

STATE-OF-THE-ART REVIEW

Principal mechanisms of extracellular matrix-mediated cell–cell communication in physiological and tumor microenvironments

Zoi Piperigkou¹ , Sylvia Mangani¹ , Nikolaos E. Koletsis¹, Christos Koutsakis¹, Nicholas S. Mastronikolis², Marco Franchi³ and Nikos K. Karamanos¹

¹ Biochemistry, Biochemical Analysis and Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece

² Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Patras, Greece

³ Department for Life Quality Studies, University of Bologna, Rimini, Italy

Keywords

biomechanical sensing; cancer targeting; cell–cell communication; extracellular matrix; extracellular vesicles

Correspondence

Z. Piperigkou and N. K. Karamanos,
Biochemistry, Biochemical Analysis and
Matrix Pathobiology Res. Group, Laboratory
of Biochemistry, Department of Chemistry,
University of Patras, Patras, 26504, Greece
Tel: +30 2610997161 (Z.P.); +30
2610997915 (N.K.K.)
E-mail: zoipip@upatras.gr; n.k.karamanos@upatras.gr

(Received 4 April 2025, revised 30 May 2025, accepted 7 July 2025)

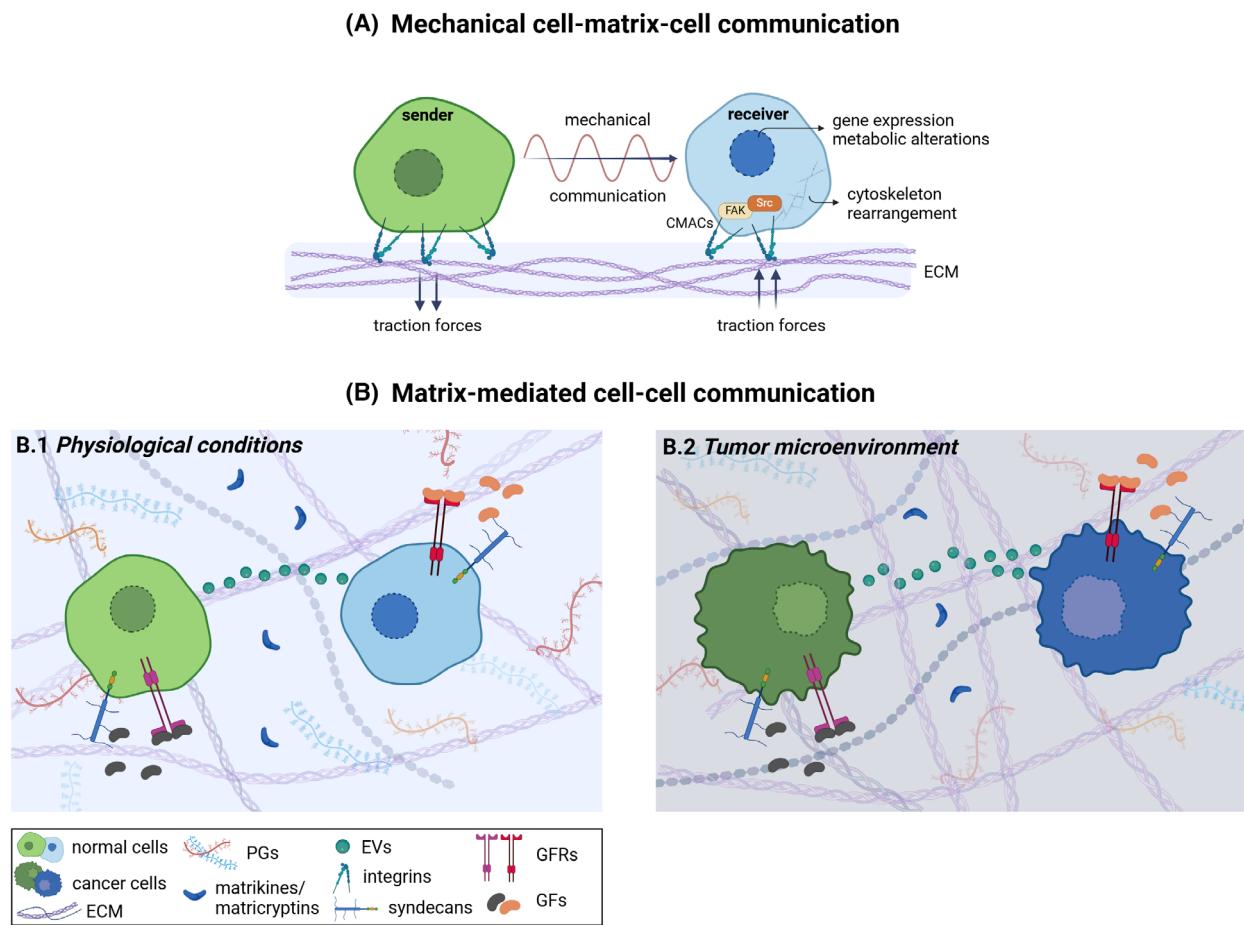
doi:10.1111/febs.70207

Cell–cell communication is essential for the regulated exchange of information between cells, coordinating critical cellular processes under physiological and pathological conditions. The extracellular matrix (ECM) is a complex three-dimensional (3D) intercellular macromolecular network that provides structural support to tissues, while actively modulating cellular functions and responses. ECM-mediated intercellular communication is a key player in both homeostasis and disease development. Particularly in cancer, ECM reorganization drives tumor development and progression, shaping dynamic interactions within the tumor microenvironment (TME). In this review, we present and discuss two principal mechanisms of matrix-mediated cell–cell communication in both physiological and cancerous contexts. First, we explore the impact of ECM biomechanical properties in mechanical sensing and communication, which govern key aspects of cell signaling, adhesion, and migration across normal and malignant tissues. Second, we discuss the role of the ECM in facilitating cell–cell communication through the controlled release and navigation of extracellular vesicles (EVs). EVs carry, among other constituents, proteins, enzymes, microRNAs (miRNAs), and signaling molecules that relay information to nearby or distant cells, modulating the initiation of metastasis and pre-metastatic niche formation. Conclusively, in this review, we highlight the critical role of targeting ECM dynamics in cell–cell communication under physiological processes and during cancer progression. Targeted therapies that modulate ECM components and interactions with cells hold promise for future treatment approaches.

Abbreviations

3D, three-dimensional; CAFs, cancer-associated fibroblasts; CMACs, cell-matrix adhesion complexes; E/M, epithelial/mesenchymal; ECM, extracellular matrix; EMT, epithelial-to-mesenchymal transition; ERs, estrogen receptors; EVs, extracellular vesicles; FAK, focal adhesion kinase; FGF, fibroblast growth factor; GAGs, glycosaminoglycans; GFRs, growth factor receptors; GFs, growth factors; GPCRs, G-protein coupled receptors; HA, hyaluronan; HPSE, heparanase; miRNA, microRNA; MMPs, matrix metalloproteinases; MSC, mesenchymal stem cell; MVBs, multivesicular bodies; PGs, proteoglycans; PMN, pre-metastatic niche; RTKs, receptor tyrosine kinases; TME, tumor microenvironment; TNBC, triple-negative breast cancer; TNTs, tunneling nanotubes; VEGF, vascular endothelial growth factor.

Introduction


Cell communication is a fundamental biological process, allowing cells to respond to extracellular stimuli and share information to ensure proper function, growth, and immune responses. Intercellular communication is also a fundamental mechanism for the controlled flow of information between cells, coordinating critical pathophysiological cellular processes [1]. Cells have developed sophisticated and highly coordinated ways to communicate with each other and rapidly adapt to microenvironmental changes in both physiological and pathological conditions. Cells communicate through major mechanisms, such as direct contact via gap junctions, chemical signals (i.e., autocrine, paracrine and endocrine signaling) and electrical impulses (i.e., muscle contractions). Extracellular matrix (ECM) functions as three-dimensional (3D) bioscaffold and signaling hub [2] serving intercellular communication in two main ways. First and foremost, ECM biomechanical support creates dynamic oscillation phenomena that drive cell–matrix–cell communication through cell surface receptors, such as integrins. Importantly, ECM conformation is not static, but it constantly undergoes controlled remodeling that is stimulated by cellular responses, environmental cues, and biomechanical stimuli, often resulting in rhythmic changes in its biochemical composition and biomechanical properties (Fig. 1A). The dynamic interplay among cancer cells and the peri-tumoral ECM is also driven by cell mechanosensing and mechanotransduction mechanisms, which trigger signaling cascades that regulate cancer growth and development [3,4]. On the contrary, ECM constituents, including macromolecules and released vesicles, mediate cellular responses via matrix-mediated cell–cell communication (Fig. 1). These insights are pivotal in guiding the development of ECM-targeted therapies aiming at modulating aberrant signaling in disease contexts. Understanding these communication pathways enables the precise targeting of the ECM to restore tissue homeostasis or inhibit cancer progression. Disrupting pathological ECM remodeling and deciphering ECM-mediated interactions is central to translating medicine into effective clinical interventions.

The integral and active matrix components are fundamental parts in all tissues and organs, affecting cellular behavior and interactions (i.e., communication and signaling) [5]. ECMs constitute 3D dynamic complex intercellular macromolecular networks, consisting of collagens and elastin, proteoglycans (PGs), glycosaminoglycans (GAGs) and glycoproteins, such as fibronectin and laminins. Acting as structural 3D

bioscaffolds, ECMs provide physical structure and mechanical support and also dictate functions of resident cells within tissues (Fig. 1A) [6]. Importantly, the composition of each ECM determines cell morphology and, consequently, cell communication. Under physiological conditions, the synthesized ECM constantly undergoes remodeling processes that maintain tissue homeostasis. ECM serves as a reservoir of molecules and vesicles that promote either direct cell–cell interactions or cell–matrix interactions. These molecules also constitute signals that induce intercellular transduction cascades, regulating both normal cellular processes (Fig. 1B.1) and also the initiation and progression of various diseases [7–9].

