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A macrophage is an important component of innate immunity which can be activated by infection. A series of inflammatory
cytokines are produced and released to eliminate pathogens. CpG DNA is an immune stimulator recognized by TLR9,
subsequently inducing inflammatory responses in macrophages. Long noncoding RNA (lncRNA) is a novel class of noncoding
RNA, whose length is more than 200 nt, but without protein-coding capacity. lncRNAs are involved in many physiological and
pathological processes, including inflammatory responses. In our study, a lncRNA microarray assay was performed to identify
differentially expressed lncRNAs and mRNAs in RAW264.7 cells at different time points following CpG ODN stimulation. The
results revealed that expression levels of 734 lncRNAs and 734 mRNAs were altered at all time points. Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathway analyses were performed to predict the functions of
dysregulated genes. Coexpression networks of lncRNA-mRNA were constructed based on the correlation analysis between
differentially expressed lncRNAs and 10 selected upregulated mRNAs, which have been reported to be involved in CpG DNA-
induced inflammatory responses. In addition, we selected 8 dysregulated lncRNAs for further validation by quantitative real-
time PCR. The present study provided a systematic perspective on the potential functions of lncRNAs in CpG ODN-induced
macrophage activation.

1. Introduction

Innate immunity is the first line of host defense against the
pathogen threats [1]. A macrophage is an important compo-
nent of innate immunity and plays a crucial role in the
inflammatory responses [2]. Recognition of microbial mole-
cules including lipopeptides, lipopolysaccharides, and DNA
by pattern recognition receptors of macrophages such as
Toll-like receptors (TLRs) will trigger the intracellular signal-
ing cascades. The process promotes the production of inflam-
matory cytokines, reactive oxygen, nitrogen species, and
antimicrobial peptides for anti-infection. The phagocytosis
of macrophages is also enhanced to remove the pathogen
[2, 3]. However, excessive inflammation in macrophages

can cause host damage and even lead to chronic inflamma-
tory diseases, such as obesity, cardiovascular disease, inflam-
matory bowel disease, and cancer [3]. Thus, it is required for
us to better understand the regulatory mechanisms that limit
the excessive inflammatory mediators in macrophages.

A great majority of the human and mouse genome is
transcribed as noncoding RNAs (ncRNAs), among which
microRNAs (miRNAs) are a well-known posttranscriptional
regulator of gene expression [4, 5]. Recently, another novel
class of ncRNA, long noncoding RNAs (lncRNAs), has also
been identified as important regulators of gene expression
[6]. lncRNAs are arbitrarily defined as having 200 or more
nucleotides to discriminate them from small noncoding
RNAs (sncRNAs). On the basis of their genomic localization
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relative to protein-coding genes, lncRNAs are further catego-
rized as intergenic, overlapping, intronic, and exonic.
lncRNAs can control gene expression at the levels of epige-
netic control, transcription, RNA processing, and translation
[6, 7]. lncRNAs play a significant role in many physiological
and pathological processes [6, 7]. In recent years, a series of
lncRNAs have been identified in inflammatory responses,
and their functions are also being clarified [8–10]. For
instance, lincRNA-Tnfaip3 can act as a coregulator of NF-
κB to modulate inflammatory gene transcription in mouse
macrophages [11]; lincRNA-Cox2 can promote late inflam-
matory gene transcription in macrophages through modulat-
ing SWI/SNF-mediated chromatin remodeling [12].

Bacterial genomic DNA contains unmethylated cytosine
followed by guanine (CpG ODN), which can be recognized
by TLR9 in macrophages [2, 3]. Studies have shown that
both bacterial CpG DNA and synthetic CpG ODN can
induce macrophage activation, with the release of proin-
flammatory cytokines, such as IL-6, IL-12, and TNF-α, the
production of NO and iNOS, and macrophage polarization
[13, 14]. The CpG ODN-induced macrophage activation is
involved with a series of inflammatory molecules and path-
ways. However, the changes of the lncRNA expression pat-
tern and their roles in CpG ODN-activated macrophages
have not been clarified.

In the present study, we employed a lncRNAmicroarray-
based profiling assay to detect changes of lncRNAs at differ-
ent stages of CpG ODN-induced macrophage activation.
Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analyses were performed
based on the function of mRNAs. Coexpression and network
potential targeting relationship were constructed according
to the microarray results and bioinformatics predictions.
Our findings revealed the involvement of lncRNAs in the
process of CpG ODN-induced macrophage activation.

