
fnhum-16-950893 September 27, 2022 Time: 16:57 # 1

TYPE Original Research
PUBLISHED 03 October 2022
DOI 10.3389/fnhum.2022.950893

OPEN ACCESS

EDITED BY

Fenghua Sun,
The Education University
of Hong Kong, Hong Kong SAR, China

REVIEWED BY

Sebastiano Stramaglia,
University of Bari Aldo Moro, Italy
Xinqi Zhou,
Sichuan Normal University, China

*CORRESPONDENCE

Fengji Geng
gengf@zju.edu.cn

SPECIALTY SECTION

This article was submitted to
Cognitive Neuroscience,
a section of the journal
Frontiers in Human Neuroscience

RECEIVED 23 May 2022
ACCEPTED 13 September 2022
PUBLISHED 03 October 2022

CITATION

Shi D, Geng F, Hao X, Huang K and
Hu Y (2022) Relations between
physical activity and hippocampal
functional connectivity: Modulating
role of mind wandering.
Front. Hum. Neurosci. 16:950893.
doi: 10.3389/fnhum.2022.950893

COPYRIGHT

© 2022 Shi, Geng, Hao, Huang and Hu.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Relations between physical
activity and hippocampal
functional connectivity:
Modulating role of mind
wandering
Donglin Shi1, Fengji Geng1,2*, Xiaoxin Hao1, Kejie Huang3 and
Yuzheng Hu4

1Department of Curriculum and Learning Sciences, Zhejiang University, Hangzhou, China, 2National
Clinical Research Center for Child Health, Hangzhou, China, 3College of Information Science and
Electronic Engineering, Zhejiang University, Hangzhou, China, 4Department of Psychology and
Behavioral Sciences, Zhejiang University, Hangzhou, China

Physical activity is critical for maintaining cognitive and brain health. Previous

studies have indicated that the effect of physical activity on cognitive

and brain function varies between individuals. The present study aimed to

examine whether mind wandering modulated the relations between physical

activity and resting-state hippocampal functional connectivity. A total of

99 healthy adults participated in neuroimaging data collection as well as

reported their physical activity in the past week and their propensity to mind

wandering during typical activities. The results indicated that mind wandering

was negatively related to the resting-state functional connectivity between

hippocampus and right inferior occipital gyrus. Additionally, for participants

with higher level of mind wandering, physical activity was negatively related

to hippocampal connectivity at left precuneus and right precentral gyrus.

In contrast, such relations were positive at right medial frontal gyrus and

bilateral precentral gyrus for participants with lower level of mind wandering.

Altogether, these findings indicated that the relations between physical activity

and hippocampal functional connectivity vary as a function of mind wandering

level, suggesting that individual differences are important to consider when

we aim to maintain or improve cognitive and brain health through increasing

physical activity.
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Introduction

There is no doubt that physical activity is critical for
maintaining cognitive and brain health throughout the lifespan
(Hillman et al., 2008; Duzel et al., 2016). Physical activity is
also known as a “medicine” due to its protective effects against
cognitive declines (American College of Sports Medicine,
2009). Many studies have found that increased physical
activity is associated with better cognitive performance, such
as attention, visuospatial processing, cognitive control, and
memory (Colcombe and Kramer, 2003; Donnelly et al., 2016; de
Greeff et al., 2018). However, the neural mechanisms underlying
the effect of physical activity on cognitive functions are still
not clear. To address the issue, many neuroimaging studies
have focused on the changes in neural structure and function
associated with physical activity (Colcombe et al., 2004, 2006;
Pontifex et al., 2011; Chen et al., 2019; Horowitz et al., 2020). Of
all the documented brain structure and functional changes that
responds to physical activity, robust changes have been observed
in the hippocampus (Clark et al., 2012; Prakash et al., 2015;
Rendeiro and Rhodes, 2018).

