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Abstract: Although commercial motion-capture systems have been widely used in various appli-
cations, the complex setup limits their application scenarios for ordinary consumers. To overcome
the drawbacks of wearability, human posture reconstruction based on a few wearable sensors have
been actively studied in recent years. In this paper, we propose a deep-learning-based sparse inertial
sensor human posture reconstruction method. This method uses bidirectional recurrent neural
network (Bi-RNN) to build an a priori model from a large motion dataset to build human motion,
thereby the low-dimensional motion measurements are mapped to whole-body posture. To improve
the motion reconstruction performance for specific application scenarios, two fundamental problems
in the model construction are investigated: training data selection and sparse sensor placement. The
problem of deep-learning training data selection is to select independent and identically distributed
(IID) data for a certain scenario from the accumulated imbalanced motion dataset with sufficient
information. We formulate the data selection into an optimization problem to obtain continuous and
IID data segments, which comply with a small reference dataset collected from the target scenario. A
two-step heuristic algorithm is proposed to solve the data selection problem. On the other hand, the
optimal sensor placement problem is studied to exploit most information from partial observation
of human movement. A method for evaluating the motion information amount of any group of
wearable inertial sensors based on mutual information is proposed, and a greedy searching method
is adopted to obtain the approximate optimal sensor placement of a given sensor number, so that the
maximum motion information and minimum redundancy is achieved. Finally, the human posture
reconstruction performance is evaluated with different training data and sensor placement selection
methods, and experimental results show that the proposed method takes advantages in both pos-
ture reconstruction accuracy and model training time. In the 6 sensors configuration, the posture
reconstruction errors of our model for walking, running, and playing basketball are 7.25◦, 8.84◦, and
14.13◦, respectively.

Keywords: Bi-RNN; Max-Relevance and Min-Redundancy; training data selection; pose estimation;
optimal sensor placement

1. Introduction

Motion capture has a wide range of applications in medical rehabilitation, virtual
reality, sports training and other fields [1–3]. However, the current inertial motion-capture
devices require subjects to wear 17 or more inertial sensors [4]. It can be intrusive, time-
consuming, and prone to sensor misplacement during mounting. Tracking with a minimal,
lightweight configuration of sensors is therefore desirable. Many studies have shown
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that human motion includes a lot of redundant information and can be described by
dimensions lower than the degree of freedom of human motion [5–7]. This opens the door
to the study of using sparse inertial sensors human motion capture. To improve the ease of
use of inertial motion-capture technology, in recent years researchers have begun to pay
attention to motion-capture technology based on fewer wearable inertial sensors [8–10].
Existing research mainly focuses on motion reconstruction methods based on motion prior
data and models. For example, a priori model of human motion including local posture
linear regression models based on multilayer neural networks and deep-learning recurrent
neural networks has been constructed, using 5–6 inertial sensor measurements as input
to the model to predict the whole-body posture. Based on the attitude estimation of the
prior model, von Marcard et al. merged the prior model with inertial measurements and
proposed a motion reconstruction method with offline optimization.

At present, the research of motion-capture technology based on sparse inertial mea-
surement is in the preliminary stage. Several motion prior models have been proposed
for general motion capture, but the posture reconstruction accuracy is still limited. In
addition, the existing research has not studied the influence of the position of the sparse
inertial sensor on the reconstruction accuracy. The motivation of the work is to improve
the accuracy of the sparse inertial sensor pose reconstruction, especially for certain target
application scenarios. We believe that selecting appropriate training data and the optimal
sensor placement on the human body are promising means to improve the accuracy of
pose reconstruction under specific application scenarios.

Current methods mainly work in general purpose motion capture, where a large
human motion dataset with various movements is used for model training. The basic
assumption of training data for machine learning models is that the collected data should
be independent and identically distributed (IID) in the target application scenario [11].
The model trained for general purpose may not be optimal for a specific application.
Because the dataset is usually accumulated through many tests, it maybe imbalanced in
different types of movements. The posture reconstruction accuracy has potential to be
improved for certain applications where the movements are more regular and predictable.
However, the practical challenge is that the existing motion-capture dataset may not fulfill
the IID condition of a specific application scenario, and collecting large amount of IID
data from each target application scenario can be time-consuming. To fully use existing
dataset, we propose a new data selection method prior to training machine learning models
according to the target application scenario. The general idea is that first we collect a small
amount of IID reference data from the target scenario. Then, continuous data with small
redundancy are selected from the existing dataset, so that they are complied with the a
priori distribution of the reference data.

In addition to selecting appropriate training data, the placement of the sparse inertial
sensors also plays an important role in the posture reconstruction. It is also worth studied
for the optimal performance in different applications. For example, in normal gait, the
thigh and shank sensor measurements have strong relevance, and it is possible to infer
thigh posture according to the shank posture. In this case, these two sensors have large
information redundancy. However, when playing football, the leg movement is highly
random in a long period of time, where the independence between the thigh and shank
measurements is larger. Generally, the relevance and independence among groups of
sensors on the human body vary under different scenarios. The choice of sparse sensor
placement will have an obvious impact on the body posture reconstruction accuracy. It is
necessary to establish a model of the information volume related to the sensor configuration.
With this model, we can determine the optimum number and placement positions of the
sensors, and in this way, we can improve the accuracy of motion capture while ensuring
the ease of use of the system.

In this paper, we first introduce a method to choose appropriate training data from the
accumulated dataset, so that the selected data have similar distribution to data collected
from the specific application scenario and has small redundancy. Then, the optimum
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number and placement position of the sparse inertial sensors are determined through
information volume evaluation. Finally, the selected training data are used to train a deep-
learning neural network, where the inputs are the motion measurements of the selected
sensors and the output is the whole-body posture. The body posture reconstruction
performance under different training data and sensor placements are evaluated through
experiments. In summary, the novelty and contributions of this paper include:

• A novel optimization-based efficient data selection scheme is proposed to select
continuous and IID data with small redundancy from a large dataset for a specific
application scenario.

• The inertial sensor placement problem in sparse inertial sensor posture reconstruction
is first formulated into an optimization problem, and a heuristic optimization method
is proposed based on a metrics of the amount of information and the redundancy of a
group of sensors.

The rest of this paper is organized as follows. Section 2 introduces related work.
Section 3 provides overview of the proposed methods. Section 5 introduces the theory and
algorithm of training data selection. Section 6 describes the correlation and the redundancy
evaluation of the motion information collected in different sensors and the corresponding
sensor position selection algorithm. Section 7 presents the experimental results, and we
draw some conclusions in Section 8.

2. Related Work
2.1. Inertial Motion Capture

The inertial motion-capture systems include multiple inertial measurement units
(IMUs) installed on various segments of the subject’s body, which can obtain motion mea-
surements including acceleration, angular velocity and posture of body segments. Inertial
motion-capture technology is relatively mature, and the device is portable, not affected
by motion occlusion, and the data frame rate is high. Roetenberg et al. has proposed an
inertial capture system based on Kalman filtering that can integrate 17 IMUs [4]. In or-
der to improve the accuracy of inertial motion capture, related studies in recent years
mainly focus on automatic calibration of inertial sensor installation parameters [12–14],
motion reconstruction constraint conditions [15], and nonlinear optimization-based pose
reconstruction methods [16].

Studies have shown that human motion includes a lot of redundant information and
can be approximately presented by dimensions lower than the original degree of freedom
of human motion [6,17,18], which inspired the study of sparse sensor motion capture. Some
researchers developed motion-capture technologies combining sparse inertial sensors with
video input [7,19] or optical reflective markers [20] or using only sparse optical markers [21].
Although these studies have achieved acceptable posture reconstruction performance, their
applications are limited due to optical occlusion issues and high cost of use. In this study,
we decided to use only commercially available IMUs for convenience without location
measurements or a depth camera.

Existing research on human body posture reconstruction based on sparse inertial
sensors mainly relies on motion prior data and models, including multilayer neural
networks [10], local pose linear regression models [22], and deep-learning neural net-
works. A priori model of human motion based on a bidirectional recurrent neural network
(Bi-RNN) using 5–6 IMUs to predict the body posture has been proposed [9]. According to
the attitude estimation based on the prior model, von Marcard [8] et al. merged the prior
model with inertial measurements, and proposed a motion reconstruction method based
on offline optimization. At present, the research of motion-capture technology based on
sparse inertial measurement is still in the preliminary stage. Several motion prior models
have been proposed, but these models have limited accuracy for human body posture
reconstruction in certain application scenarios.
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2.2. Training Data Selection

Training data selection is an active research topic in machine learning. Through
effective selection of training data, more informative samples are extracted, redundant
samples and noise data are eliminated, to achieve better learning performance [23]. The
current common training data selection methods include methods based on sampling,
clustering, and information theory.

The sampling method is the widely adopted basic strategy to reduce the training set,
which is simple, easy and fast. Some methods randomly selected training data according to
the spatial nature of the sample [24–26]. Although they can effectively reduce the number
of samples, the generalization ability of the obtained model cannot be guaranteed. Based on
simple random sampling, the methods of uniformly and randomly selecting a compressed
set were also studied [27–29].

Random selection of training samples cannot guarantee that the model works reliably
in actual tasks. Therefore, scholars proposed to effectively select the training set by con-
sidering the distribution characteristics of the data, such as clustering methods. Zhai et al.
presented an instance selection method based on supervised clustering, and the main idea
is to select instances belonging to inner boundary and outer boundary of clusters [30]. Some
researchers used k-means algorithm to partition the dataset into clusters and picked up
data from each cluster [31,32]. While using k-means algorithms, the choice of the number
of clusters is a challenging issue. In addition, the clustering results are sensitive to the
choices of the initial points.

There are also methods using information theory to evaluate and select data samples.
Zheng et al. applied a partial mutual information (PMI) technique to find the optimal
dataset [33]. Liu et al. explored frame-level data selection based on the normalized frame-
level entropy of Gaussian posterior probabilities obtained from the data [34]. The training
data selected by the cross-entropy difference selection method proposed by Robert et al. has
a good test performance and only requires a small amount of training data [35]. However,
existing data selection methods are mainly used for the data reduction of large datasets
to improve the computational efficiency of the general model training. When targeting
certain application scenarios, researchers usually need to collect new datasets. Therefore,
how to select IID training data for specific application scenarios from general datasets is a
new topic that deserves further investigation.

2.3. Sensor Placement Selection

In existing research of sparse inertial sensors human motion reconstruction, sensor
placement was usually manually decided, such as on the pelvis, head, forearms, and
shanks [9]. In the past few years, some researchers have conducted research on the influ-
ence of sensor configuration on activity recognition. Cole et al. studied the choice of the
position of the smart watch on the human wrist to predict smoking action [36]. Orha et al.
compared the accuracy of placing the three-dimensional accelerometer on the right hand,
right thigh, and chest to determine the best sensor placement based on the accuracy of the
neural network classification of human activities [37]. On basis of this, some researchers
have investigated more candidate positions for activity recognition tasks [38–40]. Banos et
al. studied the influence of sensor placement on human motion recognition [41].

Instead of directly comparing the prediction accuracy of the sensor configurations,
information-based techniques have been studied. These methods evaluated the value of
sensor configurations without obtaining the testing performance in the final task. In this
way, the searching efficiency can be improved. Kunze et al. determined the optimal sensor
configuration based on mutual information between sensor data and the recognized action
type [42], but this method did not consider redundancy within the sensor measurements.
At present, the sensor configuration method for human activity recognition has been well
studied, but there is still no related work for posture reconstruction. In addition, compared
with the classification problem in activity recognition where there is only one output (i.e.,
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action category), the output variables have multiple dimensions in the regression problem
of human body posture reconstruction.

3. Method Overview

The current inertial motion-capture devices require the subject to wear about 17 sen-
sors [4], and our goal is to reduce the sensor number while achieving acceptable perfor-
mance in posture reconstruction accuracy. A deep neural network Bi-RNN is adopted
as the basic model to map low-dimensional motion measurements to the whole-body
posture. The measurements obtained from an IMU include the posture and acceleration of
the sensor relative to the world coordinate system. Human bone kinematics are obtained
based on installation parameters obtained through calibration. For better generalization,
the input data are aligned with the orientation of the person based on the root bone (i.e.,
pelvis) orientation. The training of the Bