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Weakened rate-dependent depression of Hoffmann’s
reflex and increased motoneuron hyperactivity after
motor cortical infarction in mice

S Lee*,1, T Toda1, H Kiyama2 and T Yamashita3

Abnormal reflexes associated with spasticity are considered a major determinant of motor impairments occurring after stroke;
however, the mechanisms underlying post-stroke spasticity remain unclear. This may be because of the lack of suitable rodent
models for studying spasticity after cortical injuries. Thus, the purpose of the present study was to establish an appropriate post-
stroke spasticity mouse model. We induced photothrombotic injury in the rostral and caudal forelimb motor areas of mice and
used the rate-dependent depression (RDD) of Hoffmann’s reflex (H-reflex) as an indicator of spastic symptoms. To detect
motoneuron excitability, we examined c-fos mRNA levels and c-Fos immunoreactivity in affected motoneurons using
quantitative real-time reverse transcription PCR and immunohistochemical analysis, respectively. To confirm the validity of our
model, we confirmed the effect of the anti-spasticity drug baclofen on H-reflex RDDs 1 week post stroke. We found that 3 days
after stroke, the RDD was significantly weakened in the affected muscles of stroke mice compared with sham-operated mice, and
this was observed for 8 weeks. The c-fos mRNA levels in affected motoneurons were significantly increased in stroke mice
compared with sham-operated mice. Immunohistochemical analysis revealed a significant increase in the number of c-Fos-
positive motoneurons in stroke mice compared with sham-operated mice at 1, 2, 4, and 8 weeks after stroke; however,
the number of c-Fos-positive motoneurons on both sides of the brain gradually decreased over time. Baclofen treatment
resulted in recovery of the weakened RDD at 1 week post stroke. Our findings suggest that this is a viable animal model
of post-stroke spasticity.
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Spasticity is common in patients with brain and spinal cord
injuries.1,2 Approximately 20–40% of patients with stroke
exhibit spasticity,3–5 whereby neurological damage disrupts
voluntary movement control. Consequently, these patients’
quality of life is significantly lower compared with that of
patients without post-stroke spasticity.6

A velocity-dependent increase in muscle tone resulting
from stretch reflex hyperexcitability has been proposed as a
cardinal feature of spasticity.7,8 In addition, spinal reflex
spasticity is known to be accompanied by weakened
rate-dependent depression (RDD) of Hoffmann’s reflex
(H-reflex), which is the electrical analog of the tendon jerk
reflex and is mediated through monosynaptic pathways in
the spinal cord. Electromyograms recorded during
H-reflexes typically display two responses: an initial M wave,
which is the result of direct activation of motor axons, and an
H-reflex, which is elicited by the synaptic activation of
motoneurons. The RDD of the H-reflex refers to the
phenomenon by which the magnitude of the H-reflex is
temporarily attenuated by repetitive stimulation. Given that

spasticity develops in conjunction with weakening RDD of
the H-reflex, which is gradually abolished following brain and
spinal cord injury, RDD is considered a reliable measure-
ment of spasticity in stroke patients and in animal models of
spinal cord injury.9–11

It is clear that stroke can cause inhibitory and excitatory
impulse imbalance, leading to upper motoneuron symptoms,
and it is known that lesion location and extent can result in
differing symptoms and degrees of spasticity severity;
however, the pathophysiological basis of spasticity remains
poorly understood.12 It is accepted that spasticity involves
over-reactivity of alpha motoneurons and alterations in
primary Ia reciprocal inhibition and Renshaw recurrent
inhibition,13–17 but further understanding of the underlying
mechanisms is hindered by the lack of animal models. In one
study, Fulton and Kennard18 used primates to demonstrate
that lesions in both primary and premotor areas can induce
spasticity; however, a rodent model is needed to analyze the
precise mechanisms underlying spasticity after cortical
injuries, such as those in stroke.
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Here, we investigated whether spasticity is induced after
photothrombotic injury to the rostral and caudal forelimb motor
areas of mice, which are considered the premotor and
forelimb primary motor cortices in rodents, respectively.19

Given that enhanced excitability of affected motoneurons has
frequently been reported in studies of spasticity after stroke
and spinal cord injury, we further examined whether a similar
phenomenon occurred in our mouse model of post-stroke
spasticity.