Hippocampus plays a critical role in integrating information
during learning, memory consolidation, and retrieval (Tulving
and Markowitsch, 1998; Lavenex and Lavenex, 2013). It has
been shown in rodent models that increases in physical activity
are associated with increased hippocampal neurogenesis (van
Praag et al., 2005) and enhanced hippocampal long-term
potentiation (van Praag et al., 1999; Liu et al., 2011). Moreover,
physical activity has been found to modify the hippocampus
at the molecular and morphological level (van Praag et al.,
1999; Stranahan et al., 2007; Liu et al., 2011), and these
modifications are thought to contribute to the improvements in
hippocampal-dependent memory, learning, and other cognitive
functions (Rendeiro and Rhodes, 2018).

Similarly, researchers also sought to understand the
influence of physical activity on the hippocampus in humans
(Erickson et al., 2009, 2011; Ruscheweyh et al., 2011; Chaddock
et al., 2016). For instance, randomized controlled clinical trials
indicated that people with higher physical activity or better
fitness showed greater hippocampal volume (Chaddock et al.,
2010, 2016). Such exercise-related changes in hippocampal
volume were related to subsequent changes in memory
performance (Erickson et al., 2009, 2011; Maass et al., 2015). The
profound effect of physical activity on hippocampal structure
has led researchers to explore how physical activity may impact
hippocampal function, as measured by brain activation (Pereira
et al., 2007; Burdette et al., 2010; Voelcker-Rehage et al., 2011),
and functional connectivity between the hippocampus and other
brain regions (Burdette et al., 2010; Chaddock et al., 2010;
Voss et al., 2010; Prakash et al., 2011; Ikuta et al., 2019). For
example, level of vigorous physical activity was significantly
associated with right hippocampal-orbitofrontal connectivity
during resting state (Ikuta et al., 2019). Furthermore, an

intervention study indicated that 12-month physical exercise
training in old adults increased the negative connection between
prefrontal regions and anterior left hippocampus region during
resting state (Voss et al., 2010). Another study found that
the group who received 4-month aerobic exercise training
showed greater connectivity between hippocampus and anterior
cingulate cortex than the control group (Burdette et al., 2010).

However, whether individuals can get cognitive benefits
from physical activity and how much benefit they can get vary
from person to person (Madden et al., 1989; Rhodes and Smith,
2006; Fedewa and Ahn, 2011). The routes by which physical
activity affects learning and memory are complex and may
likely be moderated by many factors, including age, gender,
health status, cognitive level, and numerous psychosocial factors
(Tomporowski et al., 2011). For example, a meta-analysis study
showed that children of different ages may get various degrees
of cognitive benefits from physical activity, indicating that age
may be an important moderator of the benefits of physical
activity (Benjamin and Jennifer, 2003). Moreover, the relations
of physical activity to cognitive functions and hippocampal
volume differ by gender, with females obviously benefiting from
physical activity to a greater extent than males (Barha et al.,
2020). Therefore, before physical activity can be prescribed as
“medicine” for the brain, it is important to better understand
the factors contributing to this variation.

Mind wandering, as an important cognitive function
supported by hippocampus (Faber and Mills, 2018; Mills et al.,
2018), may moderate the relations of physical activity to learning
and memory. Mind wandering is defined as thoughts that were
not tied to concurrent perceptions, which occurs when the
attention shifts away from the present situation to one’s inner
thought (Singer, 1966; Smallwood et al., 2003). The resting-state
functional connectivity within default mode network (DMN),
within which the hippocampus is a node, has been shown
to be closely related to self-generated thoughts that involved
in mind wandering (Christoff et al., 2009; Andrews-Hanna,
2011; Xu et al., 2014; Ellamil et al., 2016; Mittner et al., 2016).
For example, hippocampus was more activated during mind
wandering than at rest, suggesting that mind wandering may
induce the activation of hippocampus (Xu et al., 2014).

