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Abstract: Inflammatory bowel disease (IBD) is an autoimmune disease of unknown 

etiology and can lead to inflammation and cancer. Whey proteins contain many bioactive 

peptides with potential health benefits against IBD. We investigated the effect of  

low-temperature-processed whey protein concentrate (LWPC) on the suppression of IBD 

by using a dextran sodium sulfate (DSS)-induced colitis model in BALB/c mice. Oral 

intake of LWPC resulted in improved recovery of body weight in mice. Histological 

analysis showed that the epithelium cells of LWPC-treated mice were healthier and that 

lymphocyte infiltration was reduced. The increase in mucin due to the LWPC also reflected 

reduced inflammation in the colon. Transcriptome analysis of the colon by DNA 

microarrays revealed marked downregulation of genes related to immune responses in 

LWPC-fed mice. In particular, the expression of interferon gamma receptor 2 (Ifngr2) and 

guanylate-binding proteins (GBPs) was increased by DSS treatment and decreased in 
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LWPC-fed mice. These findings suggest that LWPCs suppress DSS-induced inflammation 

in the colon by suppressing the signaling of these cytokines. Our findings suggest that 

LWPCs would be an effective food resource for suppressing IBD symptoms. 

Keywords: colitis; anti-inflammation; whey protein; DNA microarray; immunomodulation 

 

1. Introduction 

Inflammatory bowel disease (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC), is a 

chronic autoimmune disease condition, the pathogenesis of which is unknown [1]. IBD is considered 

to occur due to a combination of genetic, environmental, microbial and immunological factors 

characterized by the pronounced destruction of the gastrointestinal mucosa and the epithelial cell 

barrier. Subsequent infiltration of luminal antigens activate macrophages and T lymphocytes, which 

stimulate the production of proinflammatory cytokines, such as interleukin 1 (IL-1), interferons and 

tumor necrosis factor α (TNF-α), giving rise to a cascade of inflammatory reactions [2]. Manifestations 

of IBD include diarrhea, cramping, abdominal pain and fever [3]. Prolonged exposure to IBD is known 

to lead to colorectal cancer, which is one of the most common cancers, accounting for about 100,000 

hospitalizations per year in the U.S. alone, and the incidence of IBD has continued to increase in recent 

decades in both developed and developing countries [4]. Current treatments for IBD typically include 

standard drug treatments, such as anti-inflammatory drugs, immune modifiers and antibiotics, and are 

frequently associated with severe side effects [5], which indicate the need for new and safe medicaments 

to contribute to the prevention and control of this disease. 

Recent research reveals that food-derived peptides from various sources, including seafood, milk 

and plants, contain bioactive functional properties, especially in the suppression of colitis. Young et al. [6] 

showed that soy-derived peptides have the ability to suppress dextran sodium sulfate (DSS)-induced 

colitis through reducing the anti-inflammatory mediators. A novel purified peptide from pacific oyster 

(Crassostrea gigas) has been shown to reduce inflammation through immunomodulation [7]. Milk is 

known to be a rich source of nutrients coupled with bioactive properties that supports the growth and 

development of infants. Whey protein, a by-product of the cheese-making process, represents 

approximately 20% of the total protein content in bovine milk. The major protein components in whey 

are β-lactoglobulin, α-lactalbumin, immunoglobins, serum albumin, lactoferrin and lactoperoxidase [8]. 

Bioactive peptides are released from native protein during the course of gastric digestion. Most of such 

whey peptides have shown interactions directly with the immune cells, thereby modulating the 

immune system [9], or indirectly acting upon stimulating beneficial bacteria in the gut, cardiovascular 

health [10], improved muscle strength, inhibition of osteoporosis, anti-inflammatory, antibacterial and 

anticancer effects [11,12]. Both β-lactoglobulin and α-lactalbumin have been shown to inhibit colon 

carcinoma [13–15]. Whey peptides, such as β-casomorphins and α-lactorphins, derived from milk 

enhance the secretion of mucin from goblet cells via upregulation of the mucin gene [16], showing 

protective effects through maintaining gut homeostasis and suppressing intestinal inflammation. 

