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A B S T R A C T

Background: The modular organization of brain networks in trigeminal neuralgia patients has remained largely
unknown. We aimed to analyze the brain modules and intermodule connectivity in patients with trigeminal
neuralgia before and after percutaneous radiofrequency rhizotomy treatment to identify specific modules that
may be associated with the development and brain plasticity of trigeminal neuralgia and to test the ability of
modularity analysis to be a predictive imaging biomarker for the treatment effect in patients with trigeminal
neuralgia.
Methods: A total of 25 patients with right trigeminal neuralgia and 20 matched healthy subjects were included.
Blood-oxygen-level dependent resting state fMRI was used to analyze the brain modular organization.
Results: Whole brain modularity analysis identified seven modules. The metric of intermodule connectivity,
participation coefficient, of the sensorimotor network and default mode network modules were significantly
lower in patients and increased after surgery. The participation coefficient of the subcortical modules was as-
sociated with the pain duration. Higher communication between the default mode network module and other
modules before surgery was associated with a better treatment response. Furthermore, the subcortical module
was a significant contributor to the participation coefficient relationship of the default mode network module
with the treatment response, and the bilateral midcingulate cortex and thalamus were major connectors in the
subcortical module.
Conclusions: These findings have important implications regarding the global brain modular responses to
chronic neuropathic pain and it may be feasible to use the modularity analysis as part of a risk stratification to
predict the treatment response.

1. Introduction

Only few neuroimaging studies have focused on the structural and
functional changes of the brain in classical TN and the reported results
were heterogeneous. Reduced gray matter (GM) volume were found in
the sensorimotor cortex (SMC), orbitofrontal cortices, thalamus, insula,
anterior cingulate cortex (ACC), cerebellum, dorsolateral prefrontal
cortex (PFC), hippocampus, dorsal anterior cingulate cortex, precuneus,
and several areas of the temporal lobe (Obermann et al.,
2013;Wang et al., 2018;Tsai et al., 2018), and increased GM volume
was found in the sensory thalamus, amygdala, periaqueductal GM,
putamen, caudate and nucleus accumbens (Desouza et al., 2013). Re-
cent studies using resting state fMRI (rs-fMRI) by Wang et al. showed

the altered amplitude of low-frequency fluctuation in the temporal
occipital, frontal, cingulate gyrus (Wang et al., 2017). Another study by
Yuan et al. reported a significant change in regional homogeneity and
fractional amplitude of low-frequency fluctuation in the cerebellum,
cingulate cortex, temporal lobe, putamen, occipital lone, limbic lobe,
precuneus, insula and frontal gyrus in TN patients (Yuan et al., 2018).
Previous studies have demonstrated that the human brain can not only
be parsed into networks but also that interactions within and between
networks are altered in chronic back pain patients (Balenzuela et al.,
2010) and in patients with somatoform pain disorder (Otti et al., 2013).
Besides, the interaction of regions or nodes in networks could be or-
ganized into and functions as a modular organization by using graph
theory-based analyses, which supports segregation and integration of
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communication between nodes (Sporns, 2013;Bullmore and
Sporns, 2009). However, the connection between different brain re-
gions or networks in patients of TN has seldom been discussed, moti-
vating further work to evaluate possible global changes in the brain
modular organization of these patients.

Developments in the analysis of complex networks, based largely on
graph theory, have suggested that the brain is organized and functions
as a complex network of anatomically connected and functionally in-
teracting regions (Bullmore and Sporns, 2009). Recent graph theory-
based analyses suggest a modular architecture of the brain that supports
segregation and integration of communication among highly connected
brain regions (or nodes) (Sporns, 2013). In this context, modularity
refers to the level to which a network is organized into modules or
communities, such that a module in a network is defined as a set of
nodes that are densely connected within a module and sparsely con-
nected to nodes outside of the module (Newman, 2006).

The current study uses rs-fMRI to achieve two specific aims. The
first aim is to analyze the brain modules and intermodule connectivity
in patients with TN before and after percutaneous radiofrequency rhi-
zotomy (RFA) treatment to relieve their facial pain. This can help to
identify specific modules and intermodule connectivity that may be
associated with the development and brain plasticity of this specific
type of chronic neuropathic orofacial pain and to see how it responses
to therapy. The second aim is to analyze the association between the
pretreatment intermodule connectivity and the treatment outcome.
This will test the ability of modularity analysis to be a predictive ima-
ging biomarker for the treatment effect in patients with TN.