Furthermore, previous studies also suggested that mind
wandering was related to future physical activity (Smallwood
and Andrews-Hanna, 2013; Fanning et al., 2016). For instance,
present-moment mind wandering was positively associated with
future moderate-to-vigorous physical activity, indicating that
the nature of one’s mind wandering may impact the ability to
plan for or engage in the goal directed behavior (Fanning et al.,
2016). Although few studies have directly tested the relations
between physical activity and mind wandering, previous studies
have repeatedly found that increasing physical activity improves
sustained attention (Kumar et al., 2015; Luque-Casado et al.,
2015; Ciria et al., 2017). For example, an ERP study found
that higher aerobic fitness was related to neuroelectric activity,

Frontiers in Human Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnhum.2022.950893
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-950893 September 27, 2022 Time: 16:57 # 3

Shi et al. 10.3389/fnhum.2022.950893

demonstrating a better overall sustained attention and the ability
to allocate attentional resources (Luque-Casado et al., 2015).
Therefore, mind wandering, as a cognitive activity supported by
hippocampus, is also closely related to physical activity.

To sum, previous studies have shown that physical activity,
mind wandering and hippocampal functions are related to
each other (Voelcker-Rehage et al., 2011; Smallwood and
Andrews-Hanna, 2013; Faber and Mills, 2018). Specifically,
physical activity not only has positive impact on hippocampal
functions, but also affects mind wandering (Luque-Casado et al.,
2015; Chaddock et al., 2016). Additionally, mind wandering
also affects hippocampal activity due to its role in inducing
hippocampal activation (Xu et al., 2014; Ellamil et al., 2016).
However, it is still unknown that whether mind wandering
plays a role in the effect of physical activity on hippocampal
functions. To provide insight into this question, the purpose
of this study is to test whether mind wandering modulated the
relations between physical activity and hippocampal functional
connectivity measured during resting state. Specifically, we
hypothesized that the relations between physical activity and
hippocampal functional connectivity vary as a function of
individual’s mind wandering level.

Materials and methods

Participants

A total of 105 college students were recruited from Zhejiang
University at Hangzhou in China (mean age = 22.78, SD = 2.91,
49 female). Six participants were excluded from final analyses
due to excessive head motion during fMRI scanning (n = 1)
or incomplete questionnaires (n = 5). All participants were
healthy without adverse health conditions, physical disabilities,
or neurological disorders. This study was approved by the
research ethics review board of Zhejiang University. Participants
signed consent forms before participating in the study.

Questionnaires

International physical activity questionnaire
Participants completed the short version of International

Physical Activity Questionnaire (IPAQ) to measure their
physical activity level during the last 7 days (Hagströmer
et al., 2006). The items in the questionnaire were structured to
measure the volume of vigorous-intensity activity, moderate-
intensity activity, and walking per week. These activities
were weighted by their energy requirements defined in MET
(Metabolic Equivalent Task) to generate a score in MET-
minutes, which is calculated by multiplying the MET score of
an activity by the minutes performed. Total physical activity
(MET-min/week) was calculated by the summation of vigorous,

moderate activity, and walking in MET-minutes over a week.
This summation score was used as a continuous variable to
measure the physical activity level of participants in the current
study.

Mind wandering questionnaires
The Mind Wandering Questionnaire (MWQ) (Mrazek et al.,

2013) is a 5-item self-report scale, which was used to measure
the propensity to mind wandering during typical activities
(Cronbach’s α = 0.85). We used the Chinese version of the
MWQ, which was verified to be a suitable tool to measure
the trait level of mind-wandering (Luo et al., 2016). The
questionnaire is a 6-point Likert scale, ranging from 1 (Never)
to 6 (Always), with participants rating these items based on
how often they experienced the particular situation (e.g., “I
find myself listening with one ear, thinking about something
else at the same time” or “I mind-wander during lectures or
presentations”). Higher scores represent greater propensity to
mind wandering.