Recent work reveals a milk-derived glycomacropeptide, which shows anti-inflammatory functions in 

colitis mouse via modulation of macrophages and Th1 and Th17 lymphocytes. This modulatory effect 
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was observed to arrest the signal transducers and activators of transcription (STAT) pathway and to 

suppress interferon gamma (IFNγ) expression [17]. These studies indicate the importance of whey 

proteins as an alternative medicament for the suppression of IBD. However, the mechanism of action 

or exact therapeutic use of whey proteins against IBD has not been clearly evaluated to date. 

The functional properties of cheese whey protein are known to differ from the properties of raw 

milk based on the sterilization method applied during processing. The milk pasteurization process is 

known to cause a low degree of protein denaturation; thus, whey generated by pasteurized milk 

processing has been reported to have more bioactive functions when compared to whey processed at 

higher temperatures. Li et al. [18] showed that a minimally processed whey protein concentrate (heat 

treated, <40 °C) had positive effects on intestinal structure, function and integrity compared with whey 

proteins treated at higher temperatures. Elfstrand et al. [19] found the recovery of immunoglobins to be 

increased by low-temperature-treated colostrum compared to the findings for colostrum prepared by 

standard higher temperature treatments.  

Therefore, the present study was conducted to evaluate the effects of low-temperature-treated whey 

proteins in relation to their suppression of colon inflammation in the dextran sulfate sodium (DSS) 

mouse model of experimental colitis. The possible mechanisms by which whey protein may exert its 

action were studied via DNA microarrays followed by a comparison of the gene expression levels. 

2. Experimental Section 

2.1. Preparation of Whey Protein 

The low-temperature-processed whey concentrate (LWPC) powder was a commercial product 

kindly gifted by Asama Chemical Co. Ltd. (Tokyo, Japan) The LWPC was dissolved in distilled water 

and heated at 70 °C for 2 h, and this solution was concentrated by freeze-drying. The resulting powder 

is named high-temperature-processed whey protein concentrate (HWPC). The protein profiles of 

HWPC and LWPC were analyzed by SDS-polyacrylamide gel electrophoresis [20] with 5%–20% 

gradient gels, followed by Coomassie brilliant blue staining. 

2.2. Animals and Diets 

The two treatment diets were prepared based on the AIN-76 diet (the composition is given in the 

Supplementary Materials) [21,22], where 50% of the casein in the AIN-76 diet was replaced separately 

with each of the above-described processed whey protein concentrates, HWPC or LWPC. Normal 

AIN-76 was used as a control diet. 

Female BALB/c mice (4 weeks old) were obtained from CREA Japan Inc. (Tokyo, Japan) and 

housed in isolated cages at 20 °C under a 12 h light/dark cycle. After 10 days of acclimatization with 

the AIN-76 diet and water provided ad libitum, the mice were randomly divided into 4 experimental 

groups (5 mice per group). Colitis was induced in Groups 1 to 3 through the administration of 2.5% 

dextran sulfate sodium (DSS) in the drinking water [23], and each group was separately fed the  

AIN-76 basal diet, AIN-76 + HWPC or AIN-76 + LWPC in parallel with the induction of colitis. 

Group 4 was untreated. After a period of 14 days, DSS administration was arrested, and the experiment 

was continued until Day 21. On Day 21, the mice were sacrificed under ether anesthesia, and the 
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portion of the large intestine from the cecum to the vent was removed and rinsed in cold saline. All 

protocols involving animals were approved by the Institutional Animal Care and Use Committee (20-101) 

and conducted according to the guidelines of Obihiro University of Agriculture and Veterinary Medicine. 

2.3. Histopathological Experiments 

Five colon tissue samples were obtained from each treatment group representing all 5 mice. Each 

tissue sample was taken from a different site so as to represent the whole column within a treatment 

group. The colon tissues were fixed overnight in 4% paraformaldehyde in phosphate-buffered saline, 

embedded in paraffin wax and sectioned (10 μm) using a microtome, followed by staining with 

hematoxylin and eosin (HE). Twenty-five slide spots from each treatment group were used for 

microscopical examination with 5 spots representing each tissue section. The slides were viewed under 

a light microscope. The slides were further evaluated with regard to histological damage to the colon 

using a semi-quantitative scoring system (Table 1) with minor alterations to the method used by  

McCafferty et al. [24], with a maximum possible total damage score of 18 when summed.  

