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1  | INTRODUC TION

Adolescence has been characterized by a heightened reactivity to 
social emotional cues (Casey, 2015), with teens showing greater 
difficulties inhibiting attention and action toward both positively 
and negatively valenced cues relative to children and adults (Cohen-
Gilbert & Thomas, 2013; Dreyfuss et al., 2014; Grose-fifer et al., 
2013; Hare et al., 2008; Heller, Cohen, Dreyfuss, & Casey, 2016; 

Somerville, Hare, & Casey, 2011; Tottenham, Hare, & Casey, 2011). 
Recent work suggests that the development of social emotional 
processes extends beyond traditional definitions of adolescence 
(approximately 13–17 years). Young adults, 18–21 years of age, also 
show reduced self-control to negative social emotional cues relative 
to older adults (Cohen et al., 2016), suggesting protracted emotional 
development into young adulthood. Previous social emotional stud-
ies across development have largely focused on mean differences 
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Abstract
Adolescence is a developmental period of increased sensitivity to social emotional cues, 
but it is less known whether young adults demonstrate similar social emotional sensi-
tivity. The current study tested variation in reaction times to emotional face cues dur-
ing different phases of emotional development. Ex-Gaussian parameters mu, sigma, and 
tau were computed, in addition to mean, median and standard deviation (SD) in reac-
tion times (RT) during an emotional go/nogo-paradigm with fearful, happy, and calm 
facial expressions in 377 participants, 6–30 years of age. Across development, mean 
RT showed slowing to fearful facial expressions relative to both calm and happy facial 
cues, but mu revealed that this pattern was specific to adolescence. In young adulthood, 
increased variability to fearful expressions relative to both happy and calm ones was 
captured by SD and tau. The findings that adolescents had longer response latencies to 
fearful faces, whereas young adults demonstrated greater response variability to fear-
ful faces, together reflect how social emotional processing continues to evolve from 
adolescence into early adulthood. The findings suggest that young adulthood is also a 
vulnerable period for processing social emotional cues that ultimately may be important 
to better understand why different psychopathologies emerge in early adulthood.
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in performance accuracy. However, intra-individual differences in 
reaction times (RT) may provide an additional level of explanation 
that mean differences in performance do not capture (MacDonald, 
Nyberg, & Bäckman, 2006) and have been suggested to be a more 
sensitive marker of neural development (Tamnes, Fjell, Westlye, 
Ostby, & Walhovd, 2012). The goal of the present study is to focus 
on RTs with a comprehensive approach using both measures of cen-
tral tendency and ex-Gaussian parameters to determine whether 
processing of social emotional cues is similar or distinct during ad-
olescence/early adulthood compared to childhood and adulthood.

Reaction times are typically examined using measures of central 
tendency, such as mean and median, and variability, such as standard 
deviation (SD). Mean reaction times are thought to be an indicator of 
processing speed and relate to working memory capacity and intelli-
gence during simple reaction time tasks (Deary, Der, & Ford, 2001; Fry 
& Hale, 1996; Larson & Alderton, 1990; Ratcliff, Schmiedek, & McKoon, 
2008; Schmiedek, Oberauer, Wilhelm, Süß, & Wittmann, 2007). These 
cognitive processes have been shown to differ under varying emotional 
conditions. For example, using emotional flanker- and go-nogo para-
digms, it has been shown that there is a slowing in RTs toward negatively 
valenced cues relative to positive ones from child- to adulthood (Grose-
fifer et al., 2013; Hare et al., 2008; Tottenham et al., 2011). Longer RTs 
in these and other paradigms (e.g., selective attention tasks) have been 
suggested to reflect increased attentional capture or interference by 
negatively valenced cues (Grose-fifer et al., 2013; Monk et al., 2003).

In contrast to mean reaction times, inconsistency in response 
speed, an individual's variability in RT (SD), has been suggested to con-
vey additional information about the efficiency of attentional resources 
(Bellgrove, Hester, & Garavan, 2004; Johnson et al., 2015; MacDonald, 
Li, & Bäckman, 2009; Stuss, Murphy, Binns, & Alexander, 2003). There is 
neurobiological evidence that during development reduced RT variabil-
ity is reflective of brain maturation (Tamnes et al., 2012) and increased 
flexibility in cognitive processing (Garrett, Kovacevic, McIntosh, & 
Grady, 2011; McIntosh, Kovacevic, & Itier, 2008). In response to neu-
tral, non-social cues, RT variability has been observed to change from 
childhood to old age following an inverted U-shape, where young adults 
show decreased variability relative to children and older adults (Fagot et 
al., 2018; Li et al., 2004; Williams, Hultsch, Strauss, Hunter, & Tannock, 
2005). However, it is unknown whether RT variability is influenced by 
developmental differences in processing of negative and/or positive 
social emotional information in healthy adolescents and young adults. 
Such knowledge may provide deeper insight on developmental differ-
ences in social emotional processing.