2. Materials and Methods

2.1. Cell Culture and Reagents. The mouse macrophage cell
line RAW264.7 was cultured in Dulbecco’s modified Eagles’
medium (DMEM) (Gibco Laboratories, Grand Island, NY,
USA) supplemented with 10% fetal bovine serum (FBS)
(HyClone, Logan, UT, USA), at 37°C in a humidified atmo-
sphere of 5% CO2. The synthetic active CpG ODN (CpG
ODN 1826, 5′TCCATGACGTTCCTGACGTT 3′) was pur-
chased from InvivoGen (San Diego, CA, USA). The
RAW264.7 cells were treated with 1μM ODN1826. After
4 h, 8 h, or 16 h, the cells were harvested for RNA isolation.

2.2. RNA Extraction and q-PCR. Total RNA from the macro-
phage cells was extracted by using TRIzol reagents (Thermo
Fisher, Waltham, MA, USA), and cDNA was synthesized
from 1μg of total RNA by using a reverse reaction kit,
according to the manufacturer’s instructions (Promega,
Madison,WI, USA). The quantitative real-time PCR analyses
for TNF-α, IL-6, and IL-1β mRNA expression or lncRNA
expression were performed in a Roche qRT-PCR detection
system (Roche, Basel, Switzerland). β-Actin was used as an
internal control. The mRNA or lncRNA expression level

was calculated using the 2−ΔΔCt method. We compared all
other groups with the average ΔCt value of the control group
in one PCR experiment and then used 2−ΔΔCt for data analy-
sis. All the results are the average ratios of three different
independent experiments. Then, the same group in the dif-
ferent experiment was averaged and further calculated. The
primer sequences for qRT-PCR are listed in Table 1.

2.3. Measurement of Cytokine Levels by ELISA. The cell-free
supernatants were harvested at indicated times. TNF-α, IL-
1β, and IL-6 levels in the supernatants were assessed by
ELISA according to the manufacturer’s protocol (Cusabio,
Wuhan, China).

2.4. NO Quantification. The production of NO was deter-
mined by detecting the quantity of nitrite in the supernatant
from the cells cultured by the Griess method, using a stan-
dard curve constructed with nitrite ranging from 5 to 40μM.

2.5. Western Blot. The cells were lysed by 1 × SDS lysis buffer
containing protease inhibitors. The proteins were subjected
to electrophoresis on 8% SDS/PAGE gels and then trans-
ferred into the polyvinylidene difluoride (PVDF) membrane.
Subsequently, they were determined with antibodies against
iNOS (Cell Signaling Technology, Boston, MA, USA) and
GAPDH (Millipore, Bedford, MA, USA).

2.6. lncRNA Microarray Analysis. Total RNA was extracted
from RAW264.7 cells stimulated with ODN1826 (1μM) at
different time points according to the study design. The
RNA quantity and quality were assessed by NanoDrop.
And RNA integrity was detected by capillary electrophoresis
using an RNA 6000 Nano Lab-on-a-Chip kit and the Bioana-
lyzer 2100. The GPL22782-Agilent-074512 Mouse LncRNA
Microarray V4.0 was adopted for the detection of lncRNA
and mRNA expression, and 40,825 lncRNAs and 30,680
mRNAs were detected. The lncRNA microarray was con-
ducted by CapitalBio Technology (Beijing, China).

2.7. Differential lncRNA and mRNA Screening and Clustering
Analysis. The raw data of each array result was normalized
and then subjected to GeneSpring software (v. 13.0, Agilent).
Differentially expressed lncRNA and mRNA were screened
with a p value < 0.05 and fold change > 2:0. Cluster software
(v. 3.0) was employed to analyze differentially expressed
lncRNAs and mRNAs. The normalized expression level of
each RNA type was further analyzed with hierarchical clus-
tering (HCL). The results were presented by using TreeView
software (v. 1.5). The color green-black represents low
expression, while red represents high expression. Difference
integration analysis (Venn analysis) was also done. The com-
mon elements between the stimulated cells were determined
by Venn analysis. Often up- and downregulated RNAs were
shown in pies with different colors.