Imaging data acquisition and
preprocessing

Participants were scanned in a Siemens 3.0T scanner
(MAGNETOM Prisma, Siemens Healthcare, Erlangen,
Germany) with a 20-channel coil in the Brain Imaging Science
and Technology Center at Huajiachi Campus of Zhejiang
University. They were asked to maintain their gaze at the
fixation square in the center of the screen while they could blink
as usual. Additionally, we explained to participants how subtle
movements could affect data quality and asked them to remain
as still as a statue to minimize head movement. The high-
resolution structural images were acquired using a T1-weighted
magnetization prepared-rapid gradient-echo sequence with
the following parameters: TR = 2300 ms, TE = 2.32 ms, slice
thickness = 0.9 mm, voxel size = 0.90 × 0.90 × 0.90 mm3,
voxel matrix = 256 × 256, flip angle = 8◦, and field of
view = 240 mm2, duration of 7 min and 26 s. Then, a total
of 480 whole-brain resting-state volumes were collected
using a T2-weighted gradient echo planar imaging sequence:
TR = 1000 ms, TE = 34 ms, slice thickness = 2.5 mm, voxel
size = 2.50 × 2.50 × 2.50 mm3, voxel matrix = 92 × 92,
flip angle = 50◦, field of view = 230 mm2, slices = 52, and
duration of 8 min.

The following steps were carried out to preprocess the data:
(1) Slice timing correction and head motion correction were
performed using AFNI.1 (2) Tissue segmentation was conducted
to extract brains using SPM12.2 ANTs3 was used to co-register

1 https://afni.nimh.nih.gov/

2 https://www.fil.ion.ucl.ac.uk/spm/

3 http://stnava.github.io/ANTs/
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and normalize structural and functional images from original
space to MNI space. (3) All functional images were spatially
smoothed using a 5 mm full-width-at-half-maximum Gaussian
kernel. (4) Nuisance variable regression was conducted using
six-rigid head motion and their forward derivate as well as the
first five principal components from white matter and cerebral
spinal fluid (CSF) separately. (5) A band-pass filtering (0.01–
0.1 Hz) was applied.

Since the resting-state functional connectivity could be
influenced by small volume-to-volume head movements, we
first calculated the framewise displacement (FD) of each volume
to quantify the head motion. Any volume with FD ≥ 0.5 mm as
well as 1 back and 1 forward volumes were scrubbed to minimize
the effect of head motion. The mean FD of all participants
included in the final statistical analyses was from 0.09 to 0.30
(mean FD = 0.153, SD = 0.038) with data length ≥ 7 min.

Then we performed resting-state functional connectivity
analyses by using AFNI. We obtained the hippocampal
seed regions from the Harvard–Oxford subcortical structure
probabilistic atlas4 thresholded at 25%. With the uncal
apex served as the border between anterior and posterior
hippocampus (Duvernoy, 2005), the hippocampus was
divided into anterior and posterior segments using manual
identification of standard anatomical landmarks by using 1-mm
MNI152 template.5 Therefore, left anterior, right anterior, left
posterior, and right posterior hippocampus were used as seed
regions. The functional connectivity between the time series of
the seed regions and the other regions throughout the whole
brain was calculated to generate the individual resting-state
functional connectivity map (r-map). Then, by using Fisher’s
r-to-z transformation, the r-maps were converted into z-maps
to obtain the normally distributed values of the connectivity
maps.

Statistical analysis

Statistical analyses were conducted using 3dLME program
within AFNI. To identify whether there were interactions
between physical activity and mind wandering in predicting the
functional connectivity between hippocampus and other brain
regions, we added physical activity, mind wandering, and their
interaction as independent variables in the fixed effect model.
Since previous studies have found functional separation of
hippocampus in different subregions and hemispheres (Strange
et al., 1999; Iglói et al., 2010; Shipton et al., 2014; Robinson
et al., 2015; Persson et al., 2018), we included the Subregions
(anterior vs. posterior) and Hemispheres (left vs. right) as
within-subject covariables. Random effects were also added
to the model. The 3dClustSim in AFNI indicated that when

4 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases

5 http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009

puncorrected < 0.001, only clusters with a minimum of 23
voxel size were viewed as significant with multiple comparison
correction (puncorrected < 0.001). We mainly reported the results
involving physical activity, mind wandering, or both.

