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Abstract

Vaccination is the most effective method of disease prevention and control. Many

viruses and bacteria that once caused catastrophic pandemics (e.g., smallpox,

poliomyelitis, measles, and diphtheria) are either eradicated or effectively controlled

through routine vaccination programs. Nonetheless, vaccine manufacturing remains

incredibly challenging. Viruses exhibiting high antigenic diversity and high mutation

rates cannot be fairly contested using traditional vaccine production methods and

complexities surrounding the manufacturing processes, which impose significant

limitations. Virus‐like particles (VLPs) are recombinantly produced viral structures

that exhibit immunoprotective traits of native viruses but are noninfectious. Several

VLPs that compositionally match a given natural virus have been developed and

licensed as vaccines. Expansively, a plethora of studies now confirms that VLPs can be

designed to safely present heterologous antigens from a variety of pathogens

unrelated to the chosen carrier VLPs. Owing to this design versatility, VLPs offer

technological opportunities to modernize vaccine supply and disease response

through rational bioengineering. These opportunities are greatly enhanced with the

application of synthetic biology, the redesign and construction of novel biological

entities. This review outlines how synthetic biology is currently applied to engineer

VLP functions and manufacturing process. Current and developing technologies for

the identification of novel target‐specific antigens and their usefulness for rational

engineering of VLP functions (e.g., presentation of structurally diverse antigens,

enhanced antigen immunogenicity, and improved vaccine stability) are described.

When applied to manufacturing processes, synthetic biology approaches can also

overcome specific challenges in VLP vaccine production. Finally, we address several

challenges and benefits associated with the translation of VLP vaccine development

into the industry.
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1 | INTRODUCTION

Virus‐like particles (VLPs) are self‐assembling complexes of capsid

proteins that mimic the overall structure of their parental virus. Void

of viral genetic material, these noninfectious particles possess

biologically desirable traits that are attributed to the particulate

viral structure (Grgacic & Anderson, 2006; Pattenden, Middelberg,

Niebert, & Lipin, 2005). Of particular interest is their efficient
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recognition, cellular uptake, and processing by host immune systems.

VLP technology is a rapidly expanding field, which aims to embrace

such features to achieve specific biological outcomes. VLPs are

amenable to a broad range of modifications including encapsulation,

chemical conjugation, and genetic manipulation (Roldão, Mellado,

Castilho, Carrondo, & Alves, 2010). This versatility of VLPs, combined

with the natural ability to package and deliver nucleic acids has

prompted their use as biodegradable delivery agents for gene

therapy (Takamura et al., 2004; Tegerstedt, Franzen, et al., 2005).

The successful packaging of peptides, proteins, and synthetic drugs

into VLPs has revealed a prospective role in drug delivery

(Kaczmarczyk, Sitaraman, Young, Hughes, & Chatterjee, 2011;

Zdanowicz & Chroboczek, 2016). In the diagnostic field, VLPs

containing gadolinium have shown potential as molecular imaging

contrasting agents (Schwarz & Douglas, 2015) while the application

of VLPs as research surrogates to study the clearance of live viruses

has also been demonstrated (Johnson, Brorson, Frey, Dhar, & Cetlin,

2017; Loisy et al., 2005). At the forefront of VLP technology impact,

however, is vaccinology.

Licensed prophylactic VLP vaccines, such as Gardasil®, Cervarix®,

Hecolin®, and Porcilis PCV®, demonstrate that VLP vaccines are safe

and effective. VLP technology can overcome numerous drawbacks

associated with traditional methods of vaccine production; specifi-

cally, the infectious nature associated with live and inactivated

vaccines and the lengthy production time. Synthetic biology, the

redesign and construction of novel artificial biological organisms,

pathways or processes, is revolutionizing vaccine production. When

applied to VLPs, synthetic biology allows for more precise and

predictable control over the composition and assembly of the viral

capsid. This, in turn, widens the range of unrelated antigenic modules

that can be incorporated. Consequently, vaccines can be engineered

for prophylactic or therapeutic means (Jennings & Bachmann, 2009)

to match specific viral strains (Schwartzman et al., 2015) or to

generate multivalent (Pushko et al., 2011) or broadly cross‐
protective (Ben‐Yedidia, 2011) vaccines. Moreover, new bioproces-

sing modalities including in vitro assembly (Chuan, Fan, Lua, &

Middelberg, 2010) and cell‐free expression (Bundy, Franciszkowicz,

& Swartz, 2008), open the way to reimagined vaccine production

processes.

2 | DESIGN TOOLS FOR MODERN
VACCINES

With the ability to integrate biological data and computational

analysis, synthetic biology has significantly contributed to move

vaccine development beyond the constraints of Pasteur, assisting in

the design of novel biological systems with enhanced efficacy and

safety as well as reducing vaccine production times (Ruder, Lu, &

Collins, 2011). With today’s focus gearing towards using VLPs, not

only as vaccines of unmodified viral assemblies against parental

viruses but also as scaffolds for display of heterologous antigens (Lua

et al., 2014; Roldão et al., 2010), synthetic biology has become a

centerpiece in VLP vaccine engineering. Seconded by a multitude of

tools, such as omics technologies, structural biology, system

immunology, and bioinformatics and computational biology, one can

now screen for pathogen‐specific antigens with high immunogenic

potential and apply that information to rationally design modern VLP

vaccines (Figure 1).

2.1 | Omics technologies

Influenza is one of the best examples on how omics, more precisely

genomics, is revolutionizing vaccine design. Dedicated databases

detailing complete and accurate influenza genomic information have

been created and can be readily accessed worldwide (McHardy &

Adams, 2009). In the last decade, this vast wealth of data has been

translated into knowledge, which, in conjunction with synthetic

biology, has aided the design of VLP vaccine candidates (Prabakaran

et al., 2010; Pushko et al., 2011; Pushko et al., 2017). These novel

biological entities are undoubtedly safer with the potential to be

more broadly reactive than their previous counterparts (i.e.,

traditional, commercially available live attenuated influenza vac-

cines).