2. Materials and methods

2.1. Subjects

Twenty-five patients with right TN were prospectively enrolled. All
patients were diagnosed with classical TN according to the criteria of
the International Headache Society for TN, 3rd edition
(Headache Classification Committee of the International Headache
Society (IHS), 2013). All of the enrolled patients were right-handed
with age ranged from 40 to 70 years-old. Patients with past histories of
any neurological disease other than TN, such as chronic headache,
stroke, brain tumor, seizure disorders, or any pathological findings in
conventional MRI were excluded. The age, gender and the duration
patient suffered with TN were recorded and the severity of pain was
rated based on the visual analogue scale (VAS) pain score. Patients on
analgesic medication were asked to discontinue their medication one
day before their scheduled scanning session. In addition, 20 healthy
subjects (HS) without histories of neurological disease or any patholo-
gical findings in conventional MRI were enrolled. Part of the MRI data
of HS and TN patients before treatment had been analyzed and pre-
sented in our previous study for different aims and with different
methods(Tsai et al., 2018). The study was approved by the Institutional
Review Board of Chang Gung Medical Foundation and all patients gave
their written informed consent prior to their participation in the study.

2.2. Radiofrequency rhizotomy

Percutaneous CT-guided RFA was performed by an experienced
neurosurgeon. The rhizotomy needle was inserted into the location
confirmed by reproduction of paresthesia upon stimulation, covering
the distribution of a specific division of the trigeminal nerve. A lesion
was made at the Gasserian ganglion by radiofrequency thermo-
coagulation (Radionics, Inc. Burlington, MA, USA) at 60 °C for 60 s. The
same neurosurgeon rated the severity of pain and treatment effect of
patients with VAS pain scores at the time point before the two MRI
scans that was within one week before rhizotomy (Pre- VAS) and 2
weeks after rhizotomy (Follow-up VAS)

2.3. MRI acquisition

All patients and healthy controls underwent MRI in a 3-T Siemens
Verio MRI system (Siemens Medical System, Erlangen, Germany) using
a 32-channel head coil. The MRI protocol was performed within one
week before the surgery treatment (1st) and at the 2nd week after
surgery. 3D MP-RAGE anatomical images were obtained using a gra-
dient echo sequence (TR=1900ms; TE= 2.98ms; FOV=230mm;
matrix= 220×256; slice number= 160; spatial resolu-
tion= 0.9× 0.9× 0.9mm). Functional images were obtained using a
gradient EPI sequence that is sensitive to blood-oxygen-level-dependent
contrast (TR= 2500ms, TE= 27ms, FOV=220mm, ma-
trix= 64×64×36, slice thickness= 4mm. Each scan consisted of
240 image volumes). All subjects were instructed to stay awake and
relaxed, with their eyes closed during the scan.

2.4. Data preprocessing

fMRI image preprocessing: The rs-fMRI data preprocessing was con-
ducted in AFNI (Cox, 1996) including slice timing and head motion
correction after discarding the first 10 functional volumes. The spike
was removed from the time series using 3dDespike in AFNI. Data were
then spatially normalized to a template in SPM and resampled resolu-
tion of 2×2×2mm3 and smoothed with a 6mm full-width half-
maximum (FWHM) Gaussian kernel to increase the spatial signal-to-
noise ratio. The time courses of the six head motion correction para-
meters, white matter (WM), and cerebrospinal fluid (CSF) also served as
uninteresting covariates. Here, the WM and CSF masks were generated
by segmenting the T1 high-resolution structural images in SPM seg-
mentation and thresholded by 0.95. The data were band-pass filtered
(0.01–0.1 Hz) using 3dBandpass in AFNI. Finally, we scrubbed the data
to reduce motion-related artifacts by using a framewise displacement
(FD) threshold of 0.5, and deleting one time point before and two time
points after (Power et al., 2015, 2014).

Regions-of-interests: To conduct graph theory-based analyses, we
constructed a whole-brain network using regions-of-interest (ROIs) as
nodes and functional connectivity (FC) between these ROIs as edges.
We used the Shen Brain Atlas, which consists of 268 ROIs of 2-mm
dimensions and provides whole-brain coverage of the cerebral cortex,
cerebellum, and brainstem (Shen et al., 2013). In this study, 49 ROIs in
the cerebellum and 14 ROIs uncovered in our scan were excluded.