Results

Relation between physical activity and
mind wandering

Table 1 showed the characteristics of participants who
contributed both fMRI and questionnaires data. There was
no significant correlation between physical activity and mind
wandering (p = 0.094). Additionally, both of them were not
significant related to mean FD (r = −0.048, p = 0.637; r = −0.004,
p = 0.966). Therefore, mean FD was not included as covariate
when we tested brain-behavioral relations below.

Relation of physical activity and mind
wandering to hippocampal functional
connectivity

There was a significant main effect of mind wandering at
right inferior occipital gyrus (Cluster size = 30; x = 45, y = −65,
z = −14), suggesting that mind wandering was negatively
related to the resting-state functional connectivity between
hippocampus and right inferior occipital gyrus (Figure 1).
Physical activity was not significantly related to hippocampal
functional connectivity at any brain region. However, there
were interactions between physical activity and mind wandering
in predicting hippocampal functional connectivity at left
precuneus, precentral gyrus, left superior frontal gyrus, and
right medial frontal gyrus (Table 2).

To understand these interactions, we separated all
participants into high (48 subjects, 22 females, mean
age = 22.71, SD = 2.75) and low groups (51 subjects, 27
females, mean age = 22.75, SD = 3.05) according to the
mean scores of their mind wandering (i.e., 16.73). Then, for
each group, we conducted whole-brain search analyses to
test whether physical activity was related to hippocampal
functional connectivity at each brain region showing significant
interaction. The results indicated that in high mind wandering
group, physical activity was negatively related to hippocampal
functional connectivity at left precuneus and right precentral
gyrus (Figure 2). In contrast, in low mind wandering group,
there were positive correlations between physical activity and
hippocampal functional connectivity at right medial frontal
gyrus, right precentral gyrus, and left precentral gyrus (Figure 3
and Table 3). However, the relations between physical activity
and hippocampal functional connectivity at left superior frontal
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TABLE 1 Characteristics for participants who contributed both fMRI and questionnaires data.

Characteristics Male Female

Mean (SD) Min Max Mean (SD) Min Max

Age (years) 22.71 (3.03) 18 30 22.75 (2.78) 18 29

Physical activity (MET-min/week) 2177.11 (1391.83) 66 7224 2544.78 (1475.21) 462 6813

Mind wandering 16.86 (4.92) 5 28 16.59 (5.08) 8 29

gyrus did not survive from multiple comparison correction in
both low and high mind wandering groups.

Discussion

The current study aimed to examine whether mind
wandering modulated the relations between physical activity
and hippocampal functional connectivity. First, we found
that mind wandering was negatively related to the resting-
state functional connectivity between hippocampus and
right inferior occipital gyrus. Additionally, we found there
was significant interaction between physical activity and
mind wandering in predicting the resting-state hippocampal
functional connectivity at left precuneus, precentral gyrus,
left superior frontal gyrus, and right medial frontal gyrus.
Specifically, for participants with higher level of mind
wandering, there was negative relation between physical
activity and hippocampal functional connectivity at left
precuneus and right precentral gyrus. For participants with
lower level of mind wandering, physical activity was positively
related to hippocampal functional connectivity at right medial
frontal gyrus and bilateral precentral gyrus. These findings
supported our hypothesis that mind wandering modulated

FIGURE 1

Mind wandering was negatively correlated with functional
connectivity between hippocampus and right inferior occipital
gyrus.

the relations between physical activity and hippocampal
functional connectivity.