2.8. GO and Pathway Analyses. Differentially expressed
mRNAs were selected for target prediction. GO analysis
and pathway analysis were used to determine the roles of
these dysregulated mRNAs in biological pathways or GO
terms. We uploaded all differentially expressed mRNAs at
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the different time points into the Database for Annotation,
Visualization and Integrated Discovery (DAVID) for anno-
tation and functional analysis, including gene set enrichment
analysis and mapping gene sets to the KEGG pathway. GO
terms with p value less than 0.05 were selected. The top 10
enriched GO terms associated with upregulated or downreg-
ulated mRNAs were presented. KEGG pathway analysis was
also performed to determine the involvement of differentially
expressed genes in different biological pathways.

2.9. lncRNA-mRNA Coexpression Network. To predict the
functions of differentially expressed lncRNAs, we con-
structed the lncRNA-mRNA coexpression network. We
chose 10 significantly upregulated genes involved in inflam-
matory signaling pathways to build the CNC network based
on the degree of correlation. Pearson’s correlation coefficient
value was calculated for lncRNA-mRNA pairs, and strong
correlated pairs (0.99 or greater) were included (either posi-
tive or negative) in the coexpression network. A p value <
0.05 was considered statistically significant. We drew the
coexpression networks using Cytoscape software (v. 3.2.1).

2.10. Statistics. All statistical analyses were conducted by
using the SPSS 16.0 software (Chicago, IL, USA) and Graph-
Pad Prism 5.0. Results are expressed as mean ± SD from at
least three experiments. Student’s t-test was used to deter-
mine the significance of difference between different groups.
p < 0:05 was considered significant.

3. Results

3.1. CpG ODN Induced Inflammatory Responses in
Macrophages. CpG DNA can be recognized by TLR9 in
immune cells, consequently inducing the release of proin-
flammatory cytokines, as well as the production of NO and
iNOS. In our study, we firstly observed inflammatory
responses in CpG ODN-activated macrophages. The mouse
macrophage cell line RAW264.7 was stimulated with an
active ODN type, CpG ODN1826. Then, at the different time
points of 4 h, 8 h, and 16h after the treatment of ODN1826,
we observed the morphological changes of the cells

(Figure 1(a)). In addition, we detected the mRNA and pro-
tein levels of three critical proinflammatory cytokines,
TNF-α, IL-1β, and IL-6, by qRT-PCR and ELISA, respec-
tively. As shown in Figures 1(b) and 1(c), after the treatment
of ODN1826, TNF-α, IL-1β, and IL-6 expression increased.
The expression of lncRNAs and mRNAs was detected by
GPL22782-Agilent-074512 Mouse LncRNA Microarray
v4.0, which includes 40,825 lncRNAs and 30,680 mRNAs.
The gene microarray analysis for CpG ODN-activated mac-
rophages was consistent with TLR9 signaling activation,
which showed that most inflammatory related-gene expres-
sion was upregulated (Figure 1(d)). Meanwhile, we observed
the effects of ODN1826 on M1 inflammatory responses, as
manifested by the significantly increased NO and iNOS.
RAW264.7 macrophages were treated with ODN1826. The
production of NO and iNOS in the macrophages was deter-
mined. In RAW264.7 macrophages, ODN1826 stimulation
could promote the production of NO and iNOS
(Figures 1(e) and 1(f)). These data indicated that ODN1826
could induce a remarkably stronger inflammatory response.

3.2. Changed Expression Profiles of lncRNAs and mRNAs in
CpG ODN-Activated Macrophages. Total RNA from CpG
ODN-treated macrophages at different time points was
extracted. The CapitalBio Technology mouse lncRNAmicro-
array v4.0 was applied for the profiling analysis of mouse
lncRNAs and mRNAs. In total, 40,825 lncRNAs and 30,680
mRNAs detected are presented in Figures 2(a) and 2(e).
Three comparison groups were set in accordance with the
different time points following CpG ODN stimulation (0 h
vs. 4 h, 0 h vs. 8 h, and 0h vs. 16 h) (Figures 2(b) and 2(f)).
At 4 h after stimulation, 2,323 lncRNAs and 1,676 mRNAs
were upregulated, while 2,435 lncRNAs and 1,459 mRNAs
were downregulated (Figures 2(c) and 2(g)). At 8 h after
stimulation, 2,809 lncRNAs and 2,122 mRNAs were upregu-
lated, while 3,039 lncRNAs and 2,167 mRNAs were down-
regulated (Figures 2(c) and 2(g)). At 16 h after stimulation,
3,623 lncRNAs and 3,340 mRNAs were upregulated, while
4,521 lncRNAs and 3,302 mRNAs were downregulated
(Figures 2(c) and 2(g)). All the differentially expressed
lncRNAs and mRNAs were statistically significant (p < 0:05)