Modularity analysis: We assessed the community structure using
modularity analysis (Rubinov and Sporns, 2010) on the group-averaged
FC matrix from the 205 ROIs. For each subject, we extracted the time
course from each ROI (network nodes) and computed the Pearson
correlation between every pair of nodes to form the 205× 205 resting-
state FC matrix. Correlation coefficients were converted into Fisher's Z-
values before applying algebraic and statistical operations. Next,
resting-state FC matrices were averaged across all subjects to produce a
mean resting-state FC matrix. To decompose the lowest hierarchy
components while maintaining that there were no isolated nodes in the
whole-brain network, the matrix was thresholded at r=0.35
(p<0.001, Bonferroni corrected) to keep the strongest connections
(Hsu et al., 2016).

Modules refer to groups of nodes that are highly interconnected
with each other but less connected with other network nodes. The
modularity index Q, quantifies the efficacy of partitioning a network
into modules by evaluating the difference between the actual number of
intramodule connections and the expected number for the same mod-
ules in a randomized network (Newman, 2004). The objective of a
modular detection procedure is to find a specific partition that max-
imizes Q. Newman's spectral algorithm was used for modular detection
(Newman, 2006). To examine whether the real modular network was
significantly different than random graphs, we randomized the original
network with preserved strength distribution 1000 times and calculated
the mean (μ) and standard deviation (σ) of those modularity values
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(Maslov and Sneppen, 2002). We compared the modularity Q of the real
network to those values, which measures how many standard devia-
tions the real modularity is above the mean for the random graph:

=
−

z
Q μ

σ

In addition, the modules smaller than five ROIs was excluded.
Intermodule connectivity: Modular assignment provides the basis

for assessing the patterns of intermodule connectivity. A standard net-
work metric, the participation coefficient (PC), was used to assess in-
termodule interactions (Guimerà and Amaral, 2005) and was calculated
as:
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where NM is the number of modules, kis is the number of edges linking
the node i to other nodes in module s, and ki is the total degree of the
node i. For each module, the averaged PC of nodes within the module
was estimated.

2.5. Statistics

One-way analysis of variance (ANOVA) was used to compare the
VAS scores among the pre-, post-, and follow-up treatment. For all
analyses and post hoc comparisons, a pcorrected < 0.05 was considered
significant, and all comparisons were Bonferroni corrected.

Predicting treatment effect by imaging measures: Since we intended to
assess whether network measures obtained before treatment predict
treatment effects at 2 weeks after rhizotomy (Follow-up VAS), the
correlation between the baseline PC and treatment effect score (the
changes between Follow-up VAS and Pre-VAS was divided by Pre-VAS)
was calculated.

FC between modules: As a post hoc analysis, we computed the be-
tween-module connectivity for each subject by averaging functional
correlations across all pairs of anatomical ROIs between the identified
sensorimotor and default mode network (see Results) and all other
modules identified by our predictive measure. The FC between modules
was correlated with the change in treatment effect.

2.6. Data availability statement

The clinical information and raw data of MRI will be shared by
request from any qualified investigator after the permission of the
Institutional Review Board of our institution.

3. Results

3.1. Clinical characteristics

Clinical characteristics are listed in Table 1. There was no sig-
nificant difference between the HS and TN patients in terms of age, sex,
handedness, or education years. However, there was a significant dif-
ference in the VAS score of TN patients between the Pre- and follow-up
treatment (p<0.001, paired samples t-test).

3.2. Whole-brain modularity analysis

Modularity analysis of the group-averaged FC matrix across HS and
TN group revealed seven brain modules as: frontal-parietal network
(FPCN), sensorimotor network (SMN), salience network (SN), default
mode network (DMN), ventral-DMN (vDMN), visual, and subcortical
modules (Fig. 1a).

Among the seven brain modules, the SMN and DMN showed sig-
nificantly decreased participation coefficient (PC) between the HS and
TN patients before surgery (Fig. 1b). There was no significant PC

difference between the HS and TN patients after surgery. Overall, the
PC value of all the seven brain modules showed an increasing trend
after surgery in the patient group. In addition, before treatment, only
the subcortical module showed significant association between the PC
and pain duration (Fig. 1c).