Three semi-trained panelists performed the scoring under the guidance of a trained pathologist. Scores 

obtained for different treatments were analyzed using a non-parametric one-way ANOVA in STATA 

version 11.1 followed by Tukey HSD pairwise comparisons.  

Table 1. Parameters and scores used to assess damage in the colon tissues of mice. 

Parameters 
Scores 

0 1 2 3 

Extent of damage to colon structure normal mild moderate extensive 

Crypt atrophy not present mild moderate extensive 

Degree of cellular infiltration normal mild moderate extensive 

Extent of muscle thickening normal mild moderate extensive 

Extent of crypt abscess not present mild moderate extensive 

Goblet cell depletion normal mild moderate extensive 

The final score allocated is the average value from 25 slide spots from each different treatment. 

2.4. Western Blotting 

The mouse colon was homogenized, and proteins were extracted with general SDS-PAGE sample 

buffer. The protein concentration was assessed using the Bio-Rad protein assay method. Equal 

amounts of each extract were then subjected to protein separation on SDS-PAGE (15% gel) and then 

electro-transferred onto a nitrocellulose membrane. The membrane was blocked with Tris-buffered 

saline and 6% milk protein and then incubated overnight at 4 °C with primary rabbit antibodies for 

mucin 2 (Cosmobio, Tokyo, Japan), followed by incubation with a secondary antibody for rabbit IgG 

labeled with horse radish peroxidase. Detection was performed using the ECL system (GE Healthcare, 

Little Chalfont, UK).  
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2.5. DNA Microarray and RT-QPCR 

Colon tissues were ground in liquid nitrogen, followed by RNA extraction using the SV Total RNA 

isolation system (Promega, Madison, WI, USA) according to the manufacturer’s protocol. The 

extracted RNA was checked by spectrophotometer analysis and electrophoresis and then stored at  

−80 °C for further use. 

RNA samples from each treatment replicate were pooled, and 500 ng of RNA from each treatment 

condition were used for transcriptome analysis of the mouse colon using a GeneChip 430A 2.0 mouse 

array (Affymetrix, Santa Clara, CA, USA). Experiments were performed according to the 

manufacturer’s technical manual (Affymetrix). Data obtained from scanning the arrays were 

normalized (robust multi-array analysis; RMA) and analyzed using Arraystar software (DNAStar, 

Madison, WI, USA). Genes that were up- or down-regulated by ≥2-fold in comparison with the DSS 

treatment were categorized using the Database for Annotation, Visualization and Integrated Database 

(DAVID) version 6.7 [25,26] and the annotation data of “biological processes” in Gene Ontology [27]. 

To validate the changes in the expression of the selected genes, we performed quantitative real time 

RT-PCR (QPCR). We selected guanylate binding protein 1 (Gbp1:NM_010259), Gbp2 (NM_010260) 

and interferon gamma receptor 2 (IFNgr2: NM_008338) for QPCR analysis. cDNA was synthesized 

using Superscript II reverse transcriptase (Life Technologies, Rockville, MD, USA) and oligo-dT 

primers. Primers for the genes were selected from PrimerBank [28,29] as described in Table 2. QPCR 

was performed with the specific primers and SYBR premix Ex Taq II (Takara, Kyoto, Japan) on an 

ABI 7300 Real-time PCR system (Applied Biosystems, Foster City, CA, USA), and the results were 

normalized using expression levels of the glyceraldehyde-3 phosphate dehydrogenase gene (GAPGH: 

NM_008084). All data are presented as the mean ± standard deviation (SD). Statistical analysis was 

performed by using the Student’s t-test. 

Table 2. Primer sequences used for QPCR analysis. 

Gene 

symbol 

GenBank 

accession 

PrimerBank 

ID 

Primer sequence (5ʹ–3ʹ) Amplicon 

size Forward primer/reverse primer 

Gbp1 NM_010259 6753948a1 
ACAACTCAGCTAACTTTGTGGG 

TGATACACAGGCGAGGCATATTA 
183 

Gbp2 NM_010260 6753950a1 
CTGCACTATGTGACGGAGCTA 

GAGTCCACACAAAGGTTGGAAA 
115 

IFNgr2 NM_008338 6680373a1 
TCCTCGCCAGACTCGTTTTC 

GTCTTGGGTCATTGCTGGAAG 
115 

GAPDH NM_008084 6679937a1 
AGGTCGGTGTGAACGGATTTG 

GGGGTCGTTGATGGCAACA 
123 

3. Results and Discussion 

3.1. Heat Treatment Affects the Characteristics of Whey Proteins 

The protein profiles of LWPC and HWPC were compared by SDS-PAGE (Figure 1). LWPC 

showed clear peptide bands of high intensity at approximately 20, 29 and within 60–80 kD. These 