Several genomic applications aid in the identification of novel

antigens (Liao et al., 2017), namely, reverse vaccinology and

comparative and functional genomics. Reverse vaccinology combines

genomics with proteomics and bioinformatics to identify virtually all

potentially protective antigens from coding regions within the

genome (Bambini & Rappuoli, 2009; Rappuoli, 2007). Comparative

genomics is primarily used to design broadly protective vaccines as it

allows comparison of conserved and variable open reading frames

within the same species. Functional genomics allows the identifica-

tion of protein function based on reverse genetic evaluation

(mutations and knockouts) or gene expression analysis (transcrip-

tomics; Bagnoli et al., 2011; Bambini & Rappuoli, 2009; Rappuoli,

2007; Sette & Rappuoli, 2010). Although genomics per se has

contributed significantly to the design of many vaccine candidates,

such as influenza (Prabakaran et al., 2010; Pushko et al., 2011;

Pushko et al., 2017), malaria (Draper et al., 2015; Y. Wu, Narum,

Fleury, Jennings, & Yadava, 2015), and human immunodeficiency

virus (HIV; Calazans, Boggiano, & Lindsay, 2017), its full potential for

vaccine development can only be realized when integrated with

proteomics and immunomics (Bagnoli et al., 2011). Moreover, the

coordinated deployment of these omics technologies along with

miniaturized bioprocess screening in, for example, microbioreactor

and microfluidic cell culture systems can aid developability assess-

ment leading to accelerated manufacture (Bhambure, Kumar, &

Rathore, 2011; Gong & Lei, 2014; Hemmerich, Noack, Wiechert, &

Oldiges, 2018).

Immunomics specifically addresses the interface between the

host immune system and the pathogen proteome. It studies the

subset of pathogen‐derived proteins or epitopes that are recognized

by the host immune system. This information can be used to validate

antigens identified from in silico and/or in vitro approaches by

evaluating whether they are targets of clinically relevant immune
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responses (i.e., they stimulate the production of specific cytokines or

activate specific cell types; Kuleš et al., 2016). An example of

immunomics application to VLP vaccine design is GlaxoSmithKline’s

RTS,S vaccine, the most advanced malaria vaccine candidate. RTS,S is

a chimeric VLP in which a large portion of the C‐terminal of

Plasmodium falciparum‐derived circumsporozoite protein (CSP) is

displayed on a protein scaffold (hepatitis B surface antigen; Y. Wu

et al., 2015). In combination with systems biology (genomics and

proteomics), immunomics was used to highlight regions within CSP

that were immunogenic and protective in humans and, thus,

indispensable to incorporate into a chimeric VLP. From the many

candidates identified, only one proved to be successful in Phase IIa/b

efficacy trials (Draper et al., 2015; Kazmin et al., 2017).

2.2 | Structural biology

Structural information can be used to reconfigure and engineer

conserved epitopes to expose areas that exhibit high immunogenicity

or to insert multiple immunodominant epitopes within the same VLP

platform (Liljeroos, Malito, Ferlenghi, & Bottomley, 2015). These

strategies can broaden the immune response or enhance the existing

response to weak immunogenic antigens. Identifying conformational

epitopes and studying their interactions with the immune system can

provide significant information for rational antigen design (Anggraeni

et al., 2013; Mulder et al., 2012).

Encouraged by recent results from HIV‐1 VLPs (C. Zhao, Ao, &

Yao, 2016), structural biology is emerging as a powerful tool to assist

in the rational design of a modern HIV VLP vaccine. Novel protective

epitopes can now be identified in conformational epitope mapping

studies via structural biology (Liljeroos et al., 2015; Malito, Carfi, &

Bottomley, 2015). In addition, broad and potent HIV antibodies

discovered in the pool of antigen‐specific memory B cells using

structural biology, highlight novel sites of vulnerability on HIV

envelope glycoprotein epitope (J. Huang et al., 2014). When

incorporated into HIV‐1 VLPs, these antigens can be strategically

modified to insert the extended 2F5, 4E10 epitope and membrane

proximal external region (MPER) of HIV‐1 gp41 (Zhai, Zhong,

Zariffard, Spear, & Qiao, 2013) providing a better display of the

conserved CD4 binding site and capturing broadly neutralizing

antibodies (Ingale et al., 2014).

Structural biology is equally informative for VLP engineering as

the capsid proteins forming each VLP need to be correctly folded to

(a)

(b)

F IGURE 1 Design tools for VLP vaccine engineering. Multitude of tools and recent advances in synthetic biology enable screening for pathogen‐
specific antigens with high immunogenic potential and engineering of VLP function. (1) Omics technologies enable rapid identification and discovery
of novel/potential vaccine antigens. (2) Structural biology and (3) system immunology assist rational reconfiguration and engineering of epitopes/VLPs

for enhanced immunogenicity. (4) Bioinformatics and computational biology accelerate data analysis and translation into applicable knowledge. (a)
Engineering VLP function on different types of VLP. While nonenveloped VLPs are commonly engineered using genetic engineering or chemical
conjugation, enveloped VLPs rely on pseudotyping for function engineering. (b) VLPs can be engineered to offer broader immunogenicity, improved

immunogenicity, or enhanced stability. Broadly immunogenic VLPs can be obtained by displaying multiple antigenically distinct epitopes (Pushko et al.,
2011; Schwartzman et al., 2015), highly conserved epitopes (Krammer, 2015; Wiersma et al., 2015), or computationally optimized epitopes (Carter
et al., 2016) within a single VLP. Improving VLP immunogenicity can be achieved by incorporating immunomodulatory agents, such as dendritic cells
targeting antibodies into particles structure (Rosenthal et al., 2014). VLP stability can be enhanced by modulating particles formulation (Collins et al.,

2017; Lua et al., 2014). VLP: virus‐like particle [Color figure can be viewed at wileyonlinelibrary.com]
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TABLE 1 Nonenveloped virus‐like particle platforms for the display of unrelated antigens

Platforms Targets Antigens References

Bacteriophage AP205 HIV‐1 HIV‐1 gp41 epitopes Pastori et al. (2012)

Influenza M2e Tissot et al. (2008)

Malaria Circumsporozoite Janitzek et al. (2016)

Malaria Pfs25 and VAR2CSA proteins Thrane et al. (2016)

Tuberculosis Ag58A Thrane et al. (2016)

West Nile virus Domain III of E glycoprotein Spohn et al. (2010)

Bacteriophage Qβ Allergenic Allergen Der p 1 Kundig et al. (2006)
Alzheimer’s disease Aβ1–6 (amyloid peptide) Wiessner et al. (2011)
HIV‐1 CCR5 coreceptor Hunter, Smyth, Durfee, and Chackerian (2009)
Hypertension Angiotensin II Tissot et al. (2008)
Influenza Hemagglutinin (globular head) Jegerlehner et al. (2013)
Influenza M2e Bessa et al. (2008)
Nicotine dependence Nicotine Maurer et al. (2005)
Type 2 diabetes Interleukin‐1β Spohn et al. (2010)

Bovine Papillomavirus Alzheimer’s disease Amyloid β peptide Li et al. (2004)