Table 1: qRT-PCR primers used.

Gene or lncRNA Forward primer Reverse primer

TNF-α CAGGCGGTGCCTATGTCTC CGATCACCCCGAAGTTCAGTAG

IL-1β GAAATGCCACCTTTTGACAGTG TGGATGCTCTCATCAGGACAG

IL-6 CCCAATTTCCAATGCTCTCCT AGTGGTATAGACAGGTCTGTTGG

lnc pvt1 AGCGTTGACTTAAGAGATGCCA GATTGCCTCCGGCATGAAGA

lincRNA-Cox2 AGTATGGGATAACCAGCTGAGGT GAATGCTGAGAGTGGGAGAAATAG

Meg9 AGGCTATCACCATCCCCCTT TCCTAGACCTTGCCCGATGA

Braveheart TCTCCTGGAGCCACATCTCT GCTTTTCCTTAGGCCCAAAC

Cyrano GAAACATAGGCTGGGACAAT TGTTACTGGGCTCTGTTT

NR_015555.1 TGGAGGAGCCAGGACTCAAAT TCCAGAAATCGGGCTGCTTAT

NR_002854.2 GCAGACAGAATTGGGTCGTT CTCAACTACCGCCTGCAAA

BACE1AS TCAATGCTAACCTGGGCTACG TTCCCATCAGGCGCTTACA

β-Actin TGGTGGGAATGGGTCAGAA TCTCCATGTCGTCCCAGTTG
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Figure 1: Continued.
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with fold change greater than 2.0. Venn analysis showed
that 734 lncRNAs and 734 mRNAs were always upregu-
lated and 1,067 lncRNAs and 632 mRNAs were always
downregulated at all time points (Figures 2(c) and 2(g)).
A cluster was generated and analyzed with hierarchical
clustering (HCL) for the 734 differentially upregulated
lncRNAs and 1,067 downregulated lncRNAs (Figure 2(d)).
In the same way, a cluster was generated and analyzed with
HCL for the 734 upregulated mRNAs and 632 downregu-
lated mRNAs (Figure 2(h)). The information on the data
was submitted to the Gene Expression Omnibus, and the
accession number is GSE120417.

3.3. Validation for the Expression of Significant Transcripts by
qRT-PCR. We selected 8 lncRNAs to verify the microarray
results by qRT-PCR assays. The results showed that upon
the stimulation with CpG ODN, the expression of lncRNA
lnc pvt1, lincRNA-Cox2, Meg9, and Braveheart in CpG
DNA-stimulated macrophages was upregulated, whereas
Cyrano, NR_015555.1, NR_002854.2, and BACE1AS were
downregulated (Figure 3). The result is consistent with the
microarray assay, which verified the veracity of microarray
results. The finding provided evidence that these lncRNAs
could be involved in CpG ODN-induced macrophage
activation.

3.4. Delineation of Gene Ontology (GO) and KEGG Pathway
Analyses. Next, all differentially expressed mRNAs as
described in Figure 2 were further analyzed by DAVID
Bioinformatics Resources 6.7. The GO enrichment analysis
was conducted mainly on three domains, namely, biologi-
cal process (BP), cellular component (CC), and molecular
function (MF) for upregulated and downregulated mRNAs,
respectively. Interestingly, for upregulated mRNAs, the
most enriched and meaningful terms belonged to the BP
category, most of which were related to immunity, while
GO terms associated with downregulated mRNAs were
binding, protein binding, mitotic cell cycle, etc. (Figure 4(a)).
Moreover, KEGG pathway enrichment analysis was also
made. Our data showed 10 pathways associated with upreg-
ulated mRNAs and downregulated mRNAs, respectively.
Similarly, the top pathways in upregulated protein-coding
genes were involved with the TNF signaling pathway,
NOD-like receptor signaling pathway, and NF-kappa B sig-
naling pathway (Figure 4(b)). These results revealed that

these pathways might be implicated in CpG ODN-induced
macrophage activation.