Results

Location and volume of cortical infarct lesions. We
unilaterally induced focal thrombotic stroke to the rostral and
caudal forelimb motor areas of mice using the Rose Bengal
photothrombotic method.20–22 Lesions in the rostral and
caudal forelimb motor areas were reproducible (Figures 1a
and b). Nissl-stained coronal sections from the lesioned
areas obtained 8 weeks after stroke demonstrated neuronal
loss in the infarcted area, and volume quantification demon-
strated that the lesion was 2.56±0.28 mm3 (n¼ 5) in size.22

Reduction of H-reflex RDD after stroke. To test whether
an affected muscle exhibited spastic symptoms after stroke,
we measured H-reflex RDDs in the affected and unaffected
abductor digiti minimi muscles 3 days and 1, 2, 3, 4, 6, and 8
weeks after stroke. The H-reflex magnitudes were attenuated
by repeated activations at frequencies 40.1 Hz. In particular,
we observed a reduction of 480% of the H-reflex magnitude
at 5 Hz in sham-operated mice (Figure 2a, upper panel).
In contrast, the H-reflex magnitude in 4-week stroke mice
was not strongly attenuated by repeated activation
(Figure 2a, lower panel). Moreover, we found that RDDs for
the affected muscles were significantly weakened in stroke
mice (n¼ 6) compared with sham-operated mice (n¼ 7) 3
days after stroke, and this was still observed on week 8 after
stroke (Po0.01, Figure 2b); however, the RDDs were not

significantly weakened at week 3. In addition, the RDDs of
stroke mice were significantly smaller at week 6 than at
weeks 4 and 8 (Po0.01). Four weeks after stroke, the RDDs
induced at all frequencies 40.1 Hz were significantly smaller
in stroke mice than in sham-operated mice (Figure 2c). This
indicates that the affected muscles exhibited spastic post-
stroke symptoms in our model.

In addition, we compared H-reflex RDDs elicited by 5 Hz in
the unaffected muscles of the sham-operated and stroke mice
(Figure 2d). We found that at weeks 1 and 8, the RDDs in the
unaffected muscles were significantly smaller in stroke mice
compared with sham-operated mice (Po0.01 for week 1 and
Po0.05 for week 8); this suggests that the RDDs in the
unaffected muscles were also influenced by cortical injuries.
However, it should be noted that the RDDs of sham-operated
and stroke mice were not significantly different at any other
time point in the unaffected muscles (Figure 2d).

Similarly, we compared the RDDs at 5 Hz for the affected
and unaffected muscles of stroke and sham-operated mice
separately (Figures 3a and b). In stroke mice, the RDDs for
the affected side were significantly smaller than those for the
unaffected side at 1, 2, 3, and 6 weeks after stroke (Po0.01
for 1, 2, and 6 weeks and Po0.05 for 3 weeks; Figure 3a);
however, the weakened depressions at 4 and 8 weeks were
not significantly different between the two sides. In contrast,
there were no differences in the RDDs between the affected
and unaffected sides of sham-operated mice (Figure 3b).

We also examined RDDs in the abductor pollicis brevis
muscles after stroke and found that at 1 week after stroke they
were significantly smaller in stroke mice compared with sham-
operated mice (Po0.01, data not shown). These results
indicate that some muscles developed spastic symptoms
after cortical injury in this model system.