HIV‐1 CCR5 peptide Chackerian, Lowy, and Schille (1999)

HIV‐1 V3 loop of HIV‐1 gp120 X. S. Liu et al. (2002)

HIV‐1 HIV‐1 gp41 neutralizing epitopes Zhai et al. (2013)

Human

papillomavirus (HPV)

HPV 16 L2 neutralizing epitopes Slupetzky et al. (2007)

Cowpea mosaic virus Canine parvovirus VP2 capsid protein Langeveld et al. (2001)
HIV‐1 Glycoprotein 41 peptide McLain, Porta, Lomonossoff, Durrani, and

Dimmock (1995)
Pseudomonas aeruginosa CPMV‐PAE5 peptide Brennan et al. (1999)
Staphylococcus aureus Truncated D2‐domain Rennermalm et al. (2001)

Cucumber mosaic virus Alzheimer’s disease Amyloid β peptides Vitti et al. (2010)

Hepatitis C virus HCV‐derived R9 and R10 mimotopes Nuzzaci et al., (2007)

Newcastle disease virus Neutralizing epitopes Y. Zhao and Hammond (2005)

Flock House virus Anthrax Von Willebrand A domain of ANTXR2

cellular receptor/protective

antigen

Manayani et al. (2007)

Hepatitis B and hepatitis

C virus

Epitopes of hepatitis C virus and

hepatitis B surface antigen

Chen et al. (2006)

HIV‐1 V3 loop of HIV‐1 gp120 protein Scodeller (1995)
Influenza A‐helix epitope of HA2 Schneemann et al. (2012)

Hepatitis B core Anthrax Domain 4 epitope of the protective

antigen (PA) of anthrax toxin

Bandurska et al. (2008)

Anthrax 2β2–2β3 loop of PA Yin et al. (2014)
Dengue virus type 2 Envelope domain III Arora, Tyagi, Swaminathan, and Khanna (2012);

Arora, Tyagi, Swaminathan, and Khanna (2013)
Enterovirus 71 SP55 and SP70 epitopes of

enterovirus 71

Ye et al. (2014)

Hepatitis C virus (HCV) B‐ and T‐cell epitopes of HCV Mihailova et al. (2006)
Influenza M2e De Filette et al. (2008); Fu et al. (2009)
Lyme disease OspA and variants of OspC Nassal et al. (2008), (2005)
Lyme disease tHRF, Salp15, and Iric‐1 Kolb, Wallich, and Nassal (2015)
Malaria CSP‐specific B and T cell epitopes Sällberg, Hughes, Jones, Phillips, and Milich (2002)
Tuberculosis CFP‐10 Dhanasooraj, Kumar, and Mundayoor (2013)

Human papillomavirus Human respiratory

syncytial virus

Neutralizing epitopes Murata, Lightfoote, Rose, and Walsh (2009)

Murine polyomavirus Cancer (Breast) Her2 Tegerstedt, Lindencrona, et al. (2005)
Cancer (Prostate) Prostate‐specific antigen Eriksson et al. (2011)
Group A Streptoccocus J8 peptide Middelberg et al. (2011)
Influenza M2e Wibowo, Chuan, Lua, and Middelberg (2013)
Influenza Helix 190 antigen Anggraeni et al. (2013)
Influenza Hemagglutinin (globular head) Waneesorn, Wibowo, Bingham, Middelberg, and

Lua (2016)
Rotavirus VP8 antigen Tekewe et al. (2015)

Tobacco mosaic virus Foot and mouth disease Foot and mouth disease peptides L. G. Wu et al. (2003)

Murine hepatitis Murine hepatitis coronavirus Koo et al. (1999)

(Continues)
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ensure functionality, that is, induce a protective humoral immune

response. The morphological characteristics of VLPs can be assessed

through imaging technologies, such as cryoelectron microscopy,

atomic force microscopy, and dynamic light scattering. These imaging

methods provide essential data to solve the three‐dimensional

structure of a VLP, therefore, help to identify optimal VLP insertion

sites for display of any given antigen. Many VLP platforms have been

developed so far using this structure‐based design approach. The

most commonly reported are those derived from viral structures of

hepatitis core antigen (HBcAg), murine polyomavirus (MuPyV),

human papillomavirus (HPV), and bacteriophages Qβ and AP250

(Table 1).

2.3 | Systems immunology

Systems immunology is an emerging area of research that uses a broad

and integrated, multilevel approach to study the immune system to

identify immune correlates of protection or immunogenicity signatures

(Davis, Tato, & Furman, 2017). Combined with recent technological

advances in human immunology, systems immunology can provide

guidance for rational vaccine design. Systems immunology allows the

assessment of most cell types of the immune system (including

specialized B and T white blood cells), their state, function, signaling

molecules, and encoding genes (Bird, 2017). This accumulation of data

captures a snapshot of the human immune system, providing valuable

information for the creation of human immune response models that

may later be translated into improved vaccine design (Davis et al.,

2017). A systems immunology approach was previously undertaken to

investigate the immune response to the live attenuated yellow fever

vaccine YF‐17D (Hou et al., 2017; Muyanja et al., 2014). Following

immunization, comprehensive characterization of the immune system

was performed providing insights into the vaccine’s mechanism of

action. A similar method was later applied to the malaria vaccine RTS,S,

where a systems‐level approach led to the identification of molecular

and cellular signatures associated with protection and immunogenicity

unique to this VLP‐based vaccine (Kazmin et al., 2017). Systems

immunology may also play an important role in designing vaccines

capable of stimulating parts of the immune system not addressed by

current vaccines (Davis et al., 2017). VLPs are ideal testing candidates

for systems immunology approach due to their ability to stimulate B‐
cell‐mediated immune responses, as well as CD4 proliferative responses

and cytotoxic T lymphocyte responses (Gause et al., 2017).

The correct identification of epitopes that stimulate an immune

response is crucial for the design of novel immunogens. These

epitopes are regions within the antigen that are recognized by B‐ and

T‐cell receptors (Patronov & Doytchinova, 2013). Potential B‐ and T‐
cell epitopes can be mapped using bioinformatics and computational

biology tools, however, without recent improvements in immunolo-

gical characterization methods, the identification of epitopes that

optimally stimulate the human immune response becomes challen-

ging (Rappuoli, Bottomley, D'Oro, Finco, & De Gregorio, 2016). The

ability to isolate memory B cells through high‐throughput FACS

followed by in vitro culture enables secretion of sufficient amounts of

recombinant monoclonal antibodies or antigen‐binding fragments to

allow for antigen screening in binding and functional assays (J. Huang

et al., 2013). The ultimate goal being the incorporation of specific

antigenic regions on a VLP scaffold. Thus, improving vaccine

specificity for generation of effective vaccines. An example is the

above‐mentioned novel vulnerability sites on HIV envelope glyco-

protein that is used for HIV VLP vaccine design (J. Huang et al., 2014;

Zhai et al., 2013).