3.5. Construction of the lncRNA-mRNA Coexpression
Network. Up to now, the roles of most lncRNAs have not
been annotated. So the functional prediction of lncRNAs is
partially dependent on the coexpressed mRNA function.
Herein, we chose 10 significantly upregulated mRNAs to
build the CNC network (Figure 5). These 10 mRNAs, includ-
ing Ctsk, Nfkb2, IL-1β, and IL-6 are involved in inflamma-
tory responses and play important roles in the regulation of
inflammatory signals. The network is based on Pearson’s cor-
relation coefficient (the absolute value of PCC ≥ 0:99, p value
< 0.01, and FDR < 0:01). From the network, we observed that
these important molecules were intimately related to a num-
ber of lncRNAs. For example, upregulated NR_033616.1 was
positively associated with Ctsk, and lincRNA-Cox2 was pos-
itively related to Nfkb2.

4. Discussion

Bacterial genomic DNA contains unmethylated CpG DNA,
which is a well-known immunostimulator, and triggers
innate immunity against infection as well as an adaptive
immune response [2, 3]. Furthermore, a short synthetic oli-
gonucleotide containing a CpG motif (CpG ODN) can also
function as an agnostic to activate immune signals. For
instance, both bacterial DNA and synthetic CpG ODN can
induce the release of inflammatory cytokines, including
TNF-α, IL-1β, and IL-6, as well as the production of NO
and iNOS [13, 14]. In the present study, we observed the
details of CpG ODN-induced inflammatory responses in
macrophages. The results showed that CpG ODN1826 stim-
ulation could cause the morphological change of macrophage
cells and induce the change of inflammatory gene expression,
subsequently promoting the release of inflammatory cyto-
kines and the production of NO and iNOS.

Differing from LPS recognized by TLR4, CpG DNA is
recognized by TLR9 in immune cells, including macro-
phages. Upon CpG DNA stimulation, TLR9 recruits
MyD88 that activates p38 and c-Jun, consequently leading
to the activation of transcription factors including AP-1
and NF-κB, and the production of inflammatory mediators
[13, 14]. CpG ODN-induced inflammatory response is a
fairly complex process, which is involved with many mole-
cules, such as inflammatory mediators, transcription factors,

CpG ODN
(1 𝜇M )

iNOS
0 h 4 h 8 h 16 h

GAPDH

(f)