In several pathological conditions, including cancer, however, ECM synthesis and turnover are dysregulated, leading to changes in its integrity [10]. During cancer development and progression, mechanical and biochemical cues from the ECM are detected through cell receptors and play important roles in promoting ECM–cell intercellular signaling (Fig. 1B.2) [3]. ECM–cancer cell interactions shape the pre-metastatic niche (PMN) by influencing cell adhesion, migration, and the release of signaling molecules that initiate metastatic outgrowth. Protease-induced limited cleavage of matrix components can trigger the secretion of bioactive fragments exerting different actions from those of the full-length molecules [11]. Matriryptins and matrikines are the bioactive fragments released from PGs and GAGs and are reported to exert major roles in modulating signaling cascades mediated by interactions with cell surface receptors [12,13]. Moreover, syndecans, a family of cell surface heparan sulfate PGs, apart from the proteolytic shedding, could be processed by the glycolytic enzyme heparanase (HPSE), thereby modulating growth factor availability and downstream signaling cascades. These fragments may regulate several physiological and pathological processes, including wound healing, angiogenesis, fibrosis, and cancer [13,14].

The dynamic oscillatory nature of ECM plays a crucial role in intercellular communication by modulating extracellular vesicle (EV) production and release (Fig. 1B). EVs are membrane-bound nanoparticles, released by cells into the ECM. They are classified into three categories: the exosomes (30–250 nm in diameter) and the microvesicles (100–1000 nm), which control intercellular communication, and the apoptotic bodies (1–5 μ m) [15]. Their cargo, including proteins, lipids, nucleic acids (i.e., mRNA, miRNA, and DNA), and metabolites, influence recipient cell behavior. EVs

Fig. 1. Mechanisms of matrix-mediated intercellular communication. Schematic representation that demonstrates the types of intercellular communication, focusing (A) on cell-matrix-cell communication through ECM-mediated biomechanical sensing, and (B) matrix-mediated cell-cell communication. (A) Cell-matrix-cell communication occurs through traction forces transmitted from a sender cell to a receiver cell. These forces are sensed by CMACs, and trigger downstream signaling pathways that regulate cellular adaptation, cytoskeletal rearrangement, and metabolic alterations in the receiver cell. Mechanical traction forces generated through ECM dynamics drive key physiological processes, including embryogenesis, organ development, wound healing, vascular assembly, synchronized cardiomyocyte beating, and also contribute to cancer progression. (B) Matrix-mediated intercellular communication regulates downstream signaling pathways, mediating cellular phenotype and properties, under physiological conditions and cancer progression. (B.1) The ECM network drives cell-cell communication by serving as a reservoir for signaling molecules (i.e., GFs, EVs, matrikines, and matricryptins), which modulate downstream signaling cascades involved in various physiological processes, including, among others, wound healing and tissue regeneration, immune modulation, and homeostasis. (B.2) ECM assembly influences cell-cell communication, as matrix stiffening derived from aberrant accumulation of matrix components can lead to a pathological microenvironment that promotes cancer development and progression. Particularly, stiff ECM facilitates increased release of EVs and altered secretion of matrix mediators, thereby mediating cell-cell communication within the TME. CMACs, cell-matrix adhesion complexes; ECM, extracellular matrix; EVs, extracellular vesicles; FAK, focal adhesion kinase; GFs, growth factors; GFRs, GF receptors; PGs, proteoglycans; Src, nonreceptor protein tyrosine kinase of Rous sarcoma virus c-Src oncogene; TME, tumor microenvironment. Created in BioRender.

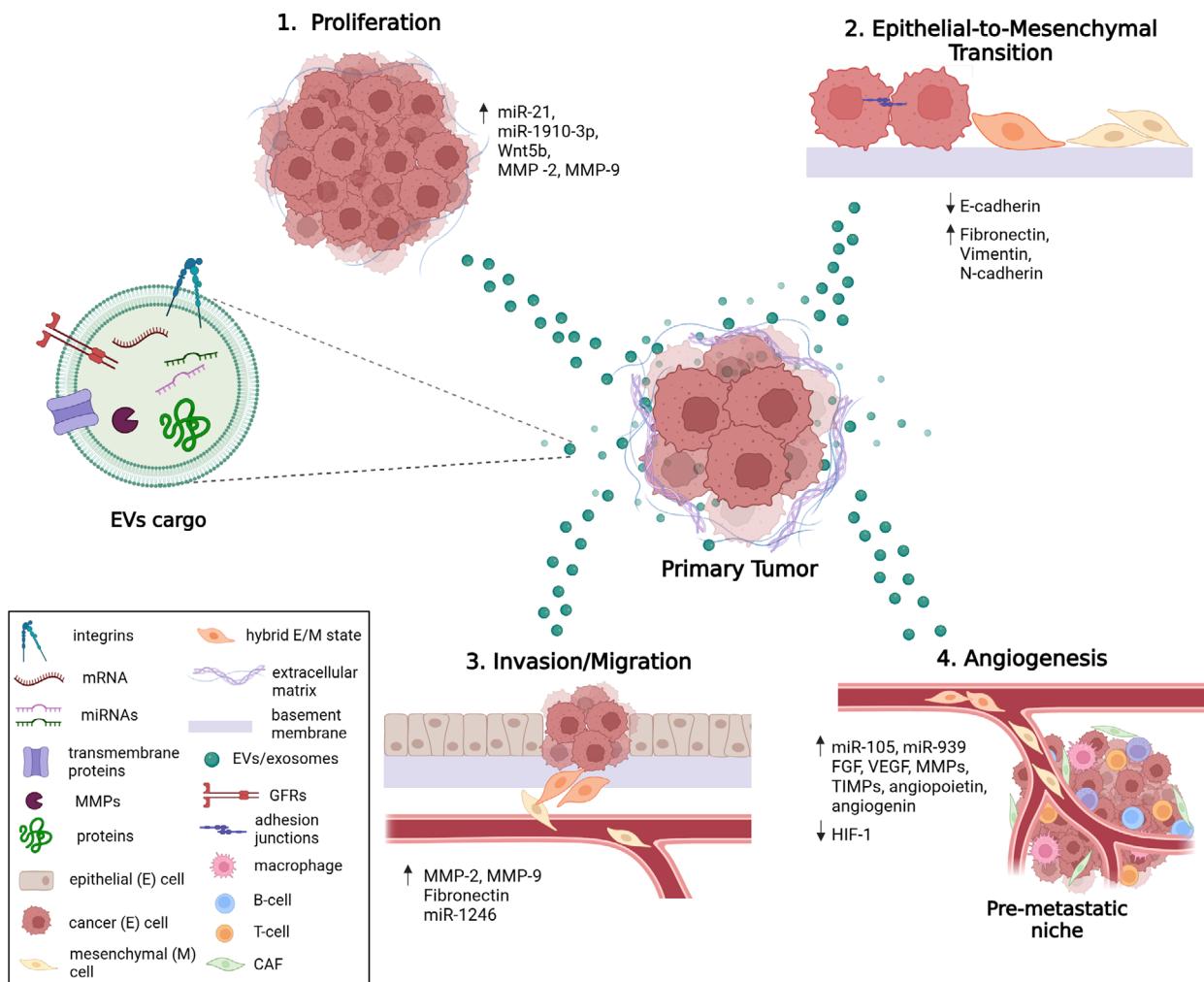
production is tightly regulated by ECM dynamics, such as stiffness, composition, and enzymatic remodeling. EVs have a distinct position in health and disease as they exhibit their effects in both physiological and pathological conditions [16]. In physiological conditions, they contribute to tissue repair, immune modulation, and homeostasis. In cancer, the ECM-driven

EV release enhances tumor progression by transferring oncogenic signals, modulating immune responses, and facilitating PMN formation. Notably, proteolytic enzymes like matrix metalloproteinases (MMPs) and HPSE remodel the ECM, altering EV composition and cargo loading [17,18]. Additionally, ECM interactions guide EV uptake by recipient cells, influencing

processes, such as proliferation, invasion, and chemoresistance [19]. Tumor-derived EVs transfer oncogenic proteins, enzymes, and miRNAs that promote proliferation, epithelial-to-mesenchymal transition (EMT), angiogenesis, migration/invasion (Fig. 2). EVs carrying integrins (i.e., $\alpha 6\beta 4$ and $\alpha v\beta 5$) prime specific organs for metastasis via interacting with ECM components. Importantly, miR-1 and miR-29a have been identified as key oncogenic miRNAs in tumor-derived EVs, promoting tumor progression and immune suppression [20]. Likewise, EVs may suppress tumor growth by delivering tumor-suppressive molecules or activating antitumor immune responses, as in the case of immune cell-derived EVs carrying tumor antigens and stimulating antitumor T-cell responses. These ECM-regulated EV mechanisms play a pivotal role in shaping the tumor microenvironment and driving metastasis (Fig. 1B).

In this article, therefore, we present and critically discuss the role of ECM tension/traction forces in establishing processes that facilitate mechanical intercellular cell-matrix-cell communication. The matrix-mediated cell-cell communication in cancer progression is also discussed. The essential roles of matrix dynamics in regulating EV/exosome secretion, transfer, and cargo composition in EV-mediated cell-cell communication within the tumor microenvironment (TME) are thoroughly presented and discussed.

ECM biomechanical properties drive cell-cell communication


ECM supports cell communication, adaptation, and response to extracellular stimuli by facilitating cell-matrix-cell interactions and mediating matrix-driven cell-cell communication in physiological and pathological conditions (Fig. 1). The functional roles of major ECM macromolecules under physiological and pathological conditions are summarized in Table 1 (i.e., wound healing, tissue development) and Table 2 (i.e., cancer progression), respectively.