2.4 | Bioinformatics and computational biology

Bioinformatics and computational biology tools have the potential to

accelerate data analysis and translate results into applicable knowl-

edge, fostering the discovery of new lead antigens by reducing the

number of empirical experiments (He & Xiang, 2013). Vaccine design

is an inherently complex and laborious process but software,

algorithms, and databases outlined below have the potential to

streamline vaccine development via identification of candidate

antigens that may otherwise have been overlooked.

Epitope mapping is essential for designing vaccines capable of

mounting a robust T‐ and B‐cell response. The discovery of such

epitopes relies upon immunological prediction software, such as

netMHC, SYFPEITHI, EpiJen, or Epivax, as described in other studies

(Soria‐Guerra, Nieto‐Gomez, Govea‐Alonso, & Rosales‐Mendoza,

2015). For T‐cell epitope prediction, as are many software available

that can reach up to 95% of positive predictive values (Soria‐Guerra
et al., 2015). In addition, there are interface platforms, such as

MHCBench (Salomon & Flower, 2006) allowing direct evaluation of

various Major Histocompatibility Complex (MHC)‐binding peptide

prediction algorithms. Interface platforms prove valuable to users

unsure of which prediction model best suits their needs. For B‐cell
epitope prediction, available software is supported by algorithms that

can reach up to 25% for discontinuous B‐cell antigens (e.g., COBEpro

[Sweredoski & Baldi, 2009], BCPRed and FBCPred [El‐Manzalawy,

Dobbs, & Honavar, 2008]) or up to 95% for continuous B‐cell
antigens (e.g., EPMeta [Liang et al., 2010]) of positive predictive

values.

TABLE 1 (Continued)

Platforms Targets Antigens References

neutralizing epitope

Poliovirus Poliovirus type 3 epitope Haynes et al. (1986)

Pseudomonas aeruginosa Peptide of outer membrane protein F Staczek, Bendahmane, Gilleland, Beachy, and

Gilleland (2000)

Rabbit papillomavirus L2 epitopes Palmer et al. (2006)
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Bioinformatics and computational biology can also assist in the

discovery of conserved epitopes through sequence variability analysis.

This is particularly relevant when dealing with pathogens capable of

evading the immune system due to their high mutation rates. The

Protein Variability Server (PVS) is a valuable tool for the identification

of such conserved epitopes, which can facilitate the development of

broadly protective vaccines (Garcia‐Boronat, Diez‐Rivero, Reinherz, &
Reche, 2008). In this study, PVS was used to identify a conserved

fragment in the ectodomain of HIV‐1‐gp41. Several databases retain

classified and well‐curated data from experimentally verified vaccines

and/or vaccine components and, thus, are useful tools for vaccine

design. The Immune Epitope Database and Analysis Resource (Peters

et al., 2005; https://www.iedb.org) collects all published experimental

data characterizing immune epitopes and the context in which the

molecular structure is recognized as an epitope by the immune

receptors. IEDB has over 88,382 epitopes and multiple tools to

identify B‐ and T‐cell epitopes (Vita et al., 2015). The Syfpeithi

database (Schuler, Nastke, & Stevanovikc, 2007; http://www.syfpeithi.

de) has information on MHC classes I and II anchor motifs and binding

specificity. The Conformational Epitope Database offers information

about protein conformation. The AntigenDB (http://www.imtech.res.

in/raghava/antigendb/) stores sequences, structures, origins, and

epitopes of pathogen antigens (Ansari, Flower, & Raghava, 2010).

The Computationally Optimized Broadly Reactive Antigen (COBRA)

methodology was recently developed to overcome the challenges

associated with antigenic diversity in influenza subtypes (Carter et al.,

2016). This in silico approach, which uses consensus building to

generate a number of antigen candidates termed COBRA antigens,

was used to identify HA antigens that were broadly protective against

H1N1 strains. Display of these antigens on VLPs demonstrated

immunogenicity and efficacy in a murine model validating this

technology.

3 | ENGINEERING VLP FUNCTIONS

With the advent of novel technologies for screening and discovery of

immunogenic antigen targets and the advances in synthetic biology

one can now engineer VLP function and design vaccines with

increased or broader immunogenicity and/or improved stability

(cold‐chain free; Figure 1; Collins, Snaith, Cottingham, Gilbert, & Hill,

2017; Lua et al., 2014). VLPs can be engineered to enhance and tune

the immune response to vaccination. Using synthetic biology tools,

one can harbor immunogens inside or outside the VLP that upon

vaccination are capable of triggering an early innate immune

response that enhances vaccine effectiveness by increasing vaccine’s

uptake (Rosenthal, Chen, Baker, Putnam, & DeLisa, 2014). These

immunomodulatory agents (e.g., pattern recognition receptor ligands,

dendritic cells targeting antibodies, and endoplasmic reticulum

targeting peptides) boost the immune response mainly through

expansion of specific CD8+ T cells and the production of cytokines

(without any long‐lasting effects).

VLPs are divided into two main groups, enveloped and

nonenveloped. Enveloped VLPs are self‐assembling capsids, which

acquire a lipid layer when budding from their host cells. This layer

is absent in nonenveloped VLPs (Mateu, 2011). Insertion of

heterologous antigens (otherwise known as modularization) into

nonenveloped VLPs is mainly achieved through genetic fusion or

chemical conjugation (Peacey, Wilson, Baird, & Ward, 2007). The

size of the insert has implications for VLP assembly and correct

presentation of the antigen. Small peptide epitopes are easily

inserted into VLP structures without affecting VLP assembly,

which can often occur when modularizing whole or large protein

domains. Genetic fusion is the most popular method despite being

time‐consuming and error‐prone (Mateu, 2011). Chemical con-

jugation supports the insertion of large antigens in preformed

VLPs and these modifications are performed on naturally

occurring conjugation sites using chemical crosslinkers or enzymes

(Patel & Swartz, 2011; Tang, Xuan, Ye, Huang, & Qian, 2016). The

downside of chemical conjugation is the incurred cost as it

requires the production of both the VLP and the epitope(s) as

well as conducting the chemical conjugation (Chackerian, 2007;

Smith, Hawes, & Bundy, 2013). Recently developed technologies

have started to address the cost and technological challenges. An

example is the “Plug and Display” system, a technology based on

two proteins, “the tag” and “the catcher,” which react irreversibly

when in close proximity of each other. When “the catcher” is fused

to a VLP and “the Tag” is fused with a vaccine target, these form a

two‐component VLP vaccine ready to use (Brune et al., 2016).