Interactions between physical activity
and mind wandering in hippocampal
functional connectivity

Our study found the significant interaction between physical
activity and mind wandering in predicting hippocampal
functional connectivity at left precuneus, right medial frontal
gyrus, and bilateral precentral gyrus. These brain regions,
similar to hippocampus, are closely related to physical activity
or/and mind wandering (Schneider et al., 2009; Vago and
David, 2012; Boccia et al., 2015; Christoff et al., 2016; Thielen
et al., 2016). For example, the DMN, which includes precuneus
and medial frontal gyrus as nodes, has been shown to be
positively activated during mind wandering (Buckner et al.,
2008; Andrews-Hanna, 2011). Additionally, a meta-analysis
study showed that compared with controls, the meditators, who
would experience more mind wandering, had greater activation
in precuneus, precentral gyrus, and medial frontal gyrus during
meditation (Boccia et al., 2015).

Meanwhile, numerous studies also found that during both
resting and task states, people with higher physical activity or
fitness showed greater activation at precuneus, precentral gyrus,
and medial frontal gyrus than people with lower physical activity
or fitness (Casey et al., 2000; Schneider et al., 2009; Voelcker-
Rehage et al., 2010; Smith et al., 2011; Kimura et al., 2013;
Thielen et al., 2016). For example, compared to the controls,
people who received aerobic physical activity intervention
showed greater activation at precuneus (Thielen et al., 2016),
precentral gyrus (Voelcker-Rehage et al., 2010; Smith et al.,
2011), and medial frontal gyrus (Casey et al., 2000; Kimura et al.,
2013) during performing tasks that were highly demanding.
Altogether, previous studies suggest that left precuneus, right
medial frontal gyrus, and bilateral precentral gyrus may co-
activate with hippocampus to support mind wandering and
the functions of these brain regions may also be influenced by
physical activity.

Furthermore, we found that the relations between physical
activity and hippocampal functional connectivity vary as a
function of mind wandering level. Previous studies have
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TABLE 2 Interactions between physical activity and mind wandering.

Regions Hemisphere F Cluster size Peak MNI coordinates

x y z

Precuneus left 21.925 113 −38 −65 36

Precentral gyrus left 21.753 104 −35 12 41

Precentral gyrus right 23.427 56 22 25 46

Superior frontal gyrus bilateral 15.568 33 2 40 36

Medial frontal gyrus right 17.104 33 −8 32 58

FIGURE 2

Negative relations between physical activity and hippocampal functional connectivity at left precuneus and right precentral gyrus in high mind
wandering group.

FIGURE 3

Positive relations between physical activity and hippocampal functional connectivity at right medial frontal gyrus, right precentral gyrus, and left
precentral gyrus in low mind wandering group.

TABLE 3 Mind wandering modulated the relationship between physical activity and hippocampal functional connectivity.

Z Cluster size Peak MNI coordinates Polarity

x y z

Regions showing significant connectivity in high mind wandering group (N = 48)

Left precuneus −3.974 38 −38 −63 38 -

Right precentral gyrus −4.026 26 25 30 46 -

Regions showing significant connectivity in low mind wandering group (N = 51)

Right medial frontal gyrus 4.553 69 −8 35 56 +

Right precentral gyrus 3.988 52 22 20 61 +

Left precentral gyrus 4.489 33 −35 12 38 +
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indicated that maintaining appropriate mind wandering level is
critical in our daily life (Smallwood and Andrews-Hanna, 2013).
Too much mind wandering may cause us to be dissociated
from the external environment, which may result in deteriorated
task performance, such as the performance in working memory
task (McVay and Kane, 2010) and reading comprehension
task (Smallwood et al., 2008; Unsworth and McMillan, 2013).
However, a certain amount of mind wandering is also beneficial
in some situations. For example, we also benefit from mind
wandering in tasks or environments that require divergent
thinking, such as creativity (Baird et al., 2012), problem solving
(Smeekens and Kane, 2016), and successful management of
long-term goals (Smallwood et al., 2013). Therefore, mind
wandering enables us to reach balance in allocating attention to
processing internal and external stimuli.