3.3. Association between modularity analysis and the treatment outcome

Given that the SMN and DMN were the only two modules identified
to show significant PC changes in patient groups before surgery, we
used only these two modules to test whether they could predict the
treatment effect (the difference between the VAS score before surgery
and at 2 weeks after surgery was divided by the score before surgery).
Of the two identified modules, only the PC of the DMN at baseline
correlated significantly (r=0.42, pcorrected< 0.05) with the treatment
effect score (Fig. 2), suggesting that patients with better communication
between the DMN and all other modules before surgery may benefit
more from the treatment.

3.4. Post hoc analysis of the functional connectivity of the DMN module
with other identified brain modules

To determine which of the remaining brain modules connected to
the DMN module were most associated with the treatment effect,
stepwise linear regression was performed as a post hoc analysis between
functional connectivity (FC) of the DMN module with other identified
brain modules and the treatment effect score. We found that the FC
between the DMN and subcortical modules (Fig. 3) before surgery was a
significant predictor of the changes in the VAS score before and after
treatment (r=−0.72, pcorrected<0.001), accounting for 52% of the
variance in this model.

The normalized PC value for each node in the subcortical and DMN
modules is listed in Fig. 4. The right midcingulate cortex (R-mCing), left
middle thalamus (L-mThal), left midcingulate cortex (L-mCing), and
right middle thalamus (R-mThal) showed higher PC values than the
other nodes in the subcortical module, which indicated that the four
nodes were major connectors in the subcortical module. In the DMN
module, seven connectors were identified, which included the inferior
parietal lobule (R-iPar and L-iPar), inferior frontal gyrus (R-iFront and
L-iFront), middle frontal gyrus (L-mFront), middle temporal gyrus (R-
mTemp), and inferior temporal gyrus (L-miTemp).

4. Discussion

Graph-based network analyses have been used to investigate orga-
nizational mechanism underlying the relevant networks (Wang et al.,
2010). Modularity analysis can reflect the degree to which a network is
organized into a modular or community structure (Newman, 2006).

Table 1
Demographics and patient characteristics.

Number of patients Patient (n=25) Healthy Subject
(n=20)

p-value

Age, years (mean±SD) 58.7 ± 6.0 55.7 ± 7.8 0.143
Sex (female/male) 15/10 13/7 0.731
Pain location V1/V2/V3

(%)
16/76/76 n.a.

Pain duration, months
(mean±SD)

85.7 ± 86.1 n.a.

Pain intensity (VAS) <0.001*
Pre- 9.3 ± 0.7 n.a.
Follow-up 3.0 ± 2.9 n.a.

VAS, visual analog scale.
Pain duration, time for the patient suffered from trigeminal neuralgia.

⁎ Difference between the Pre- and Follow-up VAS scores by paired sample t-
test.
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Measurement of the modules can not only describe the presence of
densely interconnected groups of regions but also find the exact size
and composition of these individual groups. This is known as the net-
work's modular structure, which can subdivide the network into groups
of nodes (Rubinov and Sporns, 2010). Based on the identified modular
structure, hubs can be further subdivided in terms of their roles in
maintaining intra or intermodule connectivity. In contrast to other
widely used rs-fMRI analytic methods, such as seed-based functional
connectivity, independent component analysis, amplitude of low-fre-
quency and regional homogeneity, the graph-based network analyses
allow us not only to see the individual connectivity among all the
elements (regions or networks) of the brain, but to also quantitatively
characterize the global organization.

Studies of a variety of pain processes have shown the decrease or
reorganization of the intrinsic DMN activity as a characteristic change
of acute and chronic pain (Hemington et al., 2018;Alshelh et al., 2018).
The role of cross-network functional connectivity of the DMN in pain
has also been reported. In a study of somatoform pain disorder, Otti
et al. found alteration of the FC between the DMN, SMC and cingular-
insular network (Otti et al., 2013). Loggia et al. reported that severe
symptoms of chronic low back pain were associated with the strength of
the FC between the DMN and the insula (Loggia et al., 2013). Another
study by Liu et al. showed altered connectivity between the DMN and
PFC, ACC and thalamus in patients with primary dysmenorrhea
(Liu et al., 2017). The SMN has been shown to code the location and
intensity of pain stimuli and is the key driver for motor responses or

Fig. 1. (a) Modular structure of functional networks with brain regions color-coded according to their modular affiliation with underlay of anatomical image. (b)
Mean participation coefficient (PC) of each module across HS and TN patients. Among the 7 modules, only the sensorimotor and DMN showed significant decrease in
PC in Pre-RFA group compared with HC and no significant difference between HC and the Follow-up group. (*, pcorrected < 0.05). (c) PC of the subcortical module
showed a significant association with pain duration (r=−0.63, pcorrected<0.01). The error bar indicated the standard error.