Ex-Gaussian decomposition of RT distributions is a method that 
may meaningfully capture distinct elements of the RT distribution 
that are not explicitly captured by mean, median, and SD RT (Ratcliff, 
1979, 1993; Whelan, 2008). Mu and sigma reflect the mean and stan-
dard deviation of the Gaussian component of the RT distribution, 
that is, those RTs that fall within a normal distribution of responses. 
Tau reflects the tail of the exponential distribution, which captures 
infrequent, slow responses. Thus, tau is uniquely able to represent 
longer RTs that are not separated out from the central tendency 
measures of mean and SD RT.

It has been suggested that the different ex-Gaussian parameters 
reflect distinct underlying cognitive processes, that are associated with 
different developmental trajectories (McAuley, Yap, Christ, & White, 
2006; Williams et al., 2005; Williams, Strauss, Hultsch, & Hunter, 
2007). Specifically, Mu is thought to represent processing speed, and is 
very similar to the cognitive processes that underlie central tendency 
of mean RT. In large part, the value of the ex-Gaussian approach over 
central tendency measurements, is to derive sigma and tau. It has been 
hypothesized that sigma reflects inconsistency in motor responsivity, 
whereas increased tau reflects attentional or inhibitory processes 
(Kofler et al., 2013; Schmiedek et al., 2007; Unsworth, Redick, Lakey, 
& Young, 2010). Evidence for changes in ex-Gaussian measures of RT 
in developmental populations almost exclusively comes from research 
in children with developmental disorders such as Attention Deficit/
Hyperactivity Disorder (ADHD), where increased tau has been associ-
ated with attentional lapses (Buzy, Medoff, & Schweitzer, 2009; Geurts 
et al., 2008; Hervey et al., 2006; Karalunas, Geurts, Konrad, Bender, 
& Nigg, 2014; Leth-Steensen, Elbaz, & Douglas, 2000) and diagnostic 
differences in developmental trajectories (van Belle, Hulst, & Durston, 
2015). Nevertheless, even though the exact cognitive correlates of 
ex-Gaussian RT measures remain elusive (Matzke & Wagenmakers, 
2009), they provide distinct elements of variability in processing cues 
that standard metrics such as mean and standard deviation may not 
distinctly capture (Ratcliff, 1979, 1993).

As studies have shown that emotional brain circuitry continues to 
mature through early adulthood (Casey, Heller, Gee, & Cohen, 2017), 
we predicted that emotional valence would influence variability in 
response latencies to social emotional cues differentially from child-
hood- to young adulthood. Comparing mean, median, and SD RT with 
ex-Gaussian statistics, we examined RT data from participants aged 
6–30 who completed an emotional go-nogo paradigm with happy, 
fearful, and calm faces. We chose a broad age range to make compari-
sons across multiple stages of development to determine whether the 
adolescent/early adulthood period differs compared to childhood and 
adulthood. Overall, we expected to observe differences in ex-Gauss-
ian statistics of RT to emotional cues across development that would 
not be uncovered by mean, median, and SD RT. There is little prior 
work with ex-Gaussian statistics across development, but we pre-
dicted increased RT variability, captured by sigma and tau, to happy 
and fearful emotional facial cues, relative to calm facial cues, in ado-
lescents and young adultss—reflecting continued refinement of social 
emotional processing throughout adolescence and early adulthood. In 
addition, we predicted an adolescent-specific slowing in RTs, similar 
to prior work (e.g., Tottenham et al., 2011) to fearful and happy facial 
expressions relative to calm facial expressions.

2  | METHOD

2.1 | Participants

Data were collected from 412 healthy participants between 
the ages of 6 and 30, recruited from the Sackler Institute for 
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Developmental Psychobiology in New York, NY (169 males) 
(Figure 1). All participants reported no history of neurologic or 
psychiatric disorder and had an estimated full-scale Intelligence 
Quotient (IQ) above 80 (low average and above), measured by 
the Wechsler Abbreviated Scale of Intelligence (WASI; (Wechsler, 
1999)). All participants and their parents (if minors) gave verbal 
and written assent and consent as approved by the Weill Cornell 
Medicine Institutional Review Board.

2.2 | Paradigm

The present study relied on a go-nogo paradigm with calm, happy, 
and fearful emotional faces, similar to other versions of this task that 
have been used to assess inhibitory control to social emotional stimuli 
(Dreyfuss et al., 2014; Hare et al., 2008; Heller et al., 2016; Somerville 
et al., 2011; Tottenham et al., 2011). The go/no-go paradigm gener-
ated RTs to reliably assess social emotional processing across age. 
Participants were instructed to press a button as fast as possible to 
a calm, happy, or fearful facial expression target (Tottenham et al., 
2009), that is, the “go” stimulus (70 trials (73%)) and withhold their 
response to a facial expression non-target, the “nogo” stimulus (26 
trials (27%)). Calm, happy, or fearful emotional facial expressions each 
served as the “go” stimulus during two runs for a total of six runs 
(happy go vs. fearful nogo, happy go vs. calm nogo, fearful go vs. calm 
nogo, fearful go vs. happy nogo, calm go vs. happy nogo, calm go vs. 
fearful nogo). Runs were pseudorandomized across participants. Cues 
appeared on the screen for 500 ms, with a 1500 ms interstimulus 
interval during which responses were recorded to give participants 
enough time to respond. Stimulus presentation and response collec-
tion was performed using E-Prime 1.0 or 2.0.

2.3 | Behavioral analysis

Data extraction was performed using Ruby version 2.1.0, and all 
statistical analyses were performed in R version 3.2.1 (R Core 
Team, 2015). Participants were included in the study if accuracy on 

go-trials was > 50% and the percentage of false alarms during nogo-
trials was <50% (below chance performance, N = 35 participants 
were excluded based on this criterion). Trials with RT's < 100ms 
were excluded from analysis as they were considered faster than 
participants could have visually processed cues (Luce, 1986). This 
censoring resulted in the inclusion of 377 individuals, for which a 
small number were included with partial data (valid data for only two 
(N = 37) or one (N = 25) emotion(s)) (Figure 1).

Mean and SD of the RT to correct go-trials was computed for each 
emotional expression. All three emotions (calm, fearful, and happy 
facial expressions) were presented as a go-stimulus twice during the 
six runs. RT's of the two runs of each emotion were collapsed. Ex-
Gaussian parameters were computed (mu, sigma, and tau) by fitting 
the ex-Gaussian distribution to the valid RT's on correct go-trials 
using the mexgauss function in the retimes-package in R (Heathcote, 
1996). Mu is defined as the mean and sigma as the standard devia-
tion from the normal (Gaussian) distribution of RT's, whereas tau is 
the mean and standard deviation of the exponential distribution. Tau 
typically reflects positive skew in the raw RT distribution.

Response accuracy to each emotional expression was also com-
puted, and is reported in Table S1. Accuracy per emotion was measured 
by calculating the number of hits to go-trials and false alarms to no-
go-trials. The sensitivity index d-prime (d’) was computed by subtracting 
normalized false alarm rate from normalized accuracy at go-trials sep-
arately for all stimulus types (Macmillan & Creelman, 2004). As many 
participants performed at ceiling, accuracy to go-trials was transformed 
using a logit-transformation (Warton & Hui, 2011). Logit-transformed 
accuracy to go-trials was added to the designs in secondary analyses to 
explore the effects of accuracy on our RT findings.

2.4 | Investigating developmental effects: 
Continuous age-models

To understand the developmental differences of social emotional 
processing from 6 to 30 years of age, linear mixed-effects models 
were fit to the five measures (mean RT, SD RT, mu, sigma and tau) 
of reaction times on the Emo Go-Nogo task with age (linear, cubic, 

F I G U R E  1   Number of participants included in the analyses displayed per year. Dark colors represent the number of males, and light 
colors represent the number of females included in the analyses
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quadratic) growth models. An example of a full model, where di is 
within person dependence, that is, the repeated measures factor: 
Measurement = Intercept + di + β1(emotion) + β2(gender) + β3(age) 
+ β4(age2) + β5(age3) + β6(emotion * age) + β7(emotion * age2) + β8 
(emotion * age3) + error.

The full procedure on determining choice for growth model can 
be found in the Supplemental Material.

