently available strictly supportive therapeutic options.
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iNtrODUctiON

The advent of the new sepsis-3 definition, published in 2016 prompted a reappraisal of organ dysfunc-
tion as the hallmark of sepsis. Sepsis is now defined as “life-threatening organ dysfunction caused 
by a dysregulated host response to infection” (1). With this definition, the conceptual focus shifted 
from exclusive attention to the host inflammatory response, i.e., Systemic Inflammatory Response 
Syndrome (2, 3), to the multifactorial tissue damage occurring during the progression of infection to 
sepsis. In the current conceptual framework, sepsis can be construed as a pathogen-induced imbal-
ance of host damage and repair processes that trigger failure of either resistance or “disease tolerance” 
mechanisms (4). In these processes, metabolic adaptation is of outstanding significance (1, 5–7).

Certain critical mediators, most notably related to phosphoinositide 3-kinase (PI3K), mechanis-
tic target of rapamycin (mTOR), and AMP-activated protein kinase (AMPK) signaling, have dual 
functions in metabolism and defense signaling. In this “perspective,” we summarize evidence that 
substantial changes in these signaling pathways during sepsis occur not only in the immune system 
but also in parenchymal cells. To target (parenchymal) cellular metabolic and signaling dysfunctions 
will open new avenues for therapeutic interventions.
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FigUre 1 | Mutual effects of cellular energy metabolism and organ 
dysfunction cause continuous deterioration during sepsis. While 
cardiovascular impairment leads to reduced O2 delivery, metabolic 
dysfunction, most markedly mitochondrial dysfunction, contributes to 
impaired cellular energy supply. This energy crisis contributes to failure of 
detoxification, which in turn affects primarily kidney and liver. Accumulating 
toxins, gut microbiome with (antibiotic-induced) dysbiosis, and microbial 
metabolites (along the gut–liver axis, via organ–organ cross-talk) aggravate 
and perpetuate deteriorating organ function. The resulting metabolic 
catastrophe ultimately results in neurologic manifestations and autonomic 
dysfunction, which again contributes to continuing the downward spiral of 
metabolic derangement and organ dysfunction.
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sePtic sHOcK, sePsis-reLAteD 
DYsOXiA, AND eNergY crisis

Severe metabolic dysregulation and circulatory failure are cen-
tral to the definition of septic shock (1, 3) and sepsis mortality 
rises dramatically when there is cardiovascular impairment 
(8, 9). Microvascular thrombosis and low blood pressure act 
together with the sepsis-induced endothelial capillary leakage 
syndrome. These factors can aggravate and perpetuate organ 
damage through impaired oxygen availability (10). In addition, 
impaired mitochondrial function and biogenesis as well as pre-
sumably mitophagy have been identified as common features in 
non-survivors of sepsis (11). These findings support our hypoth-
esis that impaired cellular metabolic processes occur early and 
widespread across the organism during sepsis development. We 
assume that the resulting “metabolic crisis” in multiple organs is 
accompanied by an increasing “misfiring” of signaling mediators, 
further deteriorating metabolic functions. Predominantly key 
players of anabolic processes, such as PI3K or mTOR, or of cel-
lular maintenance, including AMPK, get out of control (12, 13).  
These cellular metabolic dysfunctions also impact detoxifica-
tion mechanisms, the failure of which perpetuates metabolic 
deterioration (see Figure 1). Accordingly, “septic shock” is now 

defined as a “subset of sepsis in which underlying circulatory 
and cellular/metabolic abnormalities are profound enough to 
substantially increase mortality” (1). Thus, the current concept 
of (multi-) organ dysfunction focuses on the deleterious impact 
of already failed organ functions, most notably cardiovascular 
dysfunction, as a perpetuator of damage. Supposedly, interfering 
with the discussed signaling events will allow intervening at a 
much earlier stage.