Examples of nonenveloped VLPs used to display foreign antigens

are HBcAg (Chu et al., 2016), HPV L1 protein (Slupetzky et al.,

2001), and Qβ (O’Rourke, Peabody, & Chackerian, 2015).

Enveloped VLPs can present heterologous membrane proteins

(i.e., glycoproteins) in their native configuration on top of a self‐
assembling capsid protein(s) without the need to engineer both

epitope and capsid structures in a process called pseudotyping (Chua

et al., 2013; Kirchmeier et al., 2014). With pseudotyping, one can

alter the VLP stability or even its tropism (Cronin, Zhang, & Reiser,

2005; K. Palomares et al., 2013). In addition, transmembrane

domains within foreign viral envelope proteins can be replaced with

transmembrane domains of specific viruses (e.g., vesicular stomatitis

virus) to improve pseudotyping efficiency and immunogenicity

(Kirchmeier et al., 2014). Enveloped VLPs, such as retro‐ and lenti‐
VLPs, have shown promise as vaccines candidates against diseases,

such as Influenza, Malaria, or Dengue virus (Chua et al., 2013;

Pitoiset, Vazquez, & Bellier, 2015).

The engineering of VLP has long been a complex process and

often unsuccessful, as the insertion of small peptides can disrupt the

VLP structure. The field has evolved and now VLP chimeras are used

in both fundamental and applied research (Mateu, 2011; Murata

et al., 2009). A successful example of the insertion of large peptides is

the VLP derived from flock house virus that was engineered to carry

a receptor domain and could be used as an anthrax antitoxin as well

as a vaccine (Manayani et al., 2007).
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Circulating viruses that exhibit high antigenic variability and high

mutation rates, such as influenza, pose substantial challenges for

current vaccination strategies (Wibowo et al., 2014). Novel strategies

are, therefore, under development to create broadly cross‐protective
vaccines. Highly conserved antigens have been identified between

divergent influenza viruses. These broadly reactive antigens, which

are located within the membrane proximal stalk domain of the

hemagglutinin protein have been inserted into VLPs and demonstrate

success as vaccines candidates (Ben‐Yedidia, 2011; Krammer, 2015;

Wiersma, Rimmelzwaan, & de Vries, 2015). Broad protection is also

possible through the simultaneous display of multiple, antigenically

distinct (Prabakaran et al., 2010; Pushko et al., 2011; Schwartzman

et al., 2015), or chimeric (Carter et al., 2016) HA antigens from

different influenza subtypes within the same VLP.

4 | VLP ‐BASED PLATFORM TECHNOLOGY

The engineering of viral structural proteins to display heterologous

antigens presents an opportunity to manufacture vaccines against

unrelated viruses, as well as pathogens from other sources, that is,

bacteria and parasitic protozoans. This versatile nature, coupled with

the suite of VLPs amenable to modularization, makes VLPs ideal

candidates for the development of vaccine platforms. Noninfectious,

generic VLP platforms offer the potential for streamlined biopro-

cesses, parallel infrastructure, predictable biosafety, and regulatory

practices (Charlton Hume & Lua, 2017), which, in turn, would

significantly reduce vaccine production times. Given the lack of

preparedness during recent global outbreaks of influenza A (H1N1)

(Fineberg, 2014), Zika (Boeuf, Drummer, Richards, Scoullar, &

Beeson, 2016), and Ebola virus (Coltart, Lindsey, Ghinai, Johnson, &

Heymann, 2017), as well as Middle East Respiratory Syndrome

(Okba, Raj, & Haagmans, 2017), VLP platform technologies are

pertinent to address the rapid spread of emergent viruses.

4.1 | Platform capabilities

Several viral structural proteins and bacteriophages are currently

under development as vaccine platforms to target a variety of

pathogens (Tables 1,2). Synthetic biology approaches have widened

the scope of potential antigens for modularization and show that

platforms can be modified to overcome specific challenges associated

with VLP vaccine manufacturing (Figure 2). Nonenveloped VLPs are

structurally less complex than their enveloped counterparts and can

be produced in prokaryotic and lower order eukaryotic systems

making them easily scalable, cost‐effective, and rapid to manufacture.

The presence of a lipid bilayer in enveloped VLPs necessitates the

use of eukaryotic hosts for expression, which increases the overall

production time and cost. Nonetheless, unlike nonenveloped VLPs,

enveloped VLPs permit presentation of antigenic modules that

require membrane‐association.
High immunogenicity is a desirable vaccine attribute that

potentially translates to protectivity against target infections. To

enhance immunogenicity, modularized antigens must be strategically

inserted to maximize their presentation to the immune system.

Modularization of peptides to the N‐ or C‐termini of viral proteins

has been previously reported (De Filette et al., 2008; Haynes et al.,

1986). However, low surface expression or the inability of peptides

to adopt native conformation can result in weak immunogenicity at

these insertion sites (Schödel et al., 1992). Platforms based upon

HBcAg, papillomavirus (bovine and human), Flock House virus (FHV),

and others, are thus engineered to take advantage of surface‐
exposed loops that demonstrate enhanced immunogenicity (Murata

et al., 2009; Slupetzky et al., 2007; Ye et al., 2014). Peptides inserted

into exposed loops protrude from the surface of VLPs making them

more accessible to the immune system. Short peptides displaying

relatively simple structures pose little problem for modularization

within exposed loops, yet those with more complex structures

require further platform engineering (Anggraeni et al., 2013).

Incorporation of epitope scaffolds into exposed loops of VLPs

maintain the structural properties of complex peptides as shown

with the presentation of a 20aa A‐helix of the influenza HA2 chain on

the FHV platform (Schneemann et al., 2012). This strategy, however,

requires detailed structural knowledge of the chosen peptide and the

identification of a suitable scaffold fragment. Antigens inserted into

the immunodominant loops of the HBcAg platform require closely

juxtaposed N‐ and C‐termini to maintain VLP integrity (Walker et al.,

2011). This imposes considerable limitations upon antigen choice. To

support the modularization of antigens that possess an extended

structure, a SplitCore system has thus been devised (Walker et al.,

2011). Dividing the HBcAg core protein within the immunodominant

c/e1 loop yields two fragments, which are able to form VLPs when

coexpressed. Fusion of antigen to the c/e1 termini of either fragment

before coexpression enables modularization of antigens that may

otherwise have been structurally incompatible.