Cell communication in physiological processes

Within the tissues, cells sense, modify, and adapt to their microenvironment across a wide range of physiological and pathological biological processes by generating forces, allowing for mechanical cell-cell interactions [21–24]. Particularly, long-range ECM-mediated cell-cell force transmission facilitates the communication between adjacent or distant cells, determining their morphology, motility, and functional properties [21,25]. Notably, cells exert dynamic

traction forces on the surrounding matrix, acting either as transmitters or receivers of mechanical signals [21,24,26] (Fig. 1A). The mechanical stimuli are translated through cell-matrix adhesion complexes (CMACs) into intracellular signaling pathways, ultimately driving downstream cytoskeleton rearrangements, metabolism alterations, or regulating target gene expression [27]. CMACs are highly dynamic complexes formed by integrin clustering, along with the recruitment (and downstream phosphorylation) of cytoplasmic proteins that bind to the cytoskeleton [28]. Various cellular functional properties, such as differentiation, proliferation, and migration, rely on matrix mechanical properties [22] (Fig. 1A). Mechanical cell-matrix-cell communication drives various physiological processes, including collective cellular motility during morphogenesis, embryogenesis, organ development, and multicellular organization, wound healing, and vascular assembly [29,30] (Fig. 1B.1; Table 1). ECM molecules, along with bioactive ECM-related effectors, orchestrate cell-cell signaling, essential for wound healing, embryogenesis, and tissue/organ development. Cells realign in response to external strain, while mechanical interactions mediated through matrix strain propagation can synchronize their alignment [24].

During tissue development, cells sense mechanical signals through integrins (Table 1). Mechanical communication between endothelial cells, driven by stress gradients and ECM strain stiffness, further influences vascular network formation. Particularly, stiffness gradients and local fiber alignment guide endothelial cells toward each other before forming stable vascular endothelial cadherin-enriched junctions [24,29,31]. During vascularization, mechanical intercellular communication is strongly mediated through focal adhesion kinase (FAK) and mechanosensitive ion channels, inducing downstream calcium signaling [29]. It is well known that upon tissue injury, the ECM undergoes extensive remodeling, facilitated by the action of MMPs and other proteolytic enzymes which create paths for cell migration and thus enable communication between fibroblasts, endothelial cells, and other cell types (Table 1). Furthermore, ECM remodeling releases sequestered growth factors (GFs), cytokines, and other signaling molecules, enabling them to interact with their respective receptors on target cells and modulate cellular responses [32] (Fig. 1B.1; Table 1). Additionally, during the inflammatory phase of wound healing, fibroblasts exert traction forces within their surrounding ECM to facilitate wound closure. This process is particularly regulated by mechanotransducers (including FAK and YAP/TAZ mechanosensors)

Fig. 2. Multifaceted roles of cancer cell-derived extracellular vesicles (EVs) in driving cancer progression. Cell-cell and cell-matrix communications via EVs cargos affect cell functional properties (1, 3, 4) and morphology (2), facilitating cancer development and propagation. EVs enriched in bioactive molecules, such as mRNA, miRNAs, transmembrane proteins, proteolytic enzymes, membrane receptors (i.e., GFRs and GPCRs), and co-receptors (i.e., integrins), are released from cancer cells into the surrounding ECM. Upon uptake by recipient cells, EVs cargos modulate signaling pathways involved in crucial cellular processes, including proliferation (1), EMT (2), invasion/migration (3), and angiogenesis (4). To this end, the secreted vesicles influence cancer cells and other cell types within the TME, thereby facilitating PMN formation in secondary tissues and the initiation of metastasis. Additionally, cancer cell-derived EVs are key players in ECM remodeling by promoting ECM degradation and facilitating the establishment of a supportive microenvironment for cancer growth and dissemination. CAF, cancer-associated fibroblast; ECM, extracellular matrix; EVs, extracellular vesicles; EMT, epithelial-to-mesenchymal transition; FGF, fibroblast growth factor; GFRs, growth factor receptors; GPCRs, G-protein coupled receptors; HIF-1, hypoxia-inducible factor 1; mRNA, messenger RNA; miRNA, microRNA; MMP, matrix metalloproteinase; PMN, pre-metastatic niche; TIMP, tissue inhibitor of metalloproteinases; TME, tumor microenvironment; VEGF, vascular endothelial growth factor. Created in BioRender.

and integrins that drive proto-myofibroblast formation [25] (Table 1). These mechanical signals extend beyond chemotactic gradients, inducing FAK downstream pathways that hold key roles in myofibroblast differentiation and macrophage migration [25,33]. Interestingly, Pakshir *et al.* demonstrated that fibroblasts can create deformation fields in the fibrillar collagen matrix, generating long-range mechanical/physical cues

that drive macrophage migration. Macrophages sense and respond to these mechanical signals through $\alpha 2\beta 1$ integrin binding and stretch-activated channels [34]. Furthermore, Sunyer *et al.* [35,36] revealed that collective cell migration, occurring during development, wound healing, or even cancer progression, is guided by long-range intercellular forces transmitted through gradient-stiffness substrates.

Table 1. Functional roles of major matrix components and extracellular matrix-related effectors in intercellular communication under physiological processes. BMP, bone morphogenic protein; CXCL, chemokine (C-X-C motif) ligand. EGF, epidermal growth factor; FGF, fibroblast growth factor; HA, hyaluronan; HSPGs, heparan sulfate proteoglycans; IGF, insulin-like growth factor; ICAM, intercellular adhesion molecule; IL, interleukin; MMPs, matrix metalloproteinases; OPN, osteopontin; PDGF, platelet-derived growth factor; PF4, platelet factor; RSPO1, R-spondin 1; TGF, transforming growth factor; THBS, thrombospondin; TNF, tumor necrosis factor; VCAM, vascular cell adhesion molecule; VEGF, vascular endothelial growth factor.

Physiological process	ECM component	Functional role	References
Wound healing	Collagen type I, III; fibronectin; integrin $\alpha 1\beta 1\beta 3$	Homeostasis; platelet aggregation	[69–71]
	Collagen type I, IV, XVII; laminin $\alpha 5$; laminin 511; laminin 521; perlecan; CCN1; CCN3; CCN5	Keratinocyte activation, proliferation, and migration	[72,73]
	Collagen type VII	Fibroblast and keratinocyte migration; granulation tissue formation	[72]
	Tenascin-C	Lymphocytes and fibroblasts activation and migration	[72]
	Collagen type I; fibronectin; vitronectin; THBS	Provisional matrix; fibroblast and leukocyte migration	[74]
	HA	Fibroblasts migration to the wound site	[75]
	Integrins $\beta 1$, $\beta 2$	Leukocytes, keratinocytes, and fibroblasts recruitment to the wound site; myofibroblast differentiation and blood vessel sprouting	[74,76]
	MMPs	Fibroblasts-released enzymes; immune cell attraction and infiltration; Macrophage-released enzymes; laminin cleavage, binding of the fragment to EGFR on fibroblasts; stimulation of keratinocytes migration and proliferation	[77,78]
	Nidogen 1	Cell proliferation and differentiation during re-epithelialization	[72]
	Fibronectin; matrikines	Chemoattractants for monocytes	[32]
	OPN	Chemoattractant for fibroblasts	[72]
	Fibronectin; HA	Early granulation tissue formation	[32]
	THBS1; THBS4; periostin; RSPO1	Fibroblasts, keratinocytes proliferation and migration	[73]
	VCAM; ICAM1; P-selectin	Neutrophil adhesion onto endothelial cells; neutrophil extravasation from the bloodstream to the wound site	[79]
	E-selectin	Activated fibroblasts stimulate dendritic cells	[77]
	ICAM1	Re-epithelialization; ECM remodeling by keratinocytes	[80]
	Laminin 332	Tendon development; intercellular communication by building matrix bridges in between adjacent tenocytes	[81]
Tissue formation and development	Collagen type XII	Neurons, muscles, glia, fat body, and hemocytes communication; axonal and synaptic stability during development	[82]
	Perlecan	Gonad development (germ and somatic cells interactions); osteoclastogenesis	[83,84]
	E-cadherin	Bone formation; osteoblast differentiation (integrin-mediated) cellular migration and differentiation during lung development	[85]
	N-cadherin; cadherin-11	(integrin-mediated) cellular migration and differentiation during lung development	[76]
	Fibronectin	Morphogens/growth factors presentation to cell surface receptors; development of central neural and musculoskeletal system	[86]
	HSPGs		
ECM-related effectors			
Wound healing	PF4	Platelet-released cytokine; chemotaxis of fibroblasts, neutrophils, monocytes; differentiation of monocytes into macrophages	[87]
	PDGF; TGF- β	Platelet-released factor; chemotaxis and proliferation of immune cells, fibroblasts, smooth muscle cells	[32,79,88]
	TGF- $\beta 1$	Platelet-released factor; stimulates keratinocyte proliferation	[89]
	IL-1 α , IL-1 β , IL-6, IL-8; CXCL8; TNF- α	Platelet-released factors; migration of neutrophils, macrophages, mast cells	[90]

Table 1. (Continued).

Physiological process	ECM component	Functional role	References
Tissue formation and development	VEGF; TGF- α ; bFGF	Platelet-released factors; activation of endothelial cells (angiogenesis)	[79]
	VEGF; PDGF; bFGF; TGF- β	Endothelial cells-released factors; fibroblasts proliferation and migration	[91]
	EGF; TGF- α	Macrophages, platelets, keratinocytes-derived factors; re-epithelialization	[32]
	FGF4	Cell–cell communication; differentiation of epiblast-like and primitive endoderm-like cells	[92]
	FGF; EGF; VEGF	Embryogenesis; communication between nourishing ectodermal cells and endometrial cells during implantation	[93]
	VEGF; IGF BMP-2, BMP-4, BMP-7; IGF	Endometrial angiogenesis Endothelial cells-released factors; osteoblasts, osteoclasts, bone marrow-derived mesenchymal stem cells activity in osteogenesis	[93] [94]
	VEGF-A; PDGF-BB	Osteoblasts, osteoclasts and bone marrow-derived mesenchymal stem cell-released factors; regulation of proliferation and migration of endothelial cells; angiogenesis	[94]

Mechanotransduction mechanisms guided by matrix modulators, including integrins, receptor tyrosine kinases (RTKs), G-protein coupled receptors (GPCRs), stretch-activated ion channels, and the subsequent signaling molecules (i.e., FAK and Src) enable cells of different origins to interact with ECM. To this end, cell membranes actively change conformation by pulling or pushing, often via actin polymerization and microtubule formation. For instance, high molecular weight hyaluronan (HA), the most distributed nonsulfated GAG in the majority of ECMs, is related to the proper lubrication and water homeostasis in several tissues [37]. Understanding the dynamic biosensing and adaptation functions of the matrix contributing vital physiological functions has crucial implications in biomedical research, and it has been further revised in critical reviews [3,14].