2.5 | Investigating developmental effects: Sliding 
age bins

To assess the effects of social emotional cues on response latency 
during different developmental windows, participants were divided 
into age bins of 4 years using a sliding window with 1-year increments. 
While the continuous models show the general developmental pattern 
of RT, it is not sensitive to specific changes during smaller develop-
mental windows, for example, young adulthood. We chose the sliding 
age bin approach to give a detailed estimate of the age-range in which 
possible effects of emotion on response latency occurred. Bins were 
not tested against each other due to the high number of overlapping 
participants in each bin. The number of participants within each age 
bin is plotted in Figure S1. Within each age bin, using the lme4-package 
in R, a linear mixed-effects (LME) model was fit with mean RT, SD RT, 
mu, sigma, and tau as dependent variables, emotion and gender as fixed 
factors, and within-subject dependence as a repeated measures ran-
dom factor. The rationale for only including a random intercept at the 
subject-level was that some individuals were included with partial data 
in order to minimize the number of exclusions (Figure 1). In a secondary 
analysis, these models were repeated with logit-transformed accuracy 
as an additional factor in the design. P-values were corrected for mul-
tiple comparisons using the Benjamini–Hochberg procedure to control 
for the False Discovery Rate (FDR) (Benjamini & Hochberg, 1995). In 
the presence of a significant main effect of emotion, post hoc pair-
wise comparisons were performed using least-square means (p-values 
Tukey-adjusted). To explore the effects of gender on our results, analy-
ses were repeated in males and females separately and reported in the 
supplemental text and Figure S2.

3  | RESULTS

3.1 | Developmental differences in emotion 
processing with continuous age-models

For mean, median and SD RT, mu and tau, a cubic age-model best fit the 
data (Figure 2a-e, full statistics in Tables S2–S7). The developmental 
pattern for mean and median RT and mu is characterized by a steep 
decline in RT during childhood, with an inflection point during mid-ad-
olescence, after which RTs slightly increase again. Furthermore, there 
was an emotion*age3 interaction for mean (F(6,670) = 3.3, p = .003) and 
median RT (F(6,668) = 3.2, p = .004) and mu (F(6,681) = 2.2, p = .042). 
The developmental pattern of sigma was best characterized by a 

quadratic age-model, showing a slightly later inflection point during 
young adulthood. Main effects of gender were only observed for SD 
RT (F(1,356) = 6.2, p = .013) and tau (F(1,358) = 8.1, p = .005) (Tables S4 
and S7), indicating males were less variable than females. There were 
no interaction effects for SD RT, sigma, and tau.

3.2 | Developmental differences in emotion 
processing with sliding age bins

In every age bin, mean (Figure 3a, Table S8) and median RT (Table S9) 
showed slowing to fearful compared to happy and calm faces, which 
survived FDR-correction for multiple comparisons. Mu showed 
slower responses to fearful compared to happy and calm faces at 
6–9, 13–16, and 15–18 years, all surviving FDR-correction for multi-
ple comparisons (Figure 3b, Table S10).

SD RT showed greater variability to fearful facial expressions in 
the age-bins between 17 and 27 years of age, which survived correc-
tions for multiple comparisons (Figure 3c, full results in Table S11). 
Sigma did not capture differences in RT variability between emo-
tions (Figure 3d, Table S12). However, similar to SD RT, participants 
in the 19–22 and 20–23 age bins showed significantly increased tau 
to fearful faces. Additionally, tau was decreased toward happy com-
pared to fearful facial expressions in the seven age bins between 17 
and 26 years. (Figure 3e, full results in Table S13). The sliding age-bin 
analyses showed no effects of gender on any of the RT measures.

3.3 | Response accuracy

Mean accuracy to go-trials was high to each emotion (Table S1). Logit-
transformed accuracy differed between the emotions (F(2,670) = 35.2, 
p < .001), and increased with age (F(1,352) = 56.7, p < .001), yet there 
was no interaction between emotion and age. Adding response ac-
curacy to the continuous age models showed significant effects on 
mean (F(1,827) = 12.1, p < .001), median (F(1,816) = 4.1, p = .044), and SD 
RT (F(1,1,005) = 43.2, p < .001), and on sigma (F(1,1,012) = 51.1, p < .001) 
and tau (F(1,1,036) = 16.0, p < .001), but not on mu. Nevertheless, add-
ing accuracy did not meaningfully change the significance of the 
findings reported above, suggesting that the effects on reaction 
time and variability were not driven by developmental changes in 
accuracy. It must be noted that the logit-transformation improved 
the skew of the accuracy distribution, but not completely due to ceil-
ing performance of many participants. Results including accuracy 
should therefore be interpreted with caution.