Display of whole protein domains on the surface of VLPs allows

presentation of multiple antigenic epitopes and increases the like-

lihood that epitopes will adopt their native conformation. Their large

size, however, can cause steric hindrance resulting in compromised

VLP assembly (Lua, Fan, Chang, Connors, & Middelberg, 2015). As

such, several strategies have been developed to specifically modularize

large antigens. Long, flexible glycine‐rich linkers were engineered to

flank the antigen in the c/e1 loop of the HBcAg platform, allowing

spatial separation and enabling proteins of up to 238aa to be inserted

(Kratz, Bottcher, & Nassal, 1999). Though effective, optimal linker

length for different antigens needs to be empirically determined. Steric

hindrance can also be addressed in some cases by reducing the antigen

content on the surface of the VLP. For example, Peyret et al. (2015)

engineered a single polypeptide composed of an unmodified HBcAg

fused to a chimeric HBcAg. A dual expression construct was also

devised to coexpress unmodified murine polyomavirus (MuPyV) VP1,

with antigen‐modularized VP1 displaying an 18 kDa rotavirus antigen

(Lua et al., 2015; Tekewe, Fan, Tan, Middelberg, & Lua, 2017).

Although such methods can lead to successful VLP assembly, it is

possible that increasing the antigen mass, whereas reducing the

antigen number may be reflected in lower immunogenicity, as is seen
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with the synthetically derived RTS,S malaria vaccine (Pitoiset et al.,

2015). Nevertheless, this trade‐off is inevitable as the mass of the

antigen increases relative to the carrier, necessitating an under-

standing of the optimization domain.

Display of large antigens has been reported using novel platforms

based upon the HPV 16 L1 protein and the Acinetobacter phage,

AP205 (Thrane et al., 2015; Thrane et al., 2016; Brune et al., 2016).

The AviTag and SpyTag/SpyCatcher platforms allow the conjugation

of antigens post VLP assembly through biotin‐streptavidin reactions

(AviTag) or spontaneous formation of an irreversible isopeptide bond

(SpyTag/SpyCatcher). With linkers already predefined, platforms

remain constant permitting high throughput screening of vaccine

candidates. In addition, independent production of the antigen in a

different expression system is possible and of particular interest, if

posttranslational modifications are critical for immunogenicity,

provided these do not sterically inhibit attachment.

Encapsulation of host‐cell proteins and nucleic acid during cell‐
based VLP assembly can alter immunogenicity and contribute

significantly to the batch‐to‐batch variation of vaccine preparations.

Specific limitations regarding host contaminants are clearly stipu-

lated in licensing regulations. Host contaminants can be removed by

VLP disassembly and ex vivo reassembly, as necessitated for licensing

of HPV L1 VLPs (McCarthy, White, Palmer‐Hill, Koenig, & Suzich,

1998). Unfavorably, this complicates downstream processing and

adds to manufacturing costs. Synthetic modification of the HPV L1

and MuPyV VP1 proteins has led to the development of capsomere

platforms (Middelberg et al., 2011; Schadlich et al., 2009). Removal of

the carboxyl termini from each protein yields capsomeres incapable

of forming VLPs in vivo. MuPyV capsomeres display increased

stability, although less immunogenic than VLPs when administered

with adjuvant they are just as effective (Middelberg et al., 2011).

Furthermore, a quantitative process study reported that when

produced in E. coli, the MuPyV capsomere platform is capable of

producing 320 million vaccine doses in 2.3 days at low cost

highlighting its suitability as a rapid response and low‐cost vaccine

platform (Chuan, Wibowo, Lua, & Middelberg, 2014).

The safe and robust influenza M1 platform further illustrates the

aforementioned, broadly immunoprotective capabilities of VLP plat-

forms. Multiple subtypes of HA antigens have been displayed on M1‐
VLPs either individually (Schwartzman et al., 2015) or simultaneously

(Pushko et al., 2011; Sequeira et al., 2017; Tretyakova, Pearce,

Florese, Tumpey, & Pushko, 2013). M1‐VLP based vaccines afford

protection against virus challenge in multiple species (Liu, Massare,

et al., 2015; Pyo et al., 2012) and have been the subject of recent

influenza phases I and II clinical trials (NCT01897701 and

NCT02078674). The vast majority of studies producing M1‐VLPs
utilize either mammalian cell lines (transient or stable expression) or

insect cell lines (mainly transient expression using the baculovirus

expression system, IC‐BEVS). Synthetic biology has recently been

applied to the IC‐BEVS platform to overcome process‐related
drawbacks. When produced in IC‐BEVS, VLPs and baculovirus are

not easily separated owing to current limitations in purification and

analytical techniques. A recently developed biorthogonal labeling

strategy enables distinction between baculovirus and HA containing

M1‐VLPs. Thus, allowing greater control over vaccine contaminants

(Carvalho et al., 2016). This system involves fluorescent labeling of an

azide‐tagged noncanonical amino acid, which is incorporated into the

HA protein within the enveloped VLP. Combinatorial analysis using

size exclusion chromatography (SEC), confocal microscopy, and flow

cytometry demonstrated the possibility of obtaining VLPs indepen-

dently of baculovirus. At present, this synthetic modification holds

promise as an analytical tool at the laboratory level. However, given

the use of fluorescent reagents and their cost, further development is

required to address practicality at the industrial scale.

TABLE 2 Enveloped virus‐like particle platforms for pseudotyping

Platforms Targets Antigens References

BIV Gag Influenza Hemagglutinin (HA) (subtypes) and

neuraminidase (NA)

Pushko et al. (2017); Tretyakova

et al. (2016)

HBsAg Dengue virus Envelope domain III Harahap‐Carrillo, Ceballos‐Olvera, and

Valle (2015)
Malaria Circumsporozoite protein Stoute et al. (1997)

HIV1‐Gag Dengue virus Envelope domain III Chua et al. (2013)

West Nile virus Glycoprotein E

Influenza HA and NA Carter et al. (2016)

Influenza M1 Influenza HA subtypes Schwartzman et al. (2015)
Influenza M2 Song et al. (2011)
Influenza NA Ben‐Yedidia (2011); Wiersma

et al. (2015)
Respiratory syncytial virus RSV A2 fusion Kim et al. (2015)

Murine leukemia virus Gag Cancer Melanoma antigens Kurg et al. (2016)

Human cytomegalovirus Glycoprotein B Kirchmeier et al. (2014)

Rift Valley fever virus Glycoproteins GN, GC, and nucleoprotein N Mandell et al. (2010)

Influenza HA and NA Haynes et al. (1986)
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5 | CONSIDERATIONS FOR VLP
PRODUCTION

The choice of expression host and culture parameters can greatly

influence expression yield (Kushnir, Streatfield, & Yusibov, 2012; Lua

et al., 2014; Roldão et al., 2010; Vicente, Roldão, Peixoto, Carrondo, &

Alves, 2011). E. coli is far superior to other expression systems in terms

of cost, yield, and speed making it a popular choice for the production of

single capsid protein nonenveloped VLPs (X. Huang, Wang, Zhang, Xia,

& Zhao, 2017). The inability of E. coli to perform posttranslational

modifications means that complexity is minimized. In cases where

posttranslational complex modification is required, IC‐BEVS is used to

manufacture licensed VLP vaccines, such as Cervarix® and Porcilis

PCV®, yet vaccine costs are high, owing partly to low production yield.