Cell communication in cancer progression

Mechanical cell–cell communication holds a crucial role under pathological conditions, particularly cancer progression [30] (Fig. 1B.2). Within the TME, mechanical forces are closely associated with tumor growth, invasion, angiogenesis, and drug resistance [38]. Particularly, excessive cancer cell proliferation, combined with elevated interstitial fluid pressure resulting from tumor-driven angiogenesis, generates circumferential mechanical tension forces at the invasive edge of the tumor mass [39]. Cancer cells communicate with

neighboring cells by transmitting mechanical forces through the ECM via CMACs [40]. Mainly integrins, but also surface PGs, cadherins, Ca^{2+} channels, and stretch-activated cation channels can detect matrix biophysical properties, such as ECM stiffness [41] (Table 2). Notably, cellular forces exerted onto the surrounding ECM lead to matrix remodeling, thereby inducing fiber alignment. Cells in contact with the surrounding matrix sense these signals through their CMACs, resulting in activation of downstream signaling pathways and consequent phenotypic changes [26].

On the contrary, cancer-associated fibroblasts (CAFs) hold a crucial role in cancer progression by remodeling the basement membrane and releasing matrix-degrading enzymes that create microtracks in the ECM, enabling cancer cells to migrate from the primary tumor and invade surrounding tissues [26,41–43]. Particularly, CAFs form mechanically active adhesions with cancer cells, exerting pulling forces during contraction or migration to further drive cancer cell invasion (Fig. 2). This process heavily relies on ECM proteins and integrins to transmit tension, highlighting the important role of cell–matrix–cell communication in cancer progression and metastasis [44] (Table 2). Furthermore, ECM stiffness alterations (accumulation/remodeling), driven by enzymes released from cancer cells and fibroblasts, promote sprouting angiogenesis, enabling endothelial cells to migrate and form vascular networks/capillaries [26] (Fig. 2; Table 2).

Table 2. Functional roles of major matrix components and extracellular matrix-related effectors in intercellular communication in cancer progression. CCL, chemokine (C-C motif) ligand; CXCL, chemokine (C-X-C motif) ligand; FGF, fibroblast growth factor; GM-CSF, granulocyte-macrophage colony-stimulating factor; GPC, glycan; HIF, hypoxia-inducible factor; ICAM, intercellular adhesion molecule; IL, interleukin; LIF, leukemia inhibitory factor; LOX, lysyl oxidase; OPN, osteopontin; PDGF, platelet-derived growth factor; SDC, syndecan; TGF, transforming growth factor; uPA, urokinase plasminogen activator.

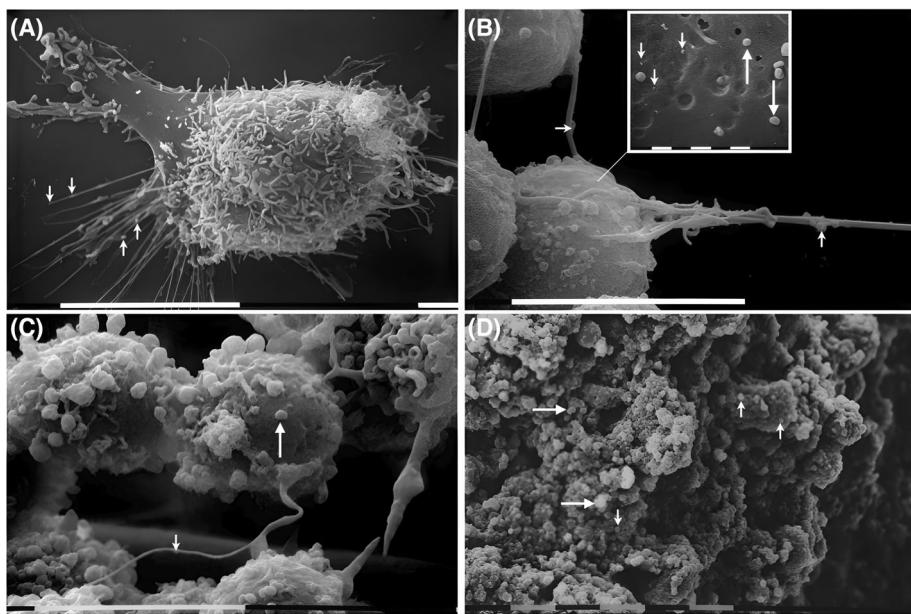
Pathological process	ECM component	Functional role	References
Cancer progression	Integrins	Cell–ECM interactions via focal adhesions and hemidesmosomes; ECM remodeling, cell migration, cancer stemness	[26,39,95]
	Fibronectin	Fibronectin fibers alignment by CAFs; cancer cell migration	[95]
	SDC-1	Fibroblasts-derived SDC-1 organizes ECM fibers in parallel arrays; cancer cells migration and invasion	[96,97]
	SDC-2 (ectodomain)	Cancer cell-released SDC-2 (shed); macrophages attraction to the tumor and conversion into TAMs; endothelial cells activation to induce angiogenesis	[98]
	GPC-3	Cancer cell PG; recruitment of M2-polarized macrophages	[99]
	Versican	• Cancer cells-secreted PG; regulates macrophage function • CAF-released PG; cancer cell migration/invasion	[100,101]
	Lumican	CAF-released PG; tumorigenesis and metastasis	[43]
	ICAM1	CAFs-released molecule; immune cell activation and polarization; cancer cell quiescence and drug resistance	[102]
	MMP-1, MMP-3	Fibroblast-released enzymes; E-cadherin cleavage, leading to cancer cells EMT and invasion	[102]
	MMP-2, MMP-9, MMP-13, MMP-14	Cancer cell-released enzymes; inhibition of T-cell proliferation and antigen presentation	[103,104]
	uPA	CAF-released enzyme; cancer cell migration/invasion	[43]
	Collagen, LOX	Cancer cell-derived enzyme; ECM stiffness; cancer cell pseudopodia formation, enhanced proliferation and spreading; cancer cell metabolic reprogramming	[105,106]
	OPN	Cancer cell-released protein; stromal cell recruitment	[107]
ECM-related effectors	Tenascin-C	CAF-released glycoprotein; cancer cell proliferation, migration	[43]
	HIF	Cancer cells-released factors; macrophage and fibroblast recruitment to hypoxic regions of the primary tumor; ECM remodeling, angiogenesis	[95]
	HGF, CTGF, EGF, FGF, IGF, TGF- β , CXCL11, CXCL12, IL-6, IL-10, IL-1 β	CAF-released factors; cancer cell survival, proliferation, invasion	[101,102,108,109]
	VEGFA, TGF, PDGF, IL-6, CXCL12	CAF-released factors; angiogenesis, recruitment of bone marrow-derived endothelial cells	[102,108]
	IL-6, IL-17, VEGF, FGF, TNF- α	Bone marrow-mesenchymal stem cells-released factors; cancer cell survival, proliferation and drug resistance	[110]
	TGF- β	Cancer cell-released factor; fibroblasts stimulation, collagen and fibronectin production, chemokines (related to tumor promotion) secretion	[111]
	GM-CSF, LIF	Cancer cell- and CAF-released factors; macrophage recruitment and polarization	[112]
	CCL2, CCL5	CAF-released cytokines; macrophage attraction	[108]
	TGF- β , IL-6	CAF-released cytokine; cancer cell EMT	[43,108]

ECM regulates extracellular vesicle release and cell–cell communication during cancer progression

ECM plays a crucial role in regulating the release and content of EVs, as well as influencing their interaction with and navigation through the ECM. The internal

content of EVs, the surface-associated macromolecules, and the EV-evoked signaling effects in target cells define the bioactivity of EVs. EVs can interact with target cells by binding to cell surface receptors or by being internalized. Additionally, they may participate in ECM remodeling by carrying proteolytic enzymes,

such as MMPs, or by regulating the expression of ECM macromolecules in target cells (Fig. 2). Recent studies have demonstrated that the ECM mechanical properties, particularly its stiffness, can also regulate the secretion of EVs [45]. Cells cultured on stiffer ECM substrates secrete higher levels of EVs compared to those on softer substrates, a phenomenon mediated by mechanotransduction pathways that translate ECM stiffness into intracellular signaling cascades, ultimately affecting the biogenesis and release of EVs [46]. In addition to modulating EV secretion, the ECM can also affect the cargo of EVs (Fig. 2). As shown in Table 2, ECM macromolecules, such as collagens, laminins, and fibronectin, can be selectively packaged into EVs and influence the behavior of recipient cells, contributing to processes, including tissue remodeling, cell migration, and angiogenesis. Furthermore, ECM remodeling can influence the uptake and biodistribution of EVs within tissues by creating physical barriers or facilitating the diffusion of EVs, thereby affecting their ability to reach and interact with target cells [47]. Finally, ECM components can serve as binding sites for EVs, modulating their localization and availability for uptake by recipient cells (Fig. 2).