Fig. 2. Among DMN and SMN modules, only the PC of the DMN module (a) showed significant correlation with changes of VAS score from Pre to Follow-up
(r=0.42, pcorrected<0.05). There was no significant relationship between PC of the SMN module (b) and changes of VAS score from Pre to follow-up (r=−0.01).
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Fig. 3. FC of the DMN module with the subcortical module (r=−0.72, pcorrected<0.001) was negatively correlated with the change in VAS score (pre – follow-up).

Fig. 4. Normalized PC value for each node in the subcortical module (upper row) and DMN module (lower row). The threshold was set as z-value= 1 (orange color).
In the subcortical module, the high PC value of middle cingulate (R-mCing and L-mCing) and middle thalamus (L-mThal and R-mThal) represented the major
connector. In the DMN module, the high PC value of the inferior parietal lobule (R-iPar and L-iPar), inferior frontal gyrus (R-iFront and L-iFront), middle frontal gyrus
(L-mFront), middle temporal gyrus (R-mTemp), and the inferior temporal gyrus (L-miTemp) represented the major connector. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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movement dysfunction in pain (Chang et al., 2015;Bushnell et al.,
2013). A study of patients with somatoform pain disorder showed in-
creased coactivations in the bilateral supplementary motor areas within
the SMN and a decreased FC between the SMN and both audio and
visual networks (Zhao et al., 2017). Another study by Hemington et al.
showed a high FC between the DMN and SMN in chronic pain patients
with high clinical pain scores (Hemington et al., 2018). Our previous
study showed that the FC between dorsal lateral PFC and primary motor
cortex was higher in patients of TN and this connectivity is negatively
correlated with the duration of pain (Tsai et al., 2018). In the current
study, the PC of the DMN and SMN were significantly lower in TN
patients compared to the normal subjects. This result confirms the roles
of these networks in patients with this specific type of chronic neuro-
pathic pain. These networks are not only responsible for processing the
pain signal (as TN is a brief paroxysmal pain) but also involved in
functional modulation or plasticity of the brain in response to the
chronic pain signal. The low PC indicates low intermodule interactions
between the SMN, DMN and other brain modules, which may decrease
the delivery of the pain signal and may be an intrinsic response to re-
duce the sensation of pain. One of the mechanisms of TN is long-term
and pulsatile compression of the trigeminal nerve by vessels that leads
to focal demyelination and transform juxtaposition of axons, which also
causes ectopic generation of spontaneous nerve impulses into adjacent
fibers that initiates pain signals (Smith and McDonald, 1980;Love and
Coakham, 2001). Another explanation of the low PC of the SMN and
DMN modules may be due to the inhibitive signals from the abnormal
spontaneous nerve impulses. Interestingly, the PC of the SMN and DMN,
as well as other measured modules, increased after surgery, while relief
of pain was achieved in most patients. The reason for that all the in-
termodular connection showed recovery trend after surgery but did not
reach a statistic significance may be that all patients suffered from re-
peated chronic pain for several months to years and the responses or
plasticity of some of the modules may be a chronic process that can't be
completely recovered after a single treatment, not to say some patients
had only partial recovery and the time of the follow-up scan was just at
2 weeks after rhizotomy.

We observed that a higher interaction between the DMN and other
modules before surgery was associated with a better treatment re-
sponse. In recurrent and severe TN patients, affected trigeminal nerves
have been observed to be distorted and with an atrophic pattern, which
was caused by inflammation and edema that progressed to demyeli-
nation, abnormal remyelination and hypermyelination (Love and
Coakham, 2001). As our surmises above, the abnormal low PC between
DMN and other brain models may be due to the inhibitive signals from
the abnormal spontaneous nerve impulses or an intrinsic functional
modulation to reduce pain, a lower PC of the DMN module before
surgery may indicate more critical neural damage with a stronger im-
pulse of the pain signal that makes the nerve and symptoms more re-
fractory to the RFA treatment.