Synthetic engineering of baculovirus vectors using combinations of

transcriptional or translational elements can increase yield in this

system (Gómez‐Sebastián, López‐Vidal, & Escribano, 2014; Liu, Zhang,

et al., 2015). Similarly, a synthetically designed expression cassette,

containing rearranged genetic regulatory elements, transcription factors

IE1 and IE0 and a transcription enhancer sequence linked to differential

promoters, increased both expression and cell viability of porcine

circovirus VLPs and rabbit hemorrhagic disease VLPs in IC‐BEVS
(López‐Vidal et al., 2015).

Maintaining VLP integrity is another key consideration. In multi-

protein capsids, specific protein ratios are required to prevent aggrega-

tion of unassembled VLPs (L. A. Palomares & Ramirez, 2009; Roldão et al.,

2012). Protein stoichiometry can be controlled in IC‐BEVS and

mammalian expression systems through manipulating multiplicity of

infection, transfection ratios, or thermodynamics (Arevalo, Wong, & Ross,

2016; L. A. Palomares & Ramirez, 2009; Roldão et al., 2012) though it

involves increased process cost. Different strength promoters can also be

synthetically integrated into multicistronic vectors resulting in differential

expression of individual proteins (Jere, O’Neill, Potgieter, & van Dijk,

2014). However, given that optimal ratios vary depending on the specific

VLP, individual optimization is required. To surpass the drawbacks of

traditional coinfection strategies and/or larger, unstable viral vectors, a

modular expression system in which the number of genes to be

expressed is rationally distributed between a recombinant viral construct

(a)

(b)

F IGURE 2 Application of synthetic biology to VLP vaccine platforms. (1) Enhanced immunogenicity of peptides is achieved through their
insertion into exposed loops of viral capsid proteins (Murata et al., 2009; Slupetzky et al., 2007; Ye et al., 2014). (2) The structural properties of

complex peptides are maintained through the incorporation of epitope scaffolds into exposed loops (Schneemann et al., 2012). (3) Large
antigens are modularized onto VLP vaccine platforms using long flexible linkers to maintain structural separation between the viral capsid
protein and the antigen (Kratz et al., 1999); or onto preformed VLPs using plug and play technologies, such as SpyCatcher/SpyTag (Brune et al.,
2016) and AviTag (Thrane et al., 2015). (4) Dual expression of modified and unmodified viral capsid proteins reduces steric hindrance and

permits VLP assembly (Tekewe et al., 2017). (5) The SplitCore system permits modularization of antigens with an extended structure through
the coexpression of modified and unmodified HBcAg core fragments (Walker, Skamel, and Nassal, 2011). (a) Synthetic production of
capsomeres minimizes host cell contaminants reducing required bioprocessing steps (Chuan et al., 2010). (b) Synthetic engineering of

baculovirus vectors can increase VLP expression yield (Gómez‐Sebastián et al., 2014; Y. K. Liu et al., 2015; Y. V. Liu et al., 2015). VLP: virus‐like
particle [Color figure can be viewed at wileyonlinelibrary.com]
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and a stable cell line can be adopted. Such a strategy has proven already

to be successful for the production of multivalent influenza VLPs using an

insect High Five cell‐based platform (Sequeira et al., 2017).

Vaccine production scale, cost, and purity vary depending on VLP

purification processes. Centrifugation, depth, and tangential flow

filtration, used for initial clarification and concentration steps, are

easily scaled. At the industrial level, chromatographic methods are

used to remove host cell and DNA impurities as density gradients

and ultracentrifugation are not easily scalable. Anion exchange and

SEC are time‐consuming and costly, highlighting the need for more

efficient and cost‐effective methods. Nonchromatographic strategies

based upon aqueous two‐phase systems (ATPS), a process presently

used for enzyme production at the industrial level, are being

developed for VLP purification. High yields of rotavirus VLPs have

been purified from insect cell supernatant using ATPS, although

purity was relatively poor (Benavides et al., 2006). More recently,

single and multistep ATPS were used to purify human B19

parvovirus‐like particles from insect cell lysates (Effio et al., 2015).

Purity levels were greater than 90%, yet this appeared to be at the

expense of yield. Monolith technology presents a rapid and scalable

method that offers distinct advantages over the classical packed‐bed
chromatography (Vicente et al., 2011). HBsAg VLPs from yeast

homogenate was effectively purified using a hydroxyl derivatized

monolith (Burden, Jin, Podgornik, & Bracewell, 2012) and when

compared to density gradient centrifugation, an anion‐exchange
monolith yielded 220‐fold more HIV‐1 gag VLPs from Chinese

hamster ovary (CHO) cell supernatant (Steppert et al., 2016).

Sulfated cellulose membrane absorbers offer significant improve-

ments over conventional ion exchangers membrane absorbers

(Carvalho, Fortuna, et al., 2017). As they are easily scaled and

reduce the number of required processing steps they may qualify as a

generic purification platform for VLP‐based vaccines. These technol-

ogies hold promise for large‐scale VLP purification, warranting

further investigation.

VLP characterization is a critical step in analyzing VLP stability

and integrity. Additional information can be obtained regarding host‐
and product‐derived impurities, both of which have significant

impacts on vaccine efficacy and biosafety. Robust analytical tools

are used in tandem to provide comprehensive characterization data.