Cancer initiation strongly depends on microenvironmental cues originated from various components of the niche, including the ECM, while communication between cancer and neighboring normal cells is fundamental for the progression of the disease [48,49] (Fig. 2). Notably, ECM properties can influence intracellular signaling pathways as well as TME remodeling through secreted exosomes [50,51]. Exosomes, an important subtype of EVs, are formed within endosomal compartments (i.e., multivesicular bodies, MVBs) and released via exocytosis, while their typical size is 30–150 nm. As functional matrix components, exosomes are involved in cell–cell communication, carrying bioactive components that mediate crosstalk between different cell types within the TME [52]. Exosomes regulate critical processes during cancer progression, including cell proliferation, angiogenesis, and PMN formation [53].

Our group has established the key role of estrogen receptor beta (ER β) in modulating aggressive phenotype, EMT, matrix composition, miRNA signatures, and tumorigenesis of triple-negative breast cancer (TNBC) cells by silencing the expression of the functional ER β 1 variant [54–56]. In Fig. 3, we demonstrate the alterations in morphological characteristics and EVs release between MDA-MB-231 TNBC breast cancer cells and ER β -suppressed cells (shER β) in 2D and 3D cell cultures. As shown in Fig. 3A, SEM analysis of MDA-MB-231 cells in 2D monolayers demonstrates

cellular protrusions (i.e., microvilli and filopodia), which release exosomes and microvesicles on the cytoplasmic sites of cell surface (Fig. 3B insert). Notably, the existence of filopodia and tunneling nanotubes (TNTs) that is observed in Fig. 3B has been previously associated with adhering exosomes and microvesicles surfing from one cell to another [57]. MDA-MB-231-derived 3D spheroids, both microvesicles and exosomes are released in cell surface (Fig. 3C). The cytoplasmic pores for the direct uptake of EVs can also be observed (large arrows in Fig. 3C). On the other hand, in shER β -derived 3D spheroids (Fig. 3D), a lot of microvesicles and few exosomes can be observed. Moreover, cells are very compact but show intercellular channels probably avoiding the nutrient support in the spheroid core. These observations highlight the critical importance of ERs in modulating EVs release that in turn mediate cell–cell communication [7,8].

Exosomal cargo may include ECM components modulating matrix assembly and subsequently impacting cell phenotype and communication [58,59]. Abnormal deposition of ECM components may lead to the reorganization of the extracellular microenvironment, generating a cancer-supporting matrix guiding the formation of PMN toward the initiation of metastasis [53,60]. For example, exosomes from metastatic breast cancer cells activate MMP-2, remodeling the ECM and inducing the release of specific GFs, resulting in invasion and metastasis [61] (Fig. 2). Interestingly, increased ECM stiffness has been associated with upregulation of exosome secretion, inducing intrinsic oncogenic signaling in recipient cells [50]. Syndecans have been shown to function as key players in membrane vesicle trafficking, guiding exosome biogenesis, composition, and release [62]. Fibronectin-containing exosomes further regulate the functional properties of cancer cells, such as invasion and migration [63]. Additionally, exosomal integrins interact with ECM components, such as fibronectin and laminins, to promote local secretion of exosomes, facilitating adhesion and directed cell migration [16,64] (Table 2).

Exosomes released from cancer cells are also enriched in ECM-degrading enzymes that mediate matrix remodeling, thus promoting cancer cell invasion, dissemination to distant tissues, and PMN formation (Fig. 4) [4,16]. For instance, exosomes from metastatic breast cancer cells have been shown to activate MMP-2, thus remodeling the ECM and inducing the release of specific GFs, resulting in invasion and metastasis [61] (Fig. 2, Table 2). The following pro-angiogenic proteins were identified in exosomes originating from glioblastoma cells:

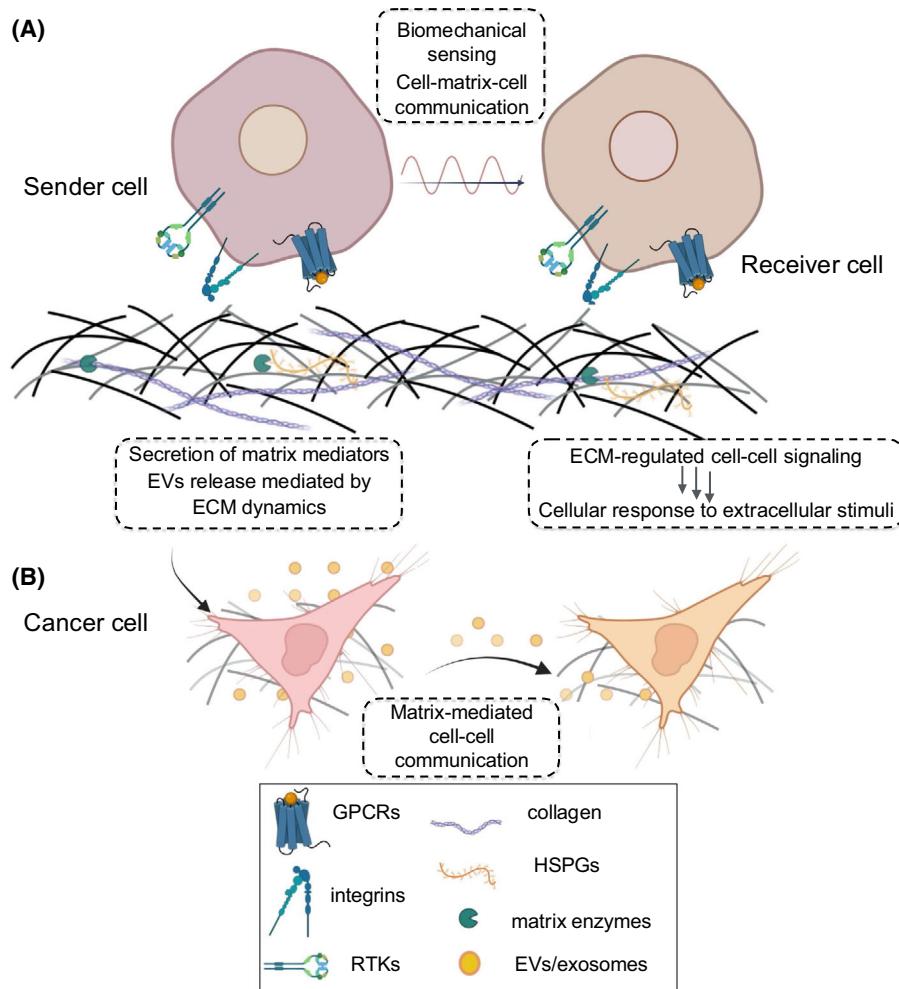


Fig. 3. Scanning electron microscopy of 2D/3D cultures of breast cancer cells showing EVs release. (A) MDA-MB-231 breast cancer cells in 2D monolayers show many microvilli or short filopodia which release exosomes (arrows) in the microenvironment. White bar, 1 μ m. (B) Three MDA-MB-231 breast cancer cells in 2D conditions are connected by TNTs on which exosomes are surfing (arrows). White bar, 1 μ m. Inside the panel, a single MDA-MB-231 breast cancer cell at higher magnification displays exosomes less than 150 nm in diameter (small arrows) and microvesicles measured about 1000 nm (large arrows) on the cytoplasmic surface. White bar, 1 μ m. The small pores showing different sizes at the cell surface correspond to the cytoplasmic sites of uptake and release of EVs. (C) MDA-MB-231-derived 3D spheroids hold cells producing both exosomes and microvesicles. Cytoplasmic pores for the direct uptake of the exosomes are also visible (large arrow). A single exosome (small arrow) is surfing on the surface of a TNT connecting adjacent cells. (D) shER β MDA-MB-231-derived 3D spheroids produce a few exosomes (small arrows) and many microvesicles (large arrows), which are detectable on the cytoplasmic surfaces that display strict cell-cell contacts and no cytoplasmic protrusions or TNTs. The very compact spheroid induces the development of relatively wide intercellular channels (10 μ m in diameter) which can ensure nutrient support to the inner cells of the spheroid. White bars, 10 μ m. Scale bars are colored (white, black, or gray) for visibility only; gray indicates a white bar obscured by reduced brightness. Colors do not convey additional parameters beyond length. 2D, two-dimensional; EVs, extracellular vesicles; TNTs, tunneling nanotubes.

angiopoietin, angiogenin, fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), IL-6 and IL-8, and the tissue MMP inhibitors TIMP-1 and TIMP-2. Extensive studies in melanoma-, myeloma-, glioblastoma-, and nasopharyngeal cancer-derived exosomes have identified that angiogenesis is also boosted by exosomes enriched in MMP-2, MMP-9 and MMP-13 [65]. Moreover, miRNAs carried by exosomes are involved in intercellular communication and promote angiogenesis, TME remodeling, and metastasis [16,66]. Hence, exosomal miRNAs derived from cancer cells (i.e., miR-21, miR-23, miR-30, miR-105, miR-130, miR-135, miR-155, miR-210, miR-424, and miR-939) act as mediators between cancer cells and distant tissues, inducing paracrine or endocrine pathways to regulate cancer cell behavior [67,68]. Exosomal miRNAs also induce MMP expression and promote EMT, thereby enhancing the metastatic potential of cancer cells [16].