molecular weights represent β-lactoglobulin (20 kD), light-chain immunoglobins (29 kD), and bovine 
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serum albumin (BSA) (66 kD) and lactoferrin (77 kD), as confirmed by Jimenez et al. [30] and  

Morin et al. [31]. In the HWPC lanes, proteins within the range of 60–80 kD were the most prominent, 

but presented a lower intensity than that in the LWPC lanes. The clearest band coincided with BSA. 

Both lactoferrin and light-chain immunoglobins have degraded in the HWPC lane. These proteins 

contain immunomodulatory, anti-inflammatory and antibacterial functions. Further, they show rapid 

degradation at temperatures above 65 °C. Similar results were shown in [30]. It is clear that whey 

protein degradation increased under the higher-temperature treatment. Jovanovic et al. [32] obtained 

the same finding, where a gradual decrease in all whey proteins was observed with treatments at 

increasing temperatures. Lin et al. [33] also obtained similar results for protein degradation with 

increasing temperature; however, BSA was stable at temperatures lower than 80 °C, which may 

explain the presence of BSA in HWPC treated at 70 °C in the present study. β-Lactoglobulin, BSA, 

lactoferrins and immunoglobins are known to have bioactive properties important for treating  

many diseases [34]. 

Figure 1. SDS-PAGE profiles of whey protein concentrates. Lanes 1 and 5: marker;  

lanes 2–4: low-temperature-processed whey protein concentrate (LWPC); lanes 6–8:  

high-temperature-processed whey protein concentrate (HWPC). 

 

3.2. Oral Intake of LWPC Protects against DSS-Induced Colitis in Mice and Enhances Recovery  

from Colitis 

DSS-induced intestinal injury serves as an experimental model for human ulcerative colitis and is a 

well-established method for the chemical induction of intestinal injury [35]. The change in body 

weight in the mice during the experimental period is shown in Figure 2D. The body weight of mice 

without DSS treatment was constant throughout the experiment period. DSS induction started to show 

effects by Day 8 after treatment in DSS-treated mice; these mice continued to lose weight even after 

DSS administration was stopped (Days 14–16). Reduction of body weight is a common effect seen in 

DSS colitis and is caused by reduced food intake and impaired intestinal nutrient absorption [36]. The 

body weight of DSS + LWPC- and DSS + HWPC-treated mice showed a reduction until Day 14.  

DSS + LWPC-treated mice lost less weight than DSS- and DSS + HWPC-treated mice. After the DSS 
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treatment was stopped, the body weight of the mice steadily increased. This recovery of weight was 

most prominent in LWPC-treated mice. These findings indicate that LWPC treatment resulted in 

amelioration of DSS-induced colitis and facilitated rapid recovery from colitis after the administration 

of DSS was stopped. The role of LWPC in suppressing DSS-induced colitis has not been clearly 

determined; however, Sprong et al. [37] found that DSS-induced colitis in mice was ameliorated by 

feeding the mice cheese whey proteins, which stimulated gastric mucin expression and intestinal 

microflora modulation. 

Figure 2. The effect of the oral intake of whey protein concentrates on body weight of 

dextran sodium sulfate (DSS)-treated mice. Opened circles, normal mice without DSS 

treatment; filled circles, DSS-treated mice; filled triangles, mice treated with DSS + HWPC 

feed; filled squares, mice treated with DSS + LWPC feed. 

 

3.3. LWPC Protects the Intestinal Epithelium against DSS-Induced Inflammation 

Under inflammatory conditions, excess infiltration of neutrophils can be observed clearly. 