Traditional methods, such as western blot analysis, SEC, and

ultracentrifugation are time‐consuming. Others, such as transmission

electron microscopy demand high investment costs, extensive

preparation work, and specific expertize. Methods allowing swift

analysis are currently under development. Tekewe et al. (2015)

developed a high throughput method based upon dynamic light

scattering technology that permits rapid analysis of capsomere

stability based on their hydrodynamic radius. A size exclusion

ultrahigh performance liquid chromatography method was also

developed in which VLP samples were analyzed in 3.1min using an

interlaced injection technique, allowing accurate quantitation of VLP

aggregates (Effio, Oelmeier, & Hubbuch, 2016). More recently, a

universal label‐free analytical tool for influenza VLPs quantification

based on biolayer interferometry technology applied on an octet

platform was developed (Carvalho, Moleirinho, et al., 2017). Overall,

these analytical methods support the rapid characterization of large

sample sets aiding more efficient vaccine development.

6 | VLP VACCINE TRANSLATION

From R&D to licensing, new vaccines can take up to two decades to

come to fruition and are estimated to cost from USD 500 million to

over 1 billion (S. A. Plotkin, Mahmoud, & Farrar, 2015). VLP vaccines

have been under development for >30 years (Lua et al., 2014). Today

there are six commercially licensed VLP vaccines and over 110 VLP

vaccine trials (completed and current) documented at www.

clinicaltrials.gov. Over 50% of these trials are designed to assess

VLP vaccine candidates against various cancers (where Merck Sharp

& Dohme Corp. and GlaxoSmithKline plc. are the leading sponsors)

and over 20% against influenza (where Novavax, Inc. and Medicago

Inc. dominate the trials). VBI Vaccines Inc. and Takeda Pharmaceu-

tical Co. Ltd. are currently conducting trials for vaccines against

cytomegalovirus and norovirus, respectively. India‐based manufac-

turers, CPL Biologicals Pvt. Ltd. have developed Cadiflu‐S, the world’s

first VLP influenza vaccine to successfully complete phase 3 trials

(http://cadilapharma.com). These multistage clinical trials assess

safety and efficacy and determine the suitability of vaccine

candidates for licensing approval. Successful translation of vaccines,

however, depends upon viable vaccine manufacturing processes to

ensure reliable vaccine supply and to minimize production costs.

VLP vaccine platforms provide opportunities to overcome several

limitations of traditional vaccine manufacturing. Substantial variation

between antigen characteristics of traditional vaccines and their

infectious nature adds significantly to production cost as they demand

specialized production facilities and tailored manufacturing processes

(S. Plotkin, Robinson, Cunningham, Iqbal, & Larsen, 2017). The

standardized production of noninfectious, generic vaccine platforms

(used to display various antigens) would reduce process variation (i.e.,

platform remains constant) and provide grounds to establish multi-

product facilities. Streamlining of upstream and downstream processes

is likely to increase efficiency, reduce laboratory waste, and permit cost

savings through bulk buying of equipment and reagents (Konstantinov

& Cooney, 2015). Predictable bioprocesses may allow the standardiza-

tion of facility infrastructure and the use of single‐use technologies,

already in use for some VLP vaccines (Roldão et al., 2010). Disposable

technologies offer several advantages over traditional stainless steel

equipment including lower initial investment and operating costs,

elimination of cross‐contamination, and flexibility in terms of scale

(Lopes, 2015; Shukla & Gottschalk, 2013). Combining disposable

technologies with VLP platforms offer advantages on multiple levels

and would facilitate VLP translation into the industry.

6.1 | Regulation and economics

The increased cost and regulatory uncertainty associated with produ-

cing new vaccines have long been challenges for vaccine manufacturers
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(Ulmer, Valley, & Rappuoli, 2006). The intricacies of vaccine

manufacturing demand a substantial amount of expertize and

contribute significantly to cost (S. Plotkin et al., 2017). Expenses

associated with vaccine R&D, testing and manufacturing as well as a

poor profit margin compared with current drug markets, have led to a

dramatic fall in funding from profit‐driven pharmaceutical companies

(Offit, 2005). However, this decline is thought to be premature. As

demonstrated throughout this review, VLP technologies are advancing

rapidly with a strong focus on developing platform capabilities and

improving VLP production yields to enable rapid production of safer and

cheaper vaccines, particularly when combined with single‐use biopro-

cessing systems. This progress is set to continue with financial

investment provided from “not‐for‐profit,” sources, such as national

governments, international organizations, and philanthropic bodies. In

particular, Gavi, the vaccine Alliance (Balaji, 2004) and the Bill &

Melinda Gates Foundation (www.gatesfoundation.org) are motivated to

deliver affordable vaccines to third world countries that are the world’s

biggest vaccine market. To ensure vaccine purity, safety, efficacy, and

stability, regulatory authorities govern every stage of vaccine manu-

facturing from raw materials and production processes to clinical trials

and beyond. This includes the assessment and certification of safe and

viable manufacturing processes (S. Plotkin et al., 2017). Meeting

regulatory requirements can be a complicated process, particularly

when manufacturing vaccines for overseas markets or utilizing newly

developed bioprocesses. By streamlining upstream and downstream

processes and utilizing a generic VLP base, VLP platform technology is

expected to reduce the regulatory load of individual vaccines given that

regulations for the base and its purification will become well

characterized. VLP platforms may even fast track vaccine delivery in

response to pandemic circumstances.

7 | FUTURE PERSPECTIVE/CONCLUDING
REMARKS

Vaccinology is experiencing an impressive technological revolution,

enabling to move vaccines development beyond the rules of Pasteur

(empirical approach), using data‐rich disciplines, such as systems

biology, immunology, or computational biology to assist rational

vaccines design (modern approach). Indeed, the last decade has

witnessed a trend toward the use of alternative vaccine designs to

attenuated pathogens, having VLPs emerged as a powerful and

versatile platform for their production. Today, VLPs are being used

not only as vaccines of unmodified viral assemblies against parental

viruses but also as scaffolds for displaying heterologous antigens. In

addition, tremendous investments have been made to develop new

technologies capable of (a) deciphering pathogen biology and vaccine

mechanistic responses, and (b) storing and curating extracted data

into biological references databases. Machine learning algorithms can

then use this information for epitope prediction and structure‐based
modular design. Complemented with synthetic biology, this informa-

tion will provide the basis for (a) engineering VLP functions and (a)

developing generic VLP platforms offering not only the potential for

streamlined bioprocesses, parallel infrastructure, and predictable

biosafety but also the ability to manufacture vaccines against

unrelated viruses or pathogens from other sources (i.e., bacteria

and parasitic protozoans). Although unable to deliver any marketable

product to date, these technologies have massive potential to

provide, in near future, solutions against untargeted infectious

agents (e.g., antibiotic‐resistant bacteria, HIV, malaria, or tubercu-

losis), and most importantly to reduce vaccine development times

and manufacturing cost associated with current vaccine platforms.
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