Conclusions and future perspectives

ECMs are unique, genetically encoded, and post-translationally modified 3D dynamic macromolecular networks of interacting macromolecules that play critical roles in regulating tissue homeostasis. Extracellular stimuli sense ECM (Fig. 4A) and establish a mechanism of cell-matrix and cell-cell mechanical communication, driving the progression of pathological conditions, including cancer, inflammation, and fibrotic diseases via endocrine and paracrine interactions. EVs including exosomes encapsulate major matrix components and are emerging as promising diagnostic tumor biomarkers and therapeutic tools in oncology (Fig. 4B). This article focused on the influence of ECM biomechanical properties in mediating cell-cell communication, EVs release, and matrix-based cell-cell communication during cancer development and progression. Future directions may involve the advanced biophysical characterization of

Fig. 4. Emerging therapeutic strategies targeting matrix mechanosensing and intricate cell communication signaling. ECM is a genetically encoded and post-translationally modified 3D macromolecular network that orchestrates cell-matrix and matrix-mediated cell-cell communication through mechanosensing signaling. (A) Biomechanical cues transmitted through the ECM and cell surface receptors (i.e., integrins, RTKs, GPCRs, and CMACs) influence cell behavior, contributing to tissue homeostasis or, under pathological conditions, promoting cancer progression, inflammation, and fibrosis. (B) ECM dynamics regulate the secretion of matrix mediators (i.e., growth factors, cytokines etc.) and the release of EVs/exosomes, which encapsulate key matrix components and serve as diagnostic biomarkers and potential therapeutic agents. Cancer cells exploit these ECM-driven communication routes to support EMT, phenotypic switch, proliferation, migration/invasion, and angiogenesis in order to guide the formation of premetastatic niche and the initiation of metastasis. Therapeutic strategies include engineering EVs with ECM-modifying cargo (i.e., siRNAs, miRNAs, protein modulators) to reprogram TME, and targeting specific intracellular pathways to influence EV secretion and function. 3D, three-dimensional; CMACs, cell-matrix adhesion complexes; ECM, extracellular matrix; EMT, epithelial-to-mesenchymal transition; EVs, extracellular vesicles; GPCRs, G-protein-coupled receptors; HSPGs, heparan sulfate proteoglycans; miRNA, microRNA; RTKs, receptor tyrosine kinases; siRNA, small interfering RNA; TME, tumor microenvironment. Created in BioRender.

the ECM to unravel its intricate properties. Targeted therapies that modulate ECM components or their interactions with cells hold promise for treatment approaches for diseases, such as cancer and fibrosis. Moreover, biomimetic ECM-based bioscaffolds, accurately mimicking native tissue microenvironments, offer a controlled platform for studying cell behavior and facilitating tissue regeneration. Additionally,

EVs/exosome-based therapeutics hold potential for modulating ECM remodeling and cell-cell communication, particularly in cancer and fibrosis. Engineered EVs can be loaded with ECM-modifying molecules, such as siRNAs, miRNA precursors/inhibitors, or signaling modulators to disrupt pro-tumorigenic matrix components and pathways driving cell proliferation, EMT, invasion, and angiogenesis. Additionally, we

propose that via targeted modulation (i.e., RTK inhibitors, CRISPR-based gene editing) of intracellular signaling pathways, such as those involving TGF- β , YAP/TAZ, or integrins, it may be possible to control the quantity and cargo of the cancer-derived EVs/exosomes. This dual approach, based on reprogramming both EV/exosome content and secretion mechanisms, offers a dynamic strategy to remodel the TME. In fact, precision medicine approaches tailored to individual ECM profiles and disease characteristics may enhance treatment efficacy by utilizing advanced strategies to modulate the TME, targeting specific signaling pathways or incorporating immunomodulatory approaches. To this end, integrating multi-omics approaches will be essential to comprehensively understand ECM-mediated processes in health and disease by analyzing molecular interactions in a feedback-responsive manner. Ultimately, translating fundamental discoveries into clinical applications throughout robust preclinical research is essential for the successful implementation of ECM-targeted therapies toward personalized treatment approaches to attenuate cancer progression.

Acknowledgements

Z.P. acknowledges FEBS Booster Fund and the funding program ‘MEDICUS’, of the University of Patras. N.K.K. acknowledges funding from HORIZON-MSCA-2022-SE-01 project CARES (grant number: 101130985).

Conflict of interest

The authors declare no conflict of interest.

Author contributions

Z.P., S.M., N.E.K., C.K., and N.S.M. contributed to the interpretation and review of reported data, and writing – original draft. Z.P., S.M., and N.E.K. contributed to the writing – review and editing, and conceptual design and preparation of figures. M.F. contributed to the formal SEM analysis, formal analysis, acquisition, and data interpretation. N.K.K. contributed to the conceptual design, interpretation, and writing – review and editing. All authors have read and approved the final version for publication.

References

- 1 Armingol E, Officer A, Harismendy O & Lewis NE (2021) Deciphering cell–cell interactions and communication from gene expression. *Nat Rev Genet* **22**, 71–88.
- 2 Karamanos NK, Piperigkou Z, Gourdoupi C, Mangani S & Vivanco M dM (2025) Extracellular matrix matters: matrix-based bioscaffolds in advancing translational cancer research and targeted therapy. *Am J Physiol-Cell Physiol* **328**, C1957–C1963.
- 3 Franchi M, Piperigkou Z, Mastronikolis NS & Karamanos N (2023) Extracellular matrix biomechanical roles and adaptation in health and disease. *FEBS J* **291**, 16938.
- 4 Karamanos NK, Piperigkou Z, Passi A, Götte M, Rousselle P & Vlodavsky I (2021) Extracellular matrix-based cancer targeting. *Trends Mol Med* **27**, 1000–1013.
- 5 Kyriakopoulou K, Piperigkou Z, Tzaferi K & Karamanos NK (2023) Trends in extracellular matrix biology. *Mol Biol Rep* **50**, 853–863.
- 6 Theocharis AD, Manou D & Karamanos NK (2019) The extracellular matrix as a multitasking player in disease. *FEBS J* **286**, 2830–2869.
- 7 Mangani S, Piperigkou Z, Koletsis NE, Ioannou P & Karamanos NK (2024) Estrogen receptors and extracellular matrix: the critical interplay in cancer development and progression. *FEBS J* **292**, 17270.
- 8 Piperigkou Z & Karamanos NK (2020) Estrogen receptor-mediated targeting of the extracellular matrix network in cancer. *Semin Cancer Biol* **62**, 116–124.
- 9 Patel NJ, Ashraf A & Chung EJ (2023) Extracellular vesicles as regulators of the extracellular matrix. *Bioengineering* **10**, 136.
- 10 Dzobo K & Dandara C (2023) The extracellular matrix: its composition, function, remodeling, and role in tumorigenesis. *Biomimetics* **8**, 146.
- 11 Karamanos NK, Piperigkou Z, Theocharis AD, Watanabe H, Franchi M, Baud S, Brézillon S, Götte M, Passi A, Vigetti D *et al.* (2018) Proteoglycan chemical diversity drives multifunctional cell regulation and therapeutics. *Chem Rev* **118**, 9152–9232.
- 12 Kollet O, Das A, Karamanos N, Auf Dem Keller U & Sagi I (2023) Redefining metalloproteases specificity through network proteolysis. *Trends Mol Med* **30**, 147–163.
- 13 Ricard-Blum S & Vallet SD (2016) Matricryptins network with matricellular receptors at the surface of endothelial and tumor cells. *Front Pharmacol* **7**, 11.
- 14 Karamanos NK, Theocharis AD, Piperigkou Z, Manou D, Passi A, Skandalis SS, Vynios DH, Orian-Rousseau V, Ricard-Blum S, Schmelzer CEH *et al.* (2021) A guide to the composition and functions of the extracellular matrix. *FEBS J* **288**, 6850–6912.
- 15 Rilla K, Mustonen A-M, Arasu UT, Häkkinen K, Matilainen J & Nieminen P (2019) Extracellular vesicles are integral and functional components of the extracellular matrix. *Matrix Biol* **75–76**, 201–219.
- 16 Karampoga A, Tzaferi K, Koutsakis C, Kyriakopoulou K & Karamanos NK (2022) Exosomes

and the extracellular matrix: a dynamic interplay in cancer progression. *Int J Dev Biol* **66**, 97–102.

17 Ferlizza E, Romaniello D, Borrelli F, Pagano F, Girone C, Gelfo V, Kuhre RS, Morselli A, Mazzeschi M, Sgarzi M *et al.* (2023) Extracellular vesicles and epidermal growth factor receptor activation: interplay of drivers in cancer progression. *Cancers (Basel)* **15**, 2970.

18 Dobra G, Gyukity-Sebestyén E, Bukva M, Harmati M, Nagy V, Szabó Z, Pankotai T, Klekner Á & Buzás K (2023) MMP-9 as prognostic marker for brain tumours: a comparative study on serum-derived small extracellular vesicles. *Cancer* **15**, 712.

19 Schmidtmann M & D’Souza-Schorey C (2023) Extracellular vesicles: biological packages that modulate tumor cell invasion. *Cancer* **15**, 5617.

20 O’Brien K, Breyne K, Ughetto S, Laurent LC & Breakefield XO (2020) RNA delivery by extracellular vesicles in mammalian cells and its applications. *Nat Rev Mol Cell Biol* **21**, 585–606.

21 Nahum A, Koren Y, Ergaz B, Natan S, Miller G, Tamir Y, Goren S, Kolel A, Jagadeeshan S, Elkabets M *et al.* (2023) Inference of long-range cell–cell force transmission from ECM remodeling fluctuations. *Commun Biol* **6**, 811.

22 Han YL, Ronceray P, Xu G, Malandrino A, Kamm RD, Lenz M, Broedersz CP & Guo M (2018) Cell contraction induces long-ranged stress stiffening in the extracellular matrix. *Proc Natl Acad Sci* **115**, 4075–4080.

23 Goren S, Koren Y, Xu X & Lesman A (2020) Elastic anisotropy governs the range of cell-induced displacements. *Biophys J* **118**, 1152–1164.

24 Sapir L & Tzilil S (2017) Talking over the extracellular matrix: how do cells communicate mechanically? *Semin Cell Dev Biol* **71**, 99–105.

25 Kimura S & Tsuji T (2021) Mechanical and immunological regulation in wound healing and skin reconstruction. *Int J Mol Sci* **22**, 5474.

26 Schwager SC, Taufalele PV & Reinhart-King CA (2019) Cell–cell mechanical communication in cancer. *Cell Mol Bioeng* **12**, 1–14.