Previous studies also indicated that physical activity is
related to the allocation of attentional resources (Hillman et al.,
2006; Luque-Casado et al., 2015; Stillman et al., 2018). For
example, physical activity had a larger effect on behavioral
performance during task switch vs. repeat (Hillman et al.,
2006), suggesting that physical activity affects the processing of
information in tasks that have great demands on attentional
resource (Kramer et al., 1999; Colcombe and Kramer, 2003).
Additionally, another ERP study indicated that fitness was
positively related to the neuroelectric activity that measures
sustained attention, suggesting that individuals with higher
fitness are more capable of allocating attentional resources over
time (Luque-Casado et al., 2015).

Therefore, in terms of the findings that individuals with
high vs. low mind wandering showed opposite relations between
physical activity and hippocampal functional connectivity, we
propose that physical activity may help individuals maintain
appropriate level of mind wandering through affecting the
interactions between hippocampus and other brain regions.
Specifically, for people with lower level of mind wandering,
physical activity may help intensify the functional connectivity
between brain regions within networks of mind wandering.
In contrast, for people with higher level of mind wandering,
physical activity may reduce the connectivity between regions
of brain networks that support mind wandering (Stillman
et al., 2018). Although such interpretation needs more studies
to verify, we further propose that when physical activity is
considered as a kind of “medicine,” individual differences are
important to consider. In other words, the effect of physical
activity may vary substantially between different people.

Main effect of mind wandering at
inferior occipital gyrus

We found that mind wandering level was associated with the
functional connectivity between hippocampus and right inferior
occipital gyrus. The occipital gyrus participates in processing

visual information and has been suggested to be important
for object recognition (Gauthier et al., 2000; Sato et al.,
2014; Jacques et al., 2019). Visual information is preliminarily
processed and integrated in inferior frontal gyrus and then
reprocessed in higher-level cognitive systems, such as the
memory center for which hippocampus is a critical structure
(Stone, 1983; Eichenbaum et al., 1992; Andersen et al., 2006).
It has been suggested that compared to people with lower
level of mind wandering, people with higher level of mind
wandering focus more on processing internal information, but
ignore external information or process it at superficial level
without sending them to higher-order cognitive systems (i.e.,
hippocampal memory system) (Hasenkamp et al., 2012). As
a result, for people with higher level of mind wandering, the
connectivity between hippocampus and inferior occipital gyrus
may become weaker compared to the ones with lower level of
mind wandering.

Strengths and limitations

Previous studies showed that physical activity, hippocampal
function, and mind wandering were related to each other. Our
study contributed to establishing the modulating role of mind
wandering in the relations between physical activity and resting-
state hippocampal functional connectivity. However, the current
study still had several limitations. First, the study design did not
allow us to test the causal relations between physical activity,
mind wandering, and hippocampal functions. Additionally,
physical activity and mind wandering were measured by self-
reported, which is subjective and maybe biased (Randy et al.,
2003). Therefore, future studies need to include more objective
measurements and use study designs that allow us to test the
causal effect of physical activity on mind wandering and the
related brain functions.

Conclusion

To summarize, this study established the modulating role of
mind wandering on the relations between physical activity and
resting-state hippocampal functional connectivity at precuneus,
precentral gyrus, and medial frontal gyrus. Specifically, for
individuals with higher level of mind wandering, physical
activity was negatively related to hippocampal functional
connectivity at left precuneus and right precentral gyrus; in
contrast, for individuals with lower level of mind wandering,
physical activity was positively related to hippocampal
functional connectivity at right medial frontal gyrus and
bilateral precentral gyrus. We interpreted such findings as that
physical activity may help maintain an appropriate level of mind
wandering by affecting the interaction between hippocampus
and other brain regions. Therefore, the current study provides
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insight into the variations between individuals on the relations
between physical activity and brain functions, implying that
individual differences are important to consider when we aim to
maintain or improve neurocognitive health through increasing
physical activity.
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