Among the remaining brain modules, the FC between the sub-
cortical module and the DMN module was most associated with the
prediction, accounting for 52% of the variance in this model. The
subcortical structures are known to be involved in a variety of aspect of
pain perception and modulation (Bushnell et al.,
2013;Vogt, 2005;Bingel et al., 2002). We further found that the bi-
lateral midcingulate cortex (MCC) and thalamus were the major con-
nectors in the subcortical nodules. As we mentioned above, the tha-
lamus plays a key role in the processing of nociceptive stimuli by
projection of nociceptive input from the thalamus to the SMC, ACC,
insula and other cortical regions (Bushnell et al., 2013). Studies have
also shown that chronic pain disrupts thalamo-cortical connections
(Cauda et al., 2014;Jensen et al., 2012). The cingulate cortex is con-
sistently activated in nociception in human and animal studies and has
been shown to be responsible for the transition from acute to chronic
pain. It has been regarded as a central hub in the pain matrix and is
highly connected to most other brain areas involved in the processing of

pain (Nevian, 2017). The cingulate cortex has 4 sub-regions and each or
them is response for different aspects of pain processing and modula-
tion. Among them, MCC is involved with the sensory processing and
response selection (Vogt, 2005;Nevian, 2017). A recent animal study by
Tan et al. showed that the MCC gates sensory hypersensitivity by acting
in a wide cortical and subcortical networks (Tan et al., 2017). They also
identified a connection from the MCC to the posterior insula that can
induce and maintain nociceptive hypersensitivity in the absence of
conditioned peripheral noxious stimulation. Thus, the MCC may act as a
hub for activating the associated networks to facilitate the transition
from acute to long-lasting pain.

Interestingly, the results of our current study show that the PC of the
subcortical modules was associated with the duration that the patient
suffered from TN. The PC of subcortical modules for patients with
longer pain duration was higher than those with shorter pain duration.
This might concur with the results of a previous study that showed that
the subcortical structures play a role in pain chronification. A recent
magnetic resonance spectroscopy study by Niddam et al. showed re-
duced N-acetyl-aspartate metabolism and altered interregional N-
acetyl-aspartate correlations in thalamus, cingulate and occipital cortex
among migraine patients, which supports the role of thalamocortical
dysfunction in migraine chronification (Niddam et al., 2018). We also
found that a lower FC between the DMN and subcortical modules was
associated with a better treatment response and the thalamus and
midcingulate cortex were the major connectors within the subcortical
module. As the thalamus and MCC both play important roles in en-
coding the emotional and motivational aspects of pain, as well as
chronification of pain by projecting the nociceptive input to other brain
regions or networks, the lower FC between the DMN and subcortical
modules may indicate a minor encoding or chronification of the chronic
nociceptive input signal, which can be eliminated more easily by RFA.

We recognize some limitations in this study. Although we only in-
cluded patients with right side TN to exclude the effect of pain later-
ization, the pain characteristics, such as pain intensity and pain dis-
tribution, were mixed in the patient group. Next, we chose VAS pain
scores as the rating scale for representing the treatment effect although
the pain behavior could also be measured with other instruments, in-
cluding the Pain Rating Scale (PRS) and Pain Behavior Checklist (PBC)
(Dirks et al., 1993). These approaches could benefit further discussion
from the diverse phenomenology of trigeminal neuralgia. Furthermore,
the experimental design did not take the placebo effect into con-
sideration and findings from MRI analysis and clinical pain score might
not only from the effect of intervention but also the patients’ subjective
feelings.

In conclusion, our results from a graph theory modularity analysis
of rs-fMRI suggest the PC of the SMN and DMN were significantly lower
in TN patients and increased after surgery, which may be due to a
decrease in the transduction of the pain signal or the inhibitive signal
from the abnormal spontaneous sensory impulse of the trigeminal
nerve. The higher communication between the DMN module and other
modules before surgery was associated with better treatment response
to RFA. The PC of the subcortical modules was associated with pain
duration. A lower connection between the DMN and subcortical mod-
ules was associated with a better treatment response and the thalamus
and midcingulate cortex were the major connectors within the sub-
cortical module. These results have important implications regarding
the global brain modular responses to chronic neuropathic pain and it
may be feasible to use the modularity analysis as part of a risk strati-
fication to predict the response of patients to RFA therapy.
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