Microscopic images of colon sections from mice subjected to different treatments are shown in  

Figure 3. The normal mucosal structure of the colon (Figure 3A) demonstrated the clear separation of 

crypts and the lamina propria, and infiltration of leucocytes was not observed. Epithelial cells and 

goblet cells were prominent within the lining of each crypt. Histopathological features of inflammation 

include abnormal crypt formation, goblet cell depletion and marked intestinal wall thickening, with 

leukocyte infiltration [24]. DSS treatment induced severe inflammation of the colon with complete loss 

of the mucosal structure, severe infiltration of the lamina propria and thickening of the intestinal walls 

(Figure 3B). The colon of DSS + HWPC-treated mice showed a slight improvement in the structure of 

the mucosa; however, only a few goblet cells remained in crypts with an abnormal size and shape, and 

severe leukocyte infiltration was present (Figure 3C). DSS + LWPC treatment (Figure 3D) produced a 

distinct reduction in the severity of inflammation compared to that observed for DSS + HWPC and 

also improved the mucosal structure. The crypt structure and shape were well maintained, although the 

number of goblet cells decreased, and leukocyte infiltration was moderate. To evaluate the extent of 

damage in the colon sections, we scored the sections based on visual criteria (Table 1). The score of 

the colon tissue in DSS-treated mice was 15.0, whereas the score in colon tissue from mice without 
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DSS treatment was 1.1 (Figure 3E). DSS + LWPC-treated mice (9.4) showed a significant decrease in 

histological damage to the colon compared to that in DSS-treated mice. However, a significant 

reduction of damage scores was not observed in the DSS + HWPC group (13.3). These results suggest 

that oral intake of LWPC is effective for protection from DSS-induced colitis or for regeneration of 

damaged colon tissue. Moreover, pasteurization at a higher temperature may cause whey protein to 

lose these favorable properties.  

Figure 3. Histological effects of whey protein intake on DSS-induced colitis.  

(A–D) Transverse colon sections of mice on Day 21, stained with HE. (A) Normal mice 

without DSS treatment; (B) DSS-treated mice; (C) DSS mice treated with DSS + HWPC 

feed; (D) mice treated with DSS + LWPC feed (lp, lamina propria; gc, goblet cells;  

i, infiltration of leukocytes; ca, crypt atrophy; cab, crypt abscess; bars = 10 μm);  

(E) histological damage scores for the mouse colon on Day 21, evaluated according to 

Table 1. The final scores allocated are the average values of 25 slide spots of each different 

treatment group. * Statistically significant difference from the DSS group (p < 0.05).  

(F) Expression analysis of myeloperoxidase (MPO) and mucin in colon by western blot. 

Lane 1: normal mice without DSS treatment; lane 2: DSS-treated mice; lane 3: mice treated 

with DSS + HWPC feed; lane 4: mice treated with DSS + LWPC feed. 

 

In the colon, mucins are produced by goblet cells for lubrication [38]. The availability of mucins in 

the colon epithelium is an indicator showing that goblet cells are healthy and functioning well. Mucin 

was highly detected in mice colons without DSS treatment, and mucin levels were reduced by DSS 

treatment, indicating that goblet cells were destroyed by DSS-induced colitis in the colon (Figure 3F). 

Oral intake of both HWPC and LWPC increased the mucin level in the presence of DSS. Compared to 

the findings for the HWPC group, the expression level of myeloperoxidase (MPO) for the LWPC 

treatment was lower and was similar to that in the mice without DSS treatment (data not shown).  
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The reduced MPO levels in the LWPC-treated mouse colons compared to the levels in the colons of 

control and HWPC-treated mice show that LWPC treatment reduces neutrophil recruitment into the 

colon, further suggesting that inflammation was suppressed. Similarly, the increase of mucin levels in 

the gastric epithelium indicates the recovery of the DSS-induced colon by regenerated epithelial cells 

and goblet cells. Compared with LWPC, HWPC had lower effects on reducing MPO activity and 

increasing mucin content in the colon. Sprong et al. [37] reported that cheese whey protein feed 

increased the mRNA levels of mucin 2 (MUC2) in the colon of rats induced with DSS inflammation, 

possibly because whey protein contains higher amounts of amino acids required for mucin synthesis. 

The quantity and composition of amino acids are almost identical between LWPC and HWPC. 

However, in our study, the protein profile was different according to the results of SDS-PAGE  

(Figure 1). LWPC is shown to retain more proteins than the HWPC fractions. These proteins possibly 

contain more bioactive peptides in a higher solubility form, which is more accessible in digestion.  