eND OrgAN FAiLUre—iNsigHts FrOM 
sYsteMs MeDiciNe

A paradigmatic example of sepsis-related organ failure is excre-
tory dysfunction of the liver. Sepsis accounts for approximately 
20% of admissions for jaundice, a rate that is only surpassed by 
malignant compression of the bile duct (14). Whereas the tra-
ditional view of liver failure would imply (pericentral) necrosis 
or apoptosis of parenchymal cells, this has been excluded as the 
predominant mechanism in septic shock by the pioneering work 
of Hotchkiss et al. (15) revealing that severe organ dysfunction 
occurs despite remarkably well preserved tissue structure. A 
systems biology approach analyzing the hepatocyte response 
to infection found reprogramming of metabolic functions in 
parallel with severity-dependent disruption of phase I and II 
biotransformation and excretory failure (16, 17). This character-
istic phenotype of excretory failure critically depends on PI3Kγ 
signaling as a triggering event. This important role of PI3Kγ 
is also supported by interventions into upstream localized G 
protein-coupled receptors. As such, the long known role of C5aR 
in sepsis (18, 19), which signals through PI3Kγ, might reflect the 
central importance of the PI3K-Akt-mTOR axis. Taken together, 
these findings indicate that liver dysfunction does not result 
from a loss of viable parenchyma but from cellular dysfunctions 
that are potentially reversible and thus amenable to therapeutic 
intervention. Whereas inhibition of PI3Kγ could be a strategy to 
counter liver failure, the same signaling molecule might confer 
protection in other organs, e.g., in the heart (20). This highlights 
the need to achieve organ and cell-specific targeting of these 
processes in multi-organ dysfunction (21, 22).

ALtereD sigNALiNg iN seQUeNtiAL 
stress eveNts AND BY 
cOMOrBiDities

Liver dysfunction also strongly challenges overall metabolic and 
immunological homeostasis in the critically ill and frequently 
promotes progression to multi-organ failure. Prolonged hepatic 
dysfunction interferes with the adaptive immune system (23). 
Accordingly, pre-existing liver disease is a risk factor for the 
progression of bacterial infections to sepsis with increased 
odds ratios for hospitalization, ICU admission, and death (24). 
Similarly, patients with septic complications in the presence 
of chronic liver disease, most notably cirrhosis, have a poor 
prognosis due to development of acute-on-chronic liver failure 
(25). Altered signaling in chronic liver disease is closely con-
nected to signaling processes mediating liver dysfunction during 
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sepsis-triggered hepatic and extrahepatic organ failure (26, 27). 
In both conditions, metabolic master regulators, such as mTOR 
and AMPK, are in the center of the regulatory cascade. These and 
other key regulators, like the classical NFκB signaling pathway 
(28), probably govern the processes promoting damage and func-
tional recovery. The underlying mechanisms might be amenable 
to therapy (1, 6, 7). Shock and cell death can further aggravate 
organ dysfunction, but in a small proportion of patients only (29).

iMBALANce BetWeeN DAMAge AND 
rePAir PrOcesses As A UNiFYiNg 
cONcePt OF OrgAN FAiLUre

Organisms can counter infections via two distinct strategies: 
resistance and disease tolerance (4, 30–32). While resistance 
mechanisms and immunopathology have been in the focus of sep-
sis research for the past decades, disease tolerance and resilience 
remained largely underrated in animal and human biology (4).

Resistance mechanisms aim at reducing pathogen burden 
by pathogen destruction and elimination. The term disease 
tolerance summarizes a diversity of mechanisms that enable an 
organism to cope with a given stressor without eliminating it. 
In the context of infections and sepsis, these mechanisms provide 
tissue damage control and repair to sustain host tissue integrity 
and organ function even without reducing pathogen burden  
(32, 33). Disease tolerance can thus result in a relative increase in 
host fitness in the presence of a disease burden that would otherwise 
greatly reduce vitality (34). A disadvantage of these mechanisms 
is that inadequate tolerance can result in persistent infections and 
possibly relapses. Disease tolerance undoubtedly has a genetic 
basis but, as yet, this aspect has scarcely been investigated. Studies 
in Drosophila suggest that components other than the immune 
system are crucial for tolerance and endurance of infections (35).