4  | DISCUSSION

Examining RT distributions with ex-Gaussian parameters in a 
dataset of 377 participants from age 6 through 30 years revealed 
developmental differences toward fearful faces. Adolescents 
had slower RTs to fearful faces as reflected by the ex-Gaussian 
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statistic mu and young adults had more variability to fearful faces 
as reflected by increased SD RT and tau. The findings highlight the 
continued changes in social emotional processing that occur into 
early adulthood.

We found increased SD RT and tau to fearful facial expressions 
around young adulthood providing evidence for the continued refine-
ment for processing emotional cues after adolescence (Casey et al., 
2017; Cohen et al., 2016; Cohen-Gilbert et al., 2014; Silva, Shulman, 
Chein, & Steinberg, 2016). Notably, we did not observe differences 
between emotional cues on sigma, but only on tau. The lack of an 
effect with sigma suggests the ex-Gaussian parameters revealed dis-
tinct components of variability that were not captured by SD alone. 
It has tentatively been suggested that sigma reflects variability in 
processing speed, whereas tau is related to attentional processing 
(Karalunas et al., 2014; Kofler et al., 2013; Schmiedek et al., 2007; 
Unsworth et al., 2010). Our finding of increased tau to fearful cues 
compared to happy or calm cues may suggest enhanced attentional 
capture to fearful cues in young adults. Increased interference during 
identification and processing of relevant cues has been associated 
with slower responses (Provost, Jamadar, Heathcote, Brown, & 

Karayanidis, 2018; Weissman, Roberts, Visscher, & Woldorff, 2006). 
Attentional control theory suggests that responses to emotional cues 
are driven by automatic, bottom-up, salience-driven processing on 
one hand and top–down, goal-directed attentional processing on the 
other (Eysenck & Derakshan, 2011; Eysenck, Derakshan, Santos, & 
Calvo, 2007). The infrequent long RTs toward fearful facial expres-
sions could then be hypothesized to reflect the more top–down, de-
liberative nature in which young adults fine-tune their response to 
emotionally valenced cues (Cohen-Gilbert et al., 2014; Silvers, Shu, 
Hubbard, Weber, & Ochsner, 2015). It has also been suggested that 
increased intra-individual variability may reflect exploration of di-
verse strategies, which has been related to increased success on com-
pleting complex tasks (MacDonald et al., 2009; Tamnes et al., 2012). 
As such, increased intra-individual variability, here captured by tau, 
may reflect more explicit cognitive strategies, and increased cognitive 
resources, that young adults use during social emotion processing.

In line with previous developmental work, every age bin showed 
mean and median RT were slowest toward fearful cues (Cohen-
Gilbert & Thomas, 2013; Grose-fifer et al., 2013; Tottenham 
et al., 2011), suggestive of a general sensitivity to fearful facial 

F I G U R E  2   Results of the continuous age-models, with the top row showing measures of central tendency: (a) Mean RT (best age fit: 
cubic) and (b) the ex-Gaussian parameter Mu (best age fit: cubic). The bottom row displays measures of intra-individual variability (c) SD 
(best age fit: cubic), (d) the ex-Gaussian parameter Sigma (best age fit: quadratic) and (e) the ex-Gaussian parameter Tau (best age fit: cubic). 
Abbreviations: SD = standard deviation, RT = reaction time
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expressions across development. In contrast to the measures of 
central tendency, the ex-Gaussian parameter mu showed a spe-
cific differentiation according to the emotional valence of cues in 
very young children and adolescents only. The ex-Gaussian pa-
rameter mu suggests that adolescents were slower to respond to 
fearful compared to happy or calm expressions, possibly reflecting 
heightened bottom–up, salience-driven interference by negatively 
valenced cues during this developmental phase (Grose-fifer et al., 
2013).

The sliding age bin method showed sensitivity to the influ-
ence of negative emotion on RT and RT variability in specific age-
ranges, however, development is a more continuous process that 
is of course not restrained by the age-bins used in the current 
study. Adding to the sliding age bin analyses, the growth models 
revealed that the measures of central tendency (mean and me-
dian RT, and mu) showed an interaction between emotion and age, 
suggesting developmental differences in how RT is modulated 
by emotional valence. Conversely, we found no differences the 
general shape of the developmental trajectories of variability (SD 
RT, sigma and tau), which showed similar curves for all emotions, 