Bounous et al. [39] and Hongsprabhas et al. [40] also found similar results where mild heat treatment 

on whey proteins preserved the biological activity and showed an increased function of antioxidant and 

immune response, both in vivo and in vitro. 

3.4. The Effect of LWPC on Gene Expression under DSS-Induced Inflammation in the Colon 

To investigate the mechanism underlying the effect of LWPC, we evaluated the transcriptome of 

the mouse colon by DNA microarray analysis. Compared with the control group, 677 out of 22,626 

probed genes were up- or down-regulated by over two-fold in the DSS treatment group (Figure 4,  

Table 3). Compared with the DSS group, the number of genes differentially expressed (≥2-fold 

change) in the LWPC group was higher (351) than that in the HWPC group (144). This finding 

suggests that LWPC has more bioactive peptides than HWPC. In total, 110 genes were regulated by 

both DSS and LWPC, whereas 51 genes were regulated by both DSS and HWPC. Therefore, LWPC 

may have a higher effect on the expression of genes involved in DSS-induced inflammation. 

Figure 4. Venn diagram of differentially-regulated genes. Numbers show genes up- or 

down-regulated (≥2-fold), compared between the control (no treatment) and DSS, between 

DSS and DSS + LWPC and between DSS and DSS + HWPC groups. 
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Table 3. The number of genes differentially regulated by DSS and whey  

protein concentrates. 

Treatment group 
Number of genes differentially regulated (fold change vs. control >2) 

Upregulated Downregulated Total 

DSS 348 328 677 

DSS + LWPC 213 138 351 

DSS + HWPC 113 31 144 

The 110 genes regulated by both DSS and LWPC were further classified into functional groups 

using the DAVID functional annotation program according to the GO biological process in the GO 

ontology, as shown in Table 4. Among the genes, 12 genes were involved in “immune response” and 

sox genes were involved in “inflammatory response”, indicating possible effects on inflammation. The 

expression levels of the 12 immune responsive genes (Table 5) are shown in Figure 5. All of the genes 

were upregulated by DSS treatment and downregulated by LWPC treatment, except for Cfd 

(complement factor D) and Il1rn (interleukin 1 receptor antagonist). The genes encoding  

guanylate-binding proteins (GBP), such as Gbp1, Gbp2 and Gbp6, were highly expressed in the colon 

of DSS-treated mice, but distinctly downregulated by LWPC ingestion, whereas the expression levels 

did not decrease upon oral administration of HWPC. Our results revealed relative expression increases 

of 3.5-, 2.5- and 1.7-fold in LWPC-treated mice and 8.2-, 5.4- and 3.3-fold in DSS-treated mice  

for Gbp1, Gbp2 and Gbp6, respectively, relative to the blank treatment (Figure 6), which clearly 

indicates the reduced expression of Gbps in LWPC. Furthermore, Cxcl9 (chemokine (c-x-c motif) 

ligand 9), Ccl8 (chemokine (c-cl motif) ligand 8) and Itgb6 (integrin beta 6) showed a pattern similar 

to that of Gbps. The remaining genes were downregulated in both the HWPC and LWPC groups. 

However, the level of decrease of the expression of these genes was lower in the HWPC group than in 

the LWPC group. 

Table 4. Functional categories of genes differentially regulated by both DSS and LWPC 

GO biological process 
Number of genes  

(fold change > 2) 
% * p-Value ** 

GO:0006955 Immune response 12 12.2 3.1 × 10−4 

GO:0006869 Lipid transport 5 5.1 4.6 × 10−3 

GO:0010876 Lipid localization 5 5.1 6.0 × 10−3 

GO:0015918 Sterol transport 3 3.1 7.4 × 10−3 

GO:0030301 Cholesterol transport 3 3.1 7.4 × 10−3 

GO:0006954 Inflammatory response 6 6.1 9.0 × 10−3 

GO:0048593 Camera-type eye morphogenesis 3 3.1 3.0 × 10−2 

GO:0042159 Lipoprotein catabolic process 2 2.0 3.4 × 10−2 

GO:0034754 Cellular hormone metabolic process 3 3.1 3.5 × 10−2 

GO:0010817 Regulation of hormone levels 4 4.1 3.6 × 10−2 

* Differentially regulated genes/total genes in category; ** modified Fisher exact p-value (Expression 

Analysis Systematic Explorer score) adopted in the DAVID annotation chart. 
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Table 5. The genes in “immune response” (GO:0006955) whose expression was regulated 

by both DSS and LWPC. 