Motoneuron hyperactivation after stroke. It has been
reported that one of the mechanisms underlying spasticity in
stroke patients is increased neuronal excitability of the

1 mm

Figure 1 (a) Schematic representation showing the lesion areas (n¼ 4). These hemicortical lesions were reproducible. (b) Coronal sections of Nissl-stained injured brain;
specifically, the rostral and caudal forelimb areas were injured (Nissl staining)
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propriospinal neurons and motoneurons.14,17,23 To deter-
mine whether motoneuron excitability was increased after
stroke, we performed quantitative real-time reverse tran-
scription PCR (RT-PCR) to examine the gene expression of
c-fos, an activity-dependent immediate early gene, in spinal
motoneurons.24,25 A retrograde tracer and laser microdissec-
tion (LMD) technique was used to obtain affected motoneurons
(Figure 4A). Expression of c-fos mRNA in the affected
neurons was significantly increased for stroke mice (n¼ 3)
compared with sham-operated mice (n¼ 4) (B50 neurons
from each mouse were analyzed; Mann–Whitney U test,
Po0.01, Figure 4B).

Furthermore, we measured c-Fos immunoreactivity in
motoneurons labeled for choline acetyltransferase (ChAT)
using spinal sections from the cervical to the thoracic level
(C4–T1) obtained 1, 2, 4, and 8 weeks after stroke. At 1 week
after stroke, c-Fos induction in the affected and unaffected
neurons was significantly increased in stroke mice compared
with sham-operated mice at most spinal levels (n¼ 3 for
groups; **Po0.01, in C4–T1, compared between sham-
operated and stroke mice on the affected side; #Po0.05 in
C4, ##Po0.01, in C6–T1, compared between sham-operated
and stroke mice on the unaffected side; Figures 4c and d).
Moreover, at 2 weeks after stroke, the number of c-Fos-
positive motoneurons at C4–T1 of stroke mice significantly
increased on the affected side compared with the affected
side of the sham-operated mice (n¼ 3 for groups; *Po0.05,
Figure 4E). Similarly, at 4 weeks after stroke, the number of
c-Fos-positive motoneurons in the affected side of stroke mice
significantly increased compared with the affected side of the
sham-operated mice at C4–C7 (n¼ 3 for groups; **Po0.01 in

C4–C7; Figure 4F). At 8 weeks after stroke, the number of
c-Fos-positive neurons at C7 and T1 on the affected side was
significantly higher in stroke mice compared with sham-
operated mice (n¼ 3 for groups; *Po0.05; 8 weeks in C7 and
T1; Figure 4G); however, stroke mice showed a gradual
decrease in this number during the eighth week after
stroke (C4; r¼ � 0.33, Po0.01, C5; r¼ � 0.31, Po0.01,
C6; r¼ � 0.39, Po0.01, C7; r¼ � 0.32, Po0.01, T1;
r¼ � 0.48, Po0.01; Figure 5a). In the unaffected side in
stroke mice, we observed a similar increase in the number of
c-Fos-positive neurons (C6; r¼ � 0.41, Po0.01, C7;
r¼ � 0.46, Po0.01, T1; r¼ � 0.30, Po0.01; Figure 5b).

In addition, compared with the unaffected side of stroke
mice, their affected side showed significantly increased
number of c-Fos-positive motoneurons at C4 and C5 on week
1 and at C6 on week 4 after stroke (wwPo0.01 at 1 week;
wPo0.05 at 4 weeks; Figures 4d and f). These results suggest
that the motoneurons, which innervate both the affected and
unaffected muscles, were excited.

Effective spasticity suppression with baclofen. Many
clinical and experimental animal pharmacology studies have
used the anti-spasticity agent baclofen, which is a gamma-
aminobutyric acid (GABA)B receptor agonist.26,27 To confirm
whether spastic symptoms, such as weakened RDD, were
inhibited following administration of an anti-spasticity agent,
we measured H-reflex RDD in mice intraperitoneally injected
with baclofen at 1 week after stroke. The mice, which
exhibited weakened RDD at 3 days after stroke (Figure 6a),
were injected with baclofen or 0.9% NaCl as vehicle before
H-reflex RDD measurement. We found that weakened RDDs
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were significantly recovered in baclofen-injected stroke mice
(n¼ 5) compared with vehicle-injected stroke mice (n¼ 4,
Po0.01; Figure 6b).