Figure 1: CpG ODN induced macrophage activation. (a) Representative phase-contrast images of RAW264.7 cells stimulated with CpG
ODN1826 (1 μM) for 0 h, 4 h, 8 h, and 16 h. (b, c) The RAW264.7 cells were treated with CpG ODN1826 (1 μM) for 16 h. And then, the
mRNA and protein expression levels of TNF-α, IL-1β, and IL-8 were determined by qRT-PCR (b) and ELISA (c). (d) Inflammation-
related gene expression levels were altered in the process of CpG ODN1826-induced macrophage activation from 0 h to 16 h. (e) Nitrite
was determined in the supernatant of RAW264.7 cells stimulated with CpG ODN1826 for 16 h. (f) iNOS protein levels were detected by
Western blot in RAW264.7 cells after stimulation with CpG ODN1826 for 16 h. ∗p < 0:05.
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Figure 2: Changed expression profiles of lncRNAs and mRNAs during CpG ODN-induced macrophage activation. (a) The heat map of all
lncRNA expression at different time points during CpG ODN-induced macrophage activation from microarray data. (b) Scatter plots
showing differentially expressed lncRNAs between macrophages with the stimulation with CpG ODN at 0 h and activated macrophages at
different time points (4 h, 8 h, and 16 h). (c) Often differentially expressed lncRNAs between macrophages with the stimulation with CpG
ODN at 0 h and activated macrophages at different time points (4 h, 8 h, and 16 h). (d) Hierarchical clustering showing often upregulated
and downregulated lncRNAs among the four groups (macrophages stimulated for 0 h, 4 h, 8 h, and 16 h). (e) The heat map of all mRNA
expression at different time points during CpG ODN-induced macrophage activation from microarray data. (f) Scatter plots showing
differentially expressed mRNAs between macrophages with the stimulation with CpG ODN at 0 h and activated macrophages at different
time points (4 h, 8 h, and 16 h). (g) Often differentially expressed mRNAs between macrophages with the stimulation with CpG ODN at
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and regulatory factors. Long noncoding RNAs (lncRNAs)
are a subgroup of noncoding RNAs (ncRNAs) with the
length more than 200nt, but without protein-coding poten-
tial [6]. Recently, lncRNAs have been reported to be impli-
cated in inflammatory responses [8, 9]. lncRNA FIRRE
regulates inflammatory gene expression through interacting
with hnRNPU in macrophages [15]. A natural antisense
transcript, AS-IL1α, controls inducible transcription of the
proinflammatory cytokine IL-1α [16]. Mao et al. identified
differentially expressed lncRNAs in the process of TLR4 sig-
naling activation in mouse macrophages [17], while another
study performed by Huang et al. reported differentially
expressed lncRNAs in polarized macrophages followed by
the stimulation with IFN-γ+LPS or IL-4 [18]. In addition,
Dou et al. also identified changed expression profiles of
lncRNAs, mRNAs, circRNAs, and miRNAs during osteo-
clastogenesis [19]. In our study, the expression profiles of
lncRNAs and mRNAs in mouse macrophage cells were
detected at different time points following CpG ODN1826
stimulation. From the results, we figured out that during
the process of CpG ODN-induced macrophage activation,
thousands of lncRNAs were differentially expressed com-
pared with the control group. It is very interesting to

notice that the expression pattern of lncRNAs was consis-
tent with mRNAs.

The annotation results of the most significant Gene
Ontology showed that the top 10 increased biological pro-
cesses belong to or are associated with immunity. Meanwhile,
KEGG pathway analysis for the differentially expressed
mRNAs revealed that top 10 pathways associated with upreg-
ulated mRNAs were the TNF signaling pathway, NOD-like
receptor signaling pathway, NF-kappa B signaling pathway,
influenza A, measles, herpes simplex infection, C-type lectin
receptor signaling pathway, osteoclast differentiation, Toll-
like receptor signaling pathway, and IL-17 signaling pathway,
most of which are involved in inflammatory responses.

From the lncRNA-mRNA coexpression network, we
found that functional molecules and inflammatory cytokines
involved in CpG DNA-induced inflammatory response,
including Ctsk, Nfkb2, IL-1β, and IL-6, were coexpressed
with multiple lncRNAs, which formed a complex network.
The CNC analysis result indicated that the change of lncRNA
expression might be implicated in CpG ODN-induced mac-
rophage activation by regulating mRNAs. Interestingly in
our study, most of the lncRNAs in the coexpression network
have not been annotated yet. It will be much worthy to

Figure 5: Coexpression network of ten significantly upregulated mRNAs with their associated lncRNAs. The network was based on Pearson’s
correlation coefficient (the absolute value of PCC ≥ 0:90, p value < 0.01, and FDR < 0:01), and solid lines mean positive correlations while
dashed lines mean negative correlations. Diamond nodes represent mRNAs, and purple circle nodes represent lncRNAs. Red color and
pink color represent upregulation; green color represents downregulation.
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perform further study in exploring the underlying mecha-
nisms of these lncRNAs.

5. Conclusion

Innate immunity is the first line of host defense. Despite the
benefits of innate immunity, it can be a double-edge sword as
excessive inflammation will cause host damage. So it is
important to better understand the regulatory mechanisms
that control inflammatory responses. Up to date, many mol-
ecules and signaling pathways involved in macrophage polar-
ization have been reported [20–24]. Recently, a number of
studies in the immune system have provided us accumulating
evidence that lncRNAs also play an important role in regulat-
ing inflammatory responses. In the present study, we identi-
fied a profile of dysregulated lncRNAs that might be involved
in CpG ODN-induced macrophage activation. Our data pro-
vides a perspective for further functional research of
lncRNAs in CpG ODN-induced inflammatory responses
and helps to clarify the mechanisms of inflammation.
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