27 Su J, Song Y, Zhu Z, Huang X, Fan J, Qiao J & Mao F (2024) Cell–cell communication: new insights and clinical implications. *Signal Transduct Target Ther* **9**, 196.

28 Goody MF, Kelly MW, Lessard KN, Khalil A & Henry CA (2010) Nrk2b-mediated NAD⁺ production regulates cell adhesion and is required for muscle morphogenesis *in vivo*. *Dev Biol* **344**, 809–826.

29 Davidson CD, DePalma SJ, Wang WY, Kamen JL, Jayco DKP & Baker BM (2021) Mechanical intercellular communication via matrix-borne cell force transmission during vascular network formation. *Adv Sci* **11**, e2306210.

30 Di X, Gao X, Peng L, Ai J, Jin X, Qi S, Li H, Wang K & Luo D (2023) Cellular mechanotransduction in health and diseases: from molecular mechanism to therapeutic targets. *Signal Transduct Target Ther* **8**, 282.

31 Lesman A, Rosenfeld D, Landau S & Levenberg S (2016) Mechanical regulation of vascular network formation in engineered matrices. *Adv Drug Deliv Rev* **96**, 176–182.

32 Diller RB & Tabor AJ (2022) The role of the extracellular matrix (ECM) in wound healing: a review. *Biomimetics* **7**, 87.

33 Rodrigues M, Kosaric N, Bonham CA & Gurtner GC (2019) Wound healing: a cellular perspective. *Physiol Rev* **99**, 665–706.

34 Pakshir P, Alizadehgiashi M, Wong B, Coelho NM, Chen X, Gong Z, Shenoy VB, McCulloch CA & Hinz B (2019) Dynamic fibroblast contractions attract remote macrophages in fibrillar collagen matrix. *Nat Commun* **10**, 1850.

35 Sunyer R, Conte V, Escribano J, Elosegui-Artola A, Labernadie A, Valon L, Navajas D, García-Aznar JM, Muñoz JJ, Roca-Cusachs P *et al.* (2016) Collective cell durotaxis emerges from long-range intercellular force transmission. *Science* **353**, 1157–1161.

36 Ouyang M, Zhu Y, Wang J, Zhang Q, Hu Y, Bu B, Guo J & Deng L (2022) Mechanical communication-associated cell directional migration and branching connections mediated by calcium channels, integrin $\beta 1$, and N-cadherin. *Front Cell Dev Biol* **10**, 942058.

37 Liu Z, Lin W, Fan Y, Kampf N, Wang Y & Klein J (2020) Effects of hyaluronan molecular weight on the lubrication of cartilage-emulating boundary layers. *Biomacromolecules* **21**, 4345–4354.

38 Zhu P, Lu H, Wang M, Chen K, Chen Z & Yang L (2023) Targeted mechanical forces enhance the effects of tumor immunotherapy by regulating immune cells in the tumor microenvironment. *Cancer Biol Med* **20**, 44–55.

39 Bregenzer ME, Horst EN, Mehta P, Novak CM, Raghavan S, Snyder CS & Mehta G (2019) Integrated cancer tissue engineering models for precision medicine. *PLoS One* **14**, e0216564.

40 Orias R, Wiegand T, Escribano J, Elosegui-Artola A, Uriarte JJ, Moreno-Pulido C, Platzman I, Delcanale P, Albertazzi L, Navajas D *et al.* (2017) Force loading explains spatial sensing of ligands by cells. *Nature* **552**, 219–224.

41 Ansardamavandi A & Tafazzoli-Shadpour M (2021) The functional cross talk between cancer cells and cancer associated fibroblasts from a cancer mechanics perspective. *Biochim Biophys Acta* **1868**, 119103.

42 Glentis A, Oertle P, Mariani P, Chikina A, El Marjou F, Attieh Y, Zaccarini F, Lae M, Loew D, Dingli F *et al.* (2017) Cancer-associated fibroblasts induce

metalloprotease-independent cancer cell invasion of the basement membrane. *Nat Commun* **8**, 924.

43 Jang I & Beningo K (2019) Integrins, CAFs and mechanical forces in the progression of cancer. *Cancer* **11**, 721.

44 Peng Z, Ding Y, Zhang H, Meng X, Huang Y, Zhang P, Li Z & Zhou X (2024) Mechanical force-mediated interactions between cancer cells and fibroblasts and their role in the progression of hepatocellular carcinoma. *J Cancer Metastasis Treat* **10**, 4.

45 Liu Z, Liu Y, Li Y, Xu S, Wang Y, Zhu Y, Jiang C, Wang K, Zhang Y & Wang Y (2024) ECM stiffness affects cargo sorting into MSC-EVs to regulate their secretion and uptake behaviors. *J Nanobiotechnology* **22**, 124.

46 Dawson TR & Weaver AM (2023) Niche tension controls exosome production. *Nat Cell Biol* **25**, 377–378.

47 Arif S & Moulin VJ (2023) Extracellular vesicles on the move: traversing the complex matrix of tissues. *Eur J Cell Biol* **102**, 151372.

48 Kyriakopoulou K, Koutsakis C, Piperigkou Z & Karamanos NK (2023) Recreating the extracellular matrix: novel 3D cell culture platforms in cancer research. *FEBS J* **290**, 16778.

49 Zolota V, Tzelepi V, Piperigkou Z, Kourea H, Papakonstantinou E, Argentou M-I & Karamanos NK (2021) Epigenetic alterations in triple-negative breast cancer—the critical role of extracellular matrix. *Cancer* **13**, 713.

50 Wu B, Liu D-A, Guan L, Myint PK, Chin L, Dang H, Xu Y, Ren J, Li T, Yu Z *et al.* (2023) Stiff matrix induces exosome secretion to promote tumour growth. *Nat Cell Biol* **25**, 415–424.

51 Maia J, Caja S, Strano Moraes MC, Couto N & Costa-Silva B (2018) Exosome-based cell–cell communication in the tumor microenvironment. *Front Cell Dev Biol* **6**, 18.

52 Yang J, Bahcecioglu G & Zorlutuna P (2020) The extracellular matrix and vesicles modulate the breast tumor microenvironment. *Bioengineering* **7**, 124.

53 Popova NV & Jücker M (2022) The functional role of extracellular matrix proteins in cancer. *Cancer* **14**, 238.

54 Piperigkou Z, Bouris P, Onisto M, Franchi M, Kletsas D, Theocharis AD & Karamanos NK (2016) Estrogen receptor beta modulates breast cancer cells functional properties, signaling and expression of matrix molecules. *Matrix Biol* **56**, 4–23.

55 Piperigkou Z, Koutsandreas A, Franchi M, Zolota V, Kletsas D, Passi A & Karamanos NK (2022) ESR2 drives mesenchymal-to-epithelial transition in triple-negative breast cancer and tumorigenesis *in vivo*. *Front Oncol* **12**, 917633.

56 Piperigkou Z, Franchi M, Götte M & Karamanos NK (2017) Estrogen receptor beta as epigenetic mediator of miR-10b and miR-145 in mammary cancer. *Matrix Biol* **64**, 94–111.

57 Franchi M, Piperigkou Z, Riti E, Masola V, Onisto M & Karamanos NK (2020) Long filopodia and tunneling nanotubes define new phenotypes of breast cancer cells in 3D cultures. *Matrix Biol Plus* **6–7**, 100026.

58 Albacete-Albacete L, Sánchez-Álvarez M & Del Pozo MA (2021) Extracellular vesicles: an emerging mechanism governing the secretion and biological roles of tenascin-C. *Front Immunol* **12**, 671485.

59 Das A, Mohan V, Krishnaswamy VR, Solomonov I & Sagi I (2019) Exosomes as a storehouse of tissue remodeling proteases and mediators of cancer progression. *Cancer Metastasis Rev* **38**, 455–468.

60 Nawaz M, Shah N, Zanetti B, Maugeri M, Silvestre R, Fatima F, Neder L & Valadi H (2018) Extracellular vesicles and matrix remodeling enzymes: the emerging roles in extracellular matrix remodeling, progression of diseases and tissue repair. *Cells* **7**, 167.

61 Malgundkar SH & Tamimi Y (2023) Exosomes as crucial emerging tools for intercellular communication with therapeutic potential in ovarian cancer. *Future Sci OA* **9**, FSO833.

62 Motta JM, Hassan H & Ibrahim SA (2023) Revisiting the Syndecans: master signaling regulators with prognostic and targetable therapeutic values in breast carcinoma. *Cancer* **15**, 1794.

63 Giordano C, La Camera G, Gelsomino L, Barone I, Bonofoglio D, Andò S & Catalano S (2020) The biology of exosomes in breast cancer progression: dissemination, immune evasion and metastatic colonization. *Cancer* **12**, 2179.

64 Winkler J, Abisoye-Ogunniyan A, Metcalf KJ & Werb Z (2020) Concepts of extracellular matrix remodelling in tumour progression and metastasis. *Nat Commun* **11**, 5120.

65 Olejarcz W, Kubiak-Tomaszewska G, Chrzanowska A & Lorenc T (2020) Exosomes in angiogenesis and anti-angiogenic therapy in cancers. *Int J Mol Sci* **21**, 5840.

66 Mastronikolis NS, Kyrodimos E, Spyropoulou D, Delides A, Giotakis E, Piperigkou Z & Karamanos NK (2023) The role of exosomes in epithelial-to-mesenchymal transition and cell functional properties in head and neck cancer. *Cancer* **15**, 2156.

67 McMasters A, McMasters KM & Hao H (2021) Exosome to promote cancer progression via its bioactive cargoes. *Arch Cancer Biol Ther* **2**, 29–34.

68 Li C, Zhou T, Chen J, Li R, Chen H, Luo S, Chen D, Cai C & Li W (2022) The role of Exosomal miRNAs in cancer. *J Transl Med* **20**, 6.