We also examined RDDs in baclofen-injected intact mice
and found that RDDs were not significantly different from
those in vehicle-injected intact mice (data not shown).

Discussion

Spasticity is a common complication after stroke; however,
the underlying pathophysiology remains unclear, and
research into this area is hampered by the lack of appropriate
animal models. The present study reveals that lesions in the
rostral and caudal forelimb motor areas of the mouse brain
induce spasticity, as indicated by weakened H-reflex RDDs,
increased motoneuron excitability of affected muscles and
recovered RDDs in stroke mice following baclofen treatment.
Our findings raise the possibility that this protocol may yield a
viable animal model of post-stroke spasticity.

Clinically, increased muscle tone (i.e., an increase in
resistance to passive stretch) occurs because of increased
reflex activity and intrinsic changes in the muscles.3 Reflex-
mediated increases in patient muscle tone reach a maximum
between 1 and 3 months after stroke,3,28 and it has been
proposed that after 3 months, the increased resistance to
passive stretch is attributable to intrinsic changes in the
muscles.28 We found that the weakened H-reflex RDDs
exhibited two phases of spasticity (Figures 2b and 3a). In the
first phase (0–4 weeks after stroke), we observed a relatively
small, yet significant, difference in the RDDs of sham-
operated and stroke mice. However, in the second phase
(4–8 weeks after stroke), the H-reflex in stroke mice was not
highly depressed by 5-Hz stimulation. Moreover, the number

of c-Fos-positive cells was elevated in the period from 0 to 4
weeks after stroke but gradually decreased during 4–8 weeks
after stroke (Figures 5a and b). It can thus be hypothesized
that plasticity at the spinal and neuromuscular levels may
occur, for instance, the number of motoneuron synapses may
increase29 or the development of motoneuron axonal arbors
may be enhanced.30 These changes could account for the
significant difference in RDDs that we observed during the
second phase compared with the first phase.

Our results demonstrated that the number of c-Fos-positive
motoneurons in for both affected and unaffected motoneurons
was significantly elevated in stroke mice compared with
sham-operated mice (Figures 4d–g). Previous studies have
also reported neuronal plasticity in unaffected neurons and
contra-lesioned corticospinal axons after cortical injury.31,32

One reason for plasticity in the unaffected side may be injury
of neurons in the rostral and caudal forelimb motor areas that
disynaptically project to unaffected spinal cord motoneurons.
In other words, motor and supplemental motor cortical areas
project to both sides of the brainstem but especially to the
ipsilateral brainstem.33,34 As brainstem neurons project to the
spinal cord, bilateral spinal cord motoneurons are indirectly
influenced. However, H-reflex RDDs in unaffected motoneurons
were not significantly weakened in stroke mice compared with
sham-operated mice except at 1 and 8 weeks post stroke
(Figure 2d). The reason why H-reflex RDDs in unaffected side
post-stroke mice were not significantly weakened compared
with sham-operated mice is unclear.

With regard to spinal cord injury, it was previously
hypothesized that one of the main mechanisms of spasticity
was increased motoneuron excitability.11,35,36 In our mouse
spasticity model, we examined motoneuron excitability by
assessing c-fos mRNA expression and c-Fos immuno-
reactivity in motoneurons, and we found that levels of both were
significantly increased in the affected spinal cord after stroke.
Boulenguez et al.11 recently reported that one of the reasons
for motoneuron excitability after spinal cord injury is down-
regulation of the potassium chloride cotransporter KCC2;
when this occurs, inhibitory GABAA and glycine receptors
switch from depolarizing to hyperpolarizing actions of GABA
and glycine, respectively, resulting in low intracellular Cl�

concentrations.11,37 Moreover, a previous study reports as
other spasticity mechanism that the serotonergic 5-HT2C
receptor changes constitutive active after spinal cord injury.38

Furthermore, patients with multiple sclerosis, which is an
autoimmune disease, also exhibit spasticity. These lines of
evidence indicate that several other mechanisms may
contribute to post-stroke spasticity.

We used H-reflex RDD, which is believed to cause both
presynaptic and motoneuron excitability, as a measure of
spasticity.14,17,39,40 In previous studies, H-reflex RDD
was used as a measure of spasticity, we also observed
significance weakened H-reflex RDDs at 4 weeks after
spinal cord injury (data not shown).1,9,11 It is known that
repetitive firing of synapses leads to a temporary decrease
in synaptic strength,41 possibly due to a decrease in
presynaptic Ca2þ current,42 vesicle depletion,41 postsy-
naptic receptor desensitization,43,44 activity-dependent
decrease in neurotransmitter release probability45,46 and
action potential conduction failure in the postsynaptic neuron.
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H-reflex RDD is useful for determining changes in spinal cord
function after injury.10,11,47–49 In our model, motoneuron
excitability, an important spastic symptom, was confirmed

by changes in H-reflex RDD and c-Fos expression, which
highlights the potential of using this protocol to model post-
stroke spasticity.
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Although there are other parameters for assessing spasticity
in patients with spinal cord injury and stroke, such as the
modified Ashworth scale scored by the degree of muscle tone,
these measurements cannot be used in animal models.50–53

Apparent spastic behavior was not detected in our model,
which may be due to the lack of an appropriate parameter for
assessing spastic behavior in rodents. Given that we did not
clearly observe spastic behavior, we are currently trying to
detect abnormal muscle contractions or neuromuscular junc-
tion changes using morphological analyses. These parameters
could be used as spasticity markers in the future. Our model of
spasticity after stroke can potentially help elucidate spasticity
pathophysiology, which could aid the development of pharma-
cological and rehabilitation treatments.

Materials and Methods
Animals. Adult male C57BL/6J mice (20–30 g, 8–10-weeks old, Japan SLC, Inc.,
Shizuoka, Japan) were housed in standard cages with food and water ad libitum and
maintained under a 12-h light-dark cycle. All procedures were approved by the
Nagoya University Guidelines for the Care and Use of Laboratory Animals.

Photothrombotic cortical lesion. Focal cortical ischemia was induced by
cortical microvessel photothrombosis, as described previously.21,22 Mice were
anesthetized with intraperitoneal sodium pentobarbital (Somnopentyl, 50 mg/kg
body weight; Kyouritu Seiyaku, Tokyo, Japan) and then individually placed on a
stereotaxic frame for surgery. Rose Bengal (30 mg/kg body weight; Sigma-Aldrich,
St. Louis, MO, USA) was injected into the tail vein 5 min before illumination, and
the skull was exposed via a midline incision of the skin. Focal illumination of the
rostral and caudal forelimb motor areas (þ 3.0-mm to � 1.5-mm anteroposterior,

3.0–0.5-mm lateral to bregma) (Figures 7a and b) was carried out with a cold light
source (KL1500LCD, Zeiss, Oberkochen, Germany), with a 4.5-mm aperture54

through the intact skull; the brain was illuminated for 15 min.22 The scalp was then
sutured, and the mice were allowed to recover. Control mice either received the
same injection of Rose Bengal without illumination (n¼ 10) or were
photostimulated after an intravenous injection of 0.9% NaCl solution (n¼ 4).