Although we are far from knowing all factors involved, disease 
outcome seems to strongly depend on a fine balance between 
resistance and disease tolerance mechanisms that are further 
influenced by environmental factors [see, e.g., Ref. (36)].

tHerAPeUtic strAtegies DeriveD 
FrOM stress BiOLOgY

That tolerance to infections is not exclusively linked to the 
immune system was further substantiated by the finding that 
anthracyclines, long known as chemotherapeutic agents, attenu-
ated lung injury in a rodent model of sepsis (37). The protective 
effect can presumably be attributed to the induction of damage 
repair pathways via DNA damage responses (37). The underlying 
principle, systemic induction of maintenance and repair processes 
by stressors, such as cytotoxic agents or radiation, seems to be a 
general phenomenon, as demonstrated in C. elegans (38), among 
other organisms. These results indicate that tolerance can be 
pharmaceutically enhanced and that the principle of hormesis—a 
general fitness benefit of low doses of a stressor—is applicable to 
counter infections and sepsis (39).

Over the past century, however, the predominant medical 
interventions against infectious diseases have involved targeting 

resistance mechanisms, e.g., via vaccination, and direct reduction 
of pathogen load via antimicrobial drugs (40). But this strategy 
comes at the expense of drug resistance against many classes of 
antibiotics (41). Moreover, whereas this strategy has proven to 
be very successful against a broad range of infectious diseases, it 
has often failed in the treatment of sepsis (42). Futile antibiotic 
therapy in sepsis is a common phenomenon, even if the pathogen 
is tested sensitive to the given drug. This underlines the need for 
host-directed supportive therapies. In this connection, disease tol-
erance mechanisms emerge as therapeutic targets in the treatment 
of infectious diseases and offer fundamentally novel concepts in 
the treatment of sepsis (4, 32, 34, 43). Exploiting disease toler-
ance to counter sepsis also seems promising in view of increasing 
antibiotic resistance, as it does not generate selective pressure 
and cannot be opposed by antimicrobial resistance development. 
Thus, tolerance strategies are considered more stable (30, 44). 
Moreover, as tissue damage triggered by an excessive immune 
response is suggested to be the predominant cause of multi-organ 
failure, which results in poor disease outcome, damage control 
and repair mechanisms are promising targets for new therapeutic 
interventions. And, indeed, stress responsive genes that prevent 
the deleterious effects of damage-associated molecular patterns, 
such as free heme/iron (7, 45), DNA damage (37), or oxidative 
damage (46) have been shown in experimental systems to protect 
against bacterial infections without reducing host pathogen bur-
den. In these tolerance settings, stabilizing organ functions has 
priority and pathogen eradication might be insufficient. However, 
unrestricted tolerance carries the risk of creating persistent reser-
voirs of pathogens in the host population (44, 47–49). To reduce 
this risk, therapeutically used tolerance responses have to be 
strictly controlled. Timing and extent of tolerance induction seem 
of eminent importance. Pathogen persistence and dissemination 
might be prevented by suppressing tolerance mediators or by pro-
voking specific immune responses. Finally, pathogen persistence 
mechanisms might be affected directly to clear an infection and 
re-achieve balanced tolerance and resistance.

iNtrAceLLULAr “WiriNg”  
OF MetABOLisM AND HOst  
DeFeNse MecHANisMs

Immunity and cellular metabolism are intricately connected, 
as the proteins PI3K, Akt, mTOR, HIF1alpha, and PKC are not 
only well described mediators of resistance responses but also 
drive energy-demanding anabolic processes, including glucose 
storage, protein synthesis, and proliferation. In contrast, disease 
tolerance is closely connected to cellular maintenance reac-
tions, including the unfolded protein response and autophagy. 
Both processes are predominantly controlled by the signaling 
mediator AMPK. The interplay of mTOR and AMPK can, thus, 
serve as paradigm for the critical balance between resistance and 
disease tolerance. Apparently, both defense mechanisms become 
dysregulated during sepsis. Whereas excessive activation of 
resistance responses can lead to immunopathology, inappropriate 
disease tolerance might entail fulminant infection or long-term 
pathogen persistence. The interpretation of sepsis as collapsing 
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FigUre 2 | Key signal mediators connect stress responses to metabolism 
and can serve to explain a balance between damage and repair processes  
in immune cells and the majority of parenchymal cells. We hypothesize that 
dysregulated signaling and metabolic functions, which govern resistance 
responses and disease tolerance, are the common underlying cause of 
septic organ failure. Whereas AMPK is considered a key mediator of disease 
tolerance, mTOR and connected pathways regulate resistance responses 
and the metabolic reprogramming connected to immune activation. 
Abbreviations: AMPK, AMP-activated protein kinase; ER, endoplasmic 
reticulum, FOXO, forkhead box O; HIF-1α, hypoxia-inducible factor-1α; mt, 
mitochondrion; mTOR, mechanistic target of rapamycin; NRF2, nuclear 
factor erythroid 2-related factor 2; PI3K, phosphoinositide 3-kinase; PRR, 
pattern recognition receptor; ROS, reactive oxygen species.