GenBank 

Accession No. 

Gene 

symbol 
Gene description 

Regulation by 

DSS and LWPC 

NM_013459 Cfd Complement factor D (adipsin) ↓ ↑ 

NM_001159564 Itgb6 Integrin beta 6 ↑ ↓ 

NM_001276445 Tlr1 Toll like receptor 1 ↑ ↓ 

NM_012012 Exo1 Exonuclease 1 ↑ ↓ 

NM_133829 Mfsd6 Major facilitator S domain containing 6 ↑ ↓ 

NM_008599 Cxcl9 Chemokine (c-x-c motif) ligand 9 ↑ ↓ 

NM_021443 Ccl8 Chemokine (c-cl motif) ligand 8 ↑ ↓ 

NM_011315 Saa3 Serum amyloid A3 ↑ ↓ 

NM_010259 Gbp1 Guanylate binding protein 1 ↑ ↓ 

NM_010260 Gbp2 Guanylate binding protein 2 ↑ ↓ 

NM_145545 Gbp6 Guanylate binding protein 6 ↑ ↓ 

NM_001039701 Il1rn Interleukin 1 receptor antagonist ↑ ↑ 

Figure 5. Expression of genes involved in the immune response that were differentially 

regulated by whey protein concentrate. The graph shows the relative expression level (fold 

change) determined by microarray analysis (white: normal mice without DSS treatment; 

black: DSS-treated mice; grey: mice treated with DSS + HWPC feed; hatched: mice treated 

with DSS + LWPC feed). The proper names of the genes are shown in Table 5. 

 
  

Fig.6
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Figure 6. Gene expression analysis by real-time QPCR. The relative expression levels of 

Gbp1, Gbp2 and IFNgr2 are shown as ratios compared with GAPDH. * Statistically 

significant difference from the DSS group (p < 0.05). 

  

Quantitative real-time RT-PCR was performed to confirm the expression levels of Gbp1 and Gbp2 

(Figure 6A,B). Both Gbp1 and Gbp2 were upregulated by DSS treatment by 4.54 ± 0.19- and  

2.27 ± 0.32-fold, respectively. Oral intake of LWPC significantly decreased the expression level of 

both Gbp1 and Gbp2 in the colon of DSS-treated mice, with relative expression levels of 1.26 ± 0.35- 

and 1.18 ± 0.59- fold, respectively, relative to the blank treatment. However, HWPC did not suppress 

the expression of these Gbp genes. The GBP family is a group of proteins that bind to guanine 

nucleotides, but that are different from the G protein family. GBPs are highly expressed in endothelial 

cells and are strongly induced by inflammatory cytokines, such as interferon (IFN) gamma, tumor 

necrosis factor alpha, interleukin 1 (IL-1) alpha and IL-1beta [41]. Gbp1 also contributes to cell 

survival through the inhibition of apoptosis, thereby maintaining the integrity of the barrier function of 

the epithelium [42]. Gbp1 has also been proposed to regulate vital homeostatic functions, such as 

apoptosis and cell growth [43]. Britzen-Laurent et al. [44] found that Gbp1 mediates the  

anti-tumorigenic effects of IFN gamma, resulting in the inhibition of tumor growth in colorectal cancer 

(CRC). Thus, higher expressions of GBPs are expected in inflammatory CRC sites. Gbp1 and Gbp2 

expression may be reduced upon LWPC treatment through the suppression of the IFN  

gamma-mediated inflammatory response. Our microarray findings also showed the expression of the 

chemokine, Cxcl9, which was also reported to be induced via IFN gamma signaling [45]. Thus, the 

decreased expression of Gbp1, Gbp2, Gbp6 and Cxcl9 may result from the suppression of IFN gamma 

signaling through oral intake of LWPC. IFN gamma is a critical mediator of the immune system and 

inflammatory responses mediated by activated T-cells. IFN gamma acts to enhance inflammation by 
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recruiting the infiltration of leukocytes. Excess IFN gamma results in inflammatory disorders and is 

well established to regulate cell proliferation and apoptosis through the disassembly of tight junctions 

and the reduction of the rate of cell migration in the epithelium in IBD [46]. According to our 

microarray results, the expression level of IFN gamma was not changed by LWPC treatment. 