69 Mathew-Steiner SS, Roy S & Sen CK (2021) Collagen in wound healing. *Bioengineering* **8**, 63.

70 Xu W, He M & Lu Q (2024) Fibronectin connecting cell sheet based on click chemistry for wound repair. *Adv Sci* **11**, 2306746.

71 Lu F, Liu J, Ithychanda SS, Apostol M, Das M, Deshpande G, Plow EF & Qin J (2023) A mechanism of platelet integrin αIIbb3 outside-in signaling through a novel integrin αIIb subunit-filamin-actin linkage. *Blood* **2022**:18333.

72 Rousselle P, Montmasson M & Garnier C (2019) Extracellular matrix contribution to skin wound re-epithelialization. *Matrix Biol* **75–76**, 12–26.

73 Cárdenas-León CG, Mäemets-Allas K, Klaas M, Lagus H, Kankuri E & Jaks V (2022) Matricellular proteins in cutaneous wound healing. *Front Cell Dev Biol* **10**, 1073320.

74 Pérez LA, Leyton L & Valdivia A (2022) Thy-1 (CD90), integrins and Syndecan 4 are key regulators of skin wound healing. *Front Cell Dev Biol* **10**, 810474.

75 Melrose J (2016) Glycosaminoglycans in wound healing. *Bone Tissue Regen Insights* **7**, S38670.

76 Mezu-Ndubuisi OJ & Maheshwari A (2021) The role of integrins in inflammation and angiogenesis. *Pediatr Res* **89**, 1619–1626.

77 Cialdai F, Risaliti C & Monici M (2022) Role of fibroblasts in wound healing and tissue remodeling on earth and in space. *Front Bioeng Biotechnol* **10**, 958381.

78 Nguyen TT, Mobashery S & Chang M (2016) Roles of matrix metalloproteinases in cutaneous wound healing. In *Wound healing—new insights into ancient challenges* (Alexandrescu VA, ed.), InTech,

79 Mayya C, Kharbhanda S, Haque A & Bhatia D (2021) Mechanisms of collective cell migration in wound healing: physiology and disease. In *Wound Healing Research* (Kumar P & Kothari V, eds), pp. 55–74. Singapore, Springer Singapore.

80 Michopoulou A, Montmasson M, Garnier C, Lambert E, Dayan G & Rousselle P (2020) A novel mechanism in wound healing: laminin 332 drives MMP9/14 activity by recruiting syndecan-1 and CD44. *Matrix Biol* **94**, 1–17.

81 Izu Y, Adams SM, Connizzo BK, Beason DP, Soslowsky LJ, Koch M & Birk DE (2021) Collagen XII mediated cellular and extracellular mechanisms regulate establishment of tendon structure and function. *Matrix Biol* **95**, 52–67.

82 Guss EJ, Akbergenova Y, Cunningham KL & Littleton JT (2023) Loss of the extracellular matrix protein Perlecan disrupts axonal and synaptic stability during drosophila development. *elife* **12**, RP88273.

83 Piprek RP, Kloc M, Mizia P & Kubiak JZ (2020) The central role of cadherins in gonad development, reproduction, and fertility. *Int J Mol Sci* **21**, 8264.

84 Fiorino C & Harrison RE (2016) E-cadherin is important for cell differentiation during osteoclastogenesis. *Bone* **86**, 106–118.

85 Marie PJ, Häy E, Modrowski D, Revollo L, Mbalaviele G & Civitelli R (2014) Cadherin-mediated cell–cell adhesion and signaling in the skeleton. *Calcif Tissue Int* **94**, 46–54.

86 De Pasquale V & Pavone LM (2019) Heparan sulfate proteoglycans: the sweet side of development turns sour in mucopolysaccharidoses. *Biochim Biophys Acta Mol Basis Dis* **1865**, 165539.

87 Cioce A, Cavani A, Cattani C & Scopelliti F (2024) Role of the skin immune system in wound healing. *Cells* **13**, 624.

88 Chicharro-Alcántara D, Rubio-Zaragoza M, Damiá Giménez E, Carrillo-Poveda J, Cuervo-Serrato B, Peláez-Gorrea P & Sopena-Juncosa J (2018) Platelet rich plasma: new insights for cutaneous wound healing management. *J Funct Biomater* **9**, 10.

89 Chong DLW, Trinder S, Labelle M, Rodriguez-Justo M, Hughes S, Holmes AM, Scotton CJ & Porter JC (2020) Platelet-derived transforming growth factor-β1 promotes keratinocyte proliferation in cutaneous wound healing. *J Tissue Eng Regen Med* **14**, 645–649.

90 Raziyeva K, Kim Y, Zharkinbekov Z, Kassymbek K, Jimi S & Saparov A (2021) Immunology of acute and chronic wound healing. *Biomolecules* **11**, 700.

91 Tan Y, Zhang M, Kong Y, Zhang F, Wang Y, Huang Y, Song W, Li Z, Hou L, Liang L *et al.* (2024) Fibroblasts and endothelial cells interplay drives hypertrophic scar formation: insights from *in vitro* and *in vivo* models. *Bioeng Transl Med* **9**, e10630.

92 Raina D, Bahadori A, Stanoev A, Protzek M, Koseska A & Schröter C (2021) Cell-cell communication through FGF4 generates and maintains robust proportions of differentiated cell types in embryonic stem cells. *Development* **148**, 199926.

93 Wu G, Liang Y, Xi Q & Zuo Y (2025) New insights and implications of cell–cell interactions in developmental biology. *Int J Mol Sci* **26**, 3997.

94 Li S, Cai X, Guo J, Li X, Li W, Liu Y & Qi M (2025) Cell communication and relevant signaling pathways in osteogenesis–angiogenesis coupling. *Bone Res* **13**, 45.

95 Rodrigues J, Heinrich MA, Teixeira LM & Prakash J (2021) 3D *in vitro* model (R)evolution: unveiling tumor–stroma interactions. *Trends Cancer* **7**, 249–264.

96 Yang N & Friedl A (2016) Syndecan-1-induced ECM fiber alignment requires integrin $\alpha v\beta 3$ and Syndecan-1 ectodomain and heparan sulfate chains. *PLoS One* **11**, e0150132.

97 Ditura F, Gigante G, Scialpi R, Mancarella S, Fabregat I & Giannelli G (2022) Proteoglycans in cancer: friends or enemies? A special focus on hepatocellular carcinoma. *Cancer* **14**, 1902.

98 Jang B, Song H-K, Hwang J, Lee S, Park E, Oh A, Hwang ES, Sung JY, Kim Y-N, Park K *et al.* (2022) Shed syndecan-2 enhances colon cancer progression by increasing cooperative angiogenesis in the tumor microenvironment. *Matrix Biol* **107**, 40–58.

99 Kaur SP & Cummings BS (2019) Role of glycans in regulation of the tumor microenvironment and cancer progression. *Biochem Pharmacol* **168**, 108–118.

100 Tzanakakis G, Neagu M, Tsatsakis A & Nikitovic D (2019) Proteoglycans and immunobiology of cancer—therapeutic implications. *Front Immunol* **10**, 875.

101 Yeung T-L, Leung C, Li F, Wong S & Mok S (2016) Targeting stromal-cancer cell crosstalk networks in ovarian cancer treatment. *Biomolecules* **6**, 3.

102 Kalluri R (2016) The biology and function of fibroblasts in cancer. *Nat Rev Cancer* **16**, 582–598.

103 Tampa M, Georgescu SR, Mitran MI, Mitran CI, Matei C, Caruntu A, Scheau C, Nicolae I, Matei A, Caruntu C *et al.* (2021) Current perspectives on the role of matrix metalloproteinases in the pathogenesis of basal cell carcinoma. *Biomolecules* **11**, 903.

104 Gonzalez-Avila G, Sommer B, García-Hernández AA & Ramos C (2020) Matrix metalloproteinases' role in tumor microenvironment. In *Tumor Microenvironment* (Birbrair A, ed.), pp. 97–131. Springer International Publishing, Cham.

105 Marozzi M, Parnigoni A, Negri A, Viola M, Vigetti D, Passi A, Karousou E & Rizzi F (2021) Inflammation, extracellular matrix remodeling, and Proteostasis in tumor microenvironment. *Int J Mol Sci* **22**, 8102.

106 Mai Z, Lin Y, Lin P, Zhao X & Cui L (2024) Modulating extracellular matrix stiffness: a strategic approach to boost cancer immunotherapy. *Cell Death Dis* **15**, 307.

107 Hill BS, Sarnella A, D'Avino G & Zannetti A (2020) Recruitment of stromal cells into tumour microenvironment promote the metastatic spread of breast cancer. *Semin Cancer Biol* **60**, 202–213.

108 Kwa MQ, Herum KM & Brakebusch C (2019) Cancer-associated fibroblasts: how do they contribute to metastasis? *Clin Exp Metastasis* **36**, 71–86.

109 Mhaidly R & Mechta-Grigoriou F (2021) Role of cancer-associated fibroblast subpopulations in immune infiltration, as a new means of treatment in cancer. *Immunol Rev* **302**, 259–272.

110 García-Sánchez D, González-González A, Alfonso-Fernández A, Del Dujo-Gutiérrez M & Pérez-Campo FM (2023) Communication between bone marrow mesenchymal stem cells and multiple myeloma cells: impact on disease progression. *World J Stem Cells* **15**, 421–437.

111 Huang J, Zhang L, Wan D, Zhou L, Zheng S, Lin S & Qiao Y (2021) Extracellular matrix and its therapeutic potential for cancer treatment. *Signal Transduct Target Ther* **6**, 153.

112 Giangreco G, Rullan A, Naito Y, Biswas D, Liu Y-H, Hooper S, Nenclares P, Bhide S, Chon U, Cheang M *et al.* (2024) Cancer cell – fibroblast crosstalk via HB-EGF, EGFR, and MAPK signaling promotes the expression of macrophage chemoattractants in squamous cell carcinoma. *iScience* **27**, 110635.