4

Bauer et al. Signaling in Organ Dysfunction

Frontiers in Immunology | www.frontiersin.org June 2018 | Volume 9 | Article 1460

tolerance and resistance responses obtains increasing support by 
recent experimental data, in which mTOR and AMPK, as their 
master regulators, play central roles: For example, mortality of 
septic mice could be drastically decreased after treatment with 
the specific mTOR inhibitor rapamycin (50) and the mTOR–
HIF1alpha pathway is required for metabolic activation of trained 
monocytes (51). On the other hand, AICAR and metformin as 
agonists of AMPK have been shown to prevent sepsis in mice 
with similar efficacy (52, 53). Moreover, while AMPK suppresses 
resistance responses controlled by mTOR (54, 55), mTOR blocks 
disease tolerance and maintenance responses mediated by AMPK 
(56). Reduced mortality of septic mice by treatment with either 
mTOR inhibitors or AMPK activating agents could thus be 
interpreted as either directly or indirectly suppressing excessive 
resistance reactions promoted by mTOR. However, recent stud-
ies report opposed effects. Under certain conditions, stimulation 
of AMPK by metformin significantly increases the mortality 
of septic mice (57), indicating that the effects are context- and 
dose-dependent. Besides this paradigmatic antagonism of AMPK 
and mTOR-related pathways, Akt and forkhead box O (FOXO) 
have been recently found to mediate infection-induced cachexia, 
as indicated by Drosophila FOXO mutants surviving infection 
longer than wt conspecifics (58). As outlined in Figure  2, we 
assume that dysregulated mTOR-, AMPK-, and related signaling 
pathways are the molecular basis underlying infection-triggered 
organ dysfunction. The intricate connection of metabolism, 
resistance responses, and disease tolerance suggests a mechanism 
for controlled resource allocation to either immunity or repair 
processes. Aggravating factors, such as comorbidities or envi-
ronmental stresses, contribute to pushing disease tolerance and 
resistance out of this delicate equilibrium.

OUtLOOK—PUrPOseFUL 
MANiPULAtiON OF sigNALs  
MeDiAtiNg DAMAge AND rePAir

The recognition of the close interrelation between metabolism 
and host defense mechanisms opens new perspectives to sepsis 
treatment. Most notably, stimulating disease tolerance during 
sepsis might be a strategy to support patients in surviving septic 
shock. The fundamental concept of the hormetic nature of mild-
to-moderate stress has been observed as a highly conserved 
phenomenon across kingdoms. Applying such principles, e.g., 
induction of the DNA-damage response with low doses of anthra-
cyclines, might add to the therapeutic options in treating septic 
organ failure. However, timing and targeting of such interventions 
will be challenging. Manipulation of the relevant signals is likely to 
produce cell- and tissue-specific (side) effects. Hence, before sign-
aling mediators can be used therapeutically, it will be necessary to 
overcome the significant hurdles posed by these multifunctional 

signaling molecules. Nanoparticle-based targeted drug-delivery 
(21, 22, 59) might help to specifically tackle this problem.

The manipulation of key signaling pathways can be expected 
to significantly add to armamentarium of sepsis therapy, in par-
ticular, in the light of increasing antibiotic resistance.
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