However, we noticed that the receptor for IFN gamma, namely IFNgr2, was downregulated in LWPC 

by 1.7-fold in our microarray results. The gene expression level of IFNgr2 was validated by QPCR, as 

shown in Figure 6C. In particular, IFNgr2 was upregulated by DSS treatment and downregulated by 

oral intake of LWPC, but not by that of HWPC. We also found that further downstream of the IFNG 

pathway, the signal transducers and activators of transcription1 (STAT1) was downregulated by 2.1 by 

LWPC, while HWPC showed no changes. Interleukin 10 (IL-10) is a unique cytokine having  

anti-inflammatory properties [47]. According to recent research findings [48], both Il-10 and 

interleukin 10 receptor 1 (IL-10R1) increased in response to higher levels of IFNg in tissues. 

Interleukin 27 (IL-27) is characterized as a cytokine with intestinal barrier protection through 

transcription of antibacterial and anti-inflammatory genes [49]. LWPC did not show any change on the 

IL-10, IL-27 or their receptor expression levels in our results. Therefore, we suggest that suppression 

of inflammation by LWPC was not induced through the anti-inflammatory cytokines above. Our 

histological study described above confirmed the reduced inflammation and damage in the  

DSS-induced colon when treated with LWPC. This result is in line with the reduced expression of 

IFNgr2, GBPs and Cxcl9. Therefore, we suggest that LWPC acts by downregulating IFN gamma 

receptor, resulting in decreased inflammation in DSS-induced colitis. 

Whey protein isolates subjected to high hydrostatic pressure have been shown to affect the 

suppression of tumor necrosis factor-alpha, interleukin 8 and interleukin 18 in Caco-2 colon cancer 

cells [50]. Rusu et al. [51] showed that whey protein increases innate immunity by priming neutrophils. 

Attaallah et al. [52] reported that oral intake of whey protein hydrolysate protects rats against 

azoxymethane- and DSS-induced colon cancer. These studies suggest that whey protein modulates the 

immune system. In this study, we showed that LWPC suppresses DSS-induced colitis by suppressing 

the IFN gamma pathway. This anti-inflammatory activity was lost upon heat treatment of the whey 

protein, which suggests that the main active peptide of whey protein is heat labile. Some proteins in 

whey and peptides derived from these proteins have been reported to have bioactive properties, as 

reviewed by Smithers [53]. Lactoferrin, lactoperoxidase (LPO) and immunoglobulins have 

antimicrobial activity. Shin et al. [54] reported that DSS-induced inflammation was suppressed by oral 

administration of LPO in mice and also showed that LPO reduces IFN gamma expression. However, 

LPO may not be a candidate active peptide for anti-inflammation in LWPC, because LWPC did not 

downregulate IFN gamma expression, but rather reduced Infgr2 expression in our study. Transforming 

growth factor beta (TGF-beta) is a cytokine that controls proliferation, cellular differentiation and 

other functions in most cells. TGF-beta is also involved in the effects of whey protein and has been 

shown to ameliorate IFN gamma-induced intestinal barrier disturbance by upregulating claudin-4 

(Cldn4) in human HT-29/B6 cells [55]. However, LWPC did not affect the expression level of Cldn4 

in our microarray experiment (data not shown). Thus, we expect that the anti-inflammatory peptide in 

LWPC is not TGF-beta or LPO. The anti-inflammatory effect of LWPC was lost by heat treatment. 

However, there are no reports regarding the heat stability of these bioactive peptides in whey to date. 

Exploration of the active peptides is now ongoing. 
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4. Conclusions 

DSS-induced colitis was prevented by oral intake of LWPC, which also enhanced the recovery from 

colitis. Comprehensive analysis of gene expression in the colon by DNA microarray analysis showed 

that GBPs were downregulated by LWPC intake. Expression of GBPs is known to be regulated by 

interferon gamma. IFNgr2, a receptor for interferon gamma, was also downregulated by LWPC, which 

suggests that oral intake of LWPC results in the suppression of IFN gamma-mediated pathways and 

leads to the suppression of inflammation. 
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