consistent with the inverted U-shaped trajectory that has been 
observed across the lifespan (Fagot et al., 2018; Li et al., 2004; 
Williams et al., 2005). The findings from the continuous models 
provide normative developmental data for the influence of emo-
tion on different aspects of RT and RT variability across develop-
ment. RT variability has been proposed to be a powerful proxy for 
general brain development (Adleman et al., 2016; Carp, Fitzgerald, 
Taylor, & Weissman, 2012; Tamnes et al., 2012; Yarkoni, Barch, 
Gray, Conturo, & Braver, 2009), and decreased RT variability has 
been associated with increased cognitive flexibility (Garrett et al., 
2011; McIntosh et al., 2008) and attentional control (Johnson et 
al., 2015). The ground work established from our findings can pro-
vide the foundation for future longitudinal studies that examine 
how the trajectories for social emotional processing may differ in 
neurodevelopmental disorders.

The findings are consistent with recent neurobiological models 
of development. The”imbalance” model suggests the development 
of emotional responsivity follows a pattern of continuous, but hier-
archical change into adulthood. Within this framework it is hypothe-
sized that connectivity within and between cortical and sub-cortical 

F I G U R E  3   Results of the age-bin analyses, with the top row showing measures of central tendency (a) Mean RT and (b) the ex-Gaussian 
parameter Mu. The bottom row displays measures of intra-individual variability (c) SD, (d) the ex-Gaussian parameter Sigma, and (e) the ex-
Gaussian parameter Tau. Asterisks denote significant main effects of emotion (Tables S9–S13), gray bars indicate that the effect survived 
FDR-correction for multiple comparisons. Error bars denote ± 1 SE. Abbreviations: FDR = False Discovery Rate, SD = standard deviation, 
RT = reaction time
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systems matures in such a way that each developmental phase is in 
part dependent on the previous phase (Casey et al., 2017). In adoles-
cence, the establishment of reciprocal subcortico-cortical connec-
tions is characterized by more automatic heightened sensitivity to 
emotional cues (Silvers et al., 2017; Somerville et al., 2011), which 
transitions into more controlled top–down regulation of emotion 
into young adulthood (Braunstein, Gross, & Ochsner, 2017; Silvers et 
al., 2016) through cortico-cortical connections. The increased vari-
ability, captured by SD RT and tau, to fearful faces in the current 
study could indeed reflect the transition into a subsequent phase in 
development where emotion regulation is more effectively modu-
lated within cortical circuitry.

Taken together, the current findings add to a large body of lit-
erature on the influence of emotional information on adolescent 
self-regulation (Cohen-Gilbert & Thomas, 2013; Dreyfuss et al., 
2014; Grose-fifer et al., 2013; Hare et al., 2008; Somerville et al., 
2011; Tottenham et al., 2011), by suggesting that young adults con-
tinue to show reactivity to negatively valenced emotional infor-
mation (Cohen et al., 2016). This heightened reactivity may have 
implications for understanding the emergence of mental health 
problems, with anxiety disorders showing their first onset in late 
childhood, and depression emerging around early adulthood (Lee et 
al., 2014; Powers & Casey, 2015). Future work should explore the 
relationship between variable processing of negative facial expres-
sions and susceptibility for mental health problems in young adults.

Our findings should be interpreted in light of limitations of the 
study. Although the sliding age-bin analyses examined changes in 
emotion processing in small time windows, the definition of these 
windows does not fully appreciate the continuous nature of devel-
opment. As such, we used continuous age-models that showed the 
developmental pattern of mean reaction time and were differentially 
modulated by emotion development. Furthermore, the ex-Gaussian 
model does not take into account response accuracy, but adding re-
sponse accuracy to the design did not change the findings. Lastly, 
the 2000ms total trial-duration is longer than other go/nogo tasks 
which may have influenced performance on this task, and other 
types of tasks may better capture RT to emotional cues as a go/nogo 
paradigm does not collect RTs for all trials. However, results show 
that the timing and design made the task accessible and engaging to 
young children, as reflected by the low number of children that had 
to be excluded based on poor performance.

In conclusion, the findings suggest protracted development of 
social emotional processing, showing that response speed and vari-
ability were differentially modulated by emotional information in 
adolescents and young adults. These findings fit with recent sug-
gestions of circuit-based hierarchical development of emotional 
processing, demonstrating that in addition to adolescence, young 
adulthood is a developmental phase that is associated with distinct 
processing for emotional cues relative to older adults. Future work 
examining how difficulties with emotion reactivity, commonly asso-
ciated with anxiety and mood disorders, emerge at different time 
points across development including the teen years and into the mid-
20's will be important avenues of research.
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