Electrophysiological recordings. We modified a previously described
method to use the RDD of the H-reflex as a measurement of spastic
symptoms11,55 Mice were anesthetized with ketamine (200 mg/kg, CS Pharmacology
Co., Ltd., Aichi, Japan), which is widely used during H-reflex recordings
(Figure 8a). If required, an additional 25% dose of anesthesia was given every
30 min to suppress whisker tremors or voluntary movements. The forelimbs and
hindlimbs of the mice were fixed on a plate with a plastic tape, and their positions
were controlled to avoid unnecessary pressure and stretch that could affect the
electrophysiological responses of the muscles and nerves (Figure 8b). To maintain
the body temperature, the plate was placed on a warm pad maintained at
approximately 37 1C. We transcutaneously inserted a pair of stainless needle
electrodes (EKA2-1508, Bioresearch Center Corporation, Aichi, Japan) fixed with
micromanipulator (SM-15, NARISHIGE, Tokyo, Japan) into nerve bundles,
including the ulnar nerve and stimulated with a stimulator (1–3 mA in 0.1 mA
increments, SEN—7103, Nihon Kohden Corporation, Aichi, Japan). For recording,
a pair of stainless needle electrodes fixed with manipulator (YOU-2, NARISHIGE)
was transcutaneously placed into the abductor digiti minimi muscles and obtained
recordings with an amplifier (High pass: 0.1, SS-201J, Nihon Kohden Corporation)
and an A/D converter (Low pass: 1 kHz, PowerLab, ADInstruments Japan Inc.,
Aichi, Japan). We initially stimulated the nerves for 0.2 ms at 0.1 Hz and then
gradually increased the current intensity; in this way, we were able to determine
the intensity necessary to obtain a maximal H-reflex. Following this, we used an
intensity of 23 stimulation trains at 0.1, 0.5, 1, 2, and 5 Hz, with 2-min intervals
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represented as mean±S.E.M. (Spearman’s correlation coefficient by rank test)
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between each train, to measure the RDD. To determine the RDD at different
frequencies, we discarded the responses to the first three stimulations that
were necessary for depression to occur and expressed all of the remaining

responses as percentages relative to the mean response at 0.1 Hz in the same
series of measurements.

LMD and real time RT-PCR preparation. To obtain samples of the
affected motoneurons in the abductor muscles of the little finger, we labeled the
motoneurons with the retrograde tracer 1% True Blue (T5891, Sigma-Aldrich);
the tracer was diluted with water and injected into the right abductor digiti minimi
muscle. The spinal cords (C6 to Th1) were removed from both sham-operated and
stroke mice, and the collected samples were cut into 30-mm sections with
a cryostat. The labeled motoneurons were collected with an LMD system
(LMD 6500, Leica Microsystems K. K., Tokyo, Japan; Figure 3). After total RNA
was isolated from the obtained neurons, the RNAs were transcripted to cDNA and
amplified with a Prelude and Ovation WTA system (PicoSL WTA system V2,
NuGEN Technologies, Inc., San Carlos, CA, USA).

Quantitative analysis of real-time RT-PCR. Quantitative analysis for
real-time RT-PCR was performed using an oligonucleotide primer sets that
corresponded to the cDNA sequences of c-fos (forward: 50-GGGAGGACCTTACC
TGTTCGT-30, reverse: 50-GGATGCTTGCAAGTCCTTGAG-30), ChAT (forward:
50-ACATATGATGACAGGCAACAAGAAG-30, reverse: 50-GGGAGCAGGGAGTTC
ACTCA-30), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH, forward:
50-GGGCTGGCATTGCTCTCA-30, reverse: 50-TGTAGCCGTATTCATTGTCATA
CCA-30). We used the ABI StepOne Plus system (Applied Biosystems, Life
Technologies Corporation, Grand Island, NY, USA). The reaction mixture (10 ml),
containing 5ml SYBR Green real-time PCR master mix (THUNDERBIRD SYBR q
PCR Mix, Toyobo Co., Ltd., Osaka, Japan), 0.2ml of both the sense and antisense
primers (10mM), and 1ml cDNA sample (10 ng), was preheated at 95 1C for 3 min
and then treated with 40 cycles of amplification (denaturation at 95 1C for 15 s and
annealing and extension at 60 1C for 1 min). The relative intensity against GAPDH
and the fold-change relative to the controls were calculated with DDCT analyses.
mRNA levels of ChAT, a motoneuron differentiation marker, were also measured.

c-Fos immunohistochemical analysis. At 1, 2, 4, and 8 weeks after
stroke, some mice (n¼ 3 each) were deeply anesthetized and then transcardially
perfused with 4% paraformaldehyde (PFA) dissolved in 0.1 M phosphate buffer.
The spinal cord from the cervical to the upper thoracic region was removed and
fixed in 4% PFA at 4 1C overnight and then cryoprotected in 30% sucrose for 3
days. The tissues were embedded in optimal cutting temperature compound
(Tissue-Tek, SAKURA Finetek, Tokyo, Japan) and stored at � 80 1C.
Coronal sections of the spine (20–30-mm thick) were prepared with a cryostat.

Bregma

Bregma

2 mm

Light - exposured Area 

0.5 mm3.0 mm

-1.5 mm

3.0 mm

Bregma

Rostral

Caudal

Left
2 mm 1 mm

Figure 7 Stroke lesion areas in the left rostral and caudal forelimb motor areas. (a) Image of a photochemically injured cortex. (b) The light beam was exposed to the brain
at the following coordinates: þ 3-mm to � 1.5-mm antero-posterior and from 0.5-mm to 3.0-mm lateral to the left of bregma in the rostral and caudal forelimb areas
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Sections were then stored in the cryoprotectant ethylene glycol at � 20 1C until
the time of use. Briefly, we removed tissue sections from the cryoprotectant and
washed them in phosphate-buffered saline (PBS). We then pre-incubated the
tissue in blocking buffer (5% normal bovine serum and 0.25% Triton X-100 in
PBS) for 1 h at 25 1C, followed by incubation with a c-Fos antibody (sc-52,
1 : 1000, Santa Cruz Biotechnology, Santa Cruz, CA, USA) and ChAT antibody
(AB144P, 1 : 500, Millipore, Billerica, MA, USA) in blocking buffer for 24 h at room
temperature. After washing in PBS, the tissue was incubated for 1 h in a solution
containing Alexa Fluor 488 and 568 conjugated to donkey anti-rabbit (1 : 1000)
and donkey anti-goat (1 : 500) immunoglobulin G, respectively (Molecular Probes,
Invitrogen, Carlsbad, CA, USA). The sections were counterstained with DAPI
(40,6-diamidino-2-phenylindole). All the sections were examined by fluorescence
microscopy (magnification, � 100, BZ-9000 BIOREVO, KEYENCE, Osaka, Japan)
or confocal laser scanning microscopy (magnification, � 100, A1Rsi, Nikon,
Tokyo, Japan). For quantification, c-Fos-positive motoneurons, stained with ChAT,
were counted in 10 cross-sections per cervical and upper thoracic level (C4–T1).

Baclofen treatment. This blind experiment of intraperitoneal injection of
baclofen was performed using a modified procedure as previously described.27 We
confirmed the weakened RDDs in the abductor digiti minimi muscle at 3 days after
stroke. The stroke mice were intraperitoneally injected with baclofen (n¼ 5, 9 mg/kg
weight, diluted with 0.9% NaCl, Sigma-Aldrich) or 0.9% NaCl (n¼ 4) as vehicle at
7 days post stroke. H-reflex RDDs of injected mice were measured 90 min after
the injection. To assess the effect of baclofen in intact mice, we also measured
RDDs in baclofen-injected intact mice.

Statistical analyses. Group measurements are expressed as mean
±S.E.M. H-reflex RDDs were determined as a measurement of spasticity and
analyzed with one-way analysis of variance (ANOVA) and Tukey–Kramer Tests.
For real-time RT-PCR analysis, we used Mann–Whitney U-tests and Student’s
t-tests to compare data obtained from the sham-operated and stroke groups.
For c-Fos immunohistochemical analysis, we used ANOVA, Tukey–Kramer tests,
and Spearman’s correlation coefficient by rank test. P-values o0.05 were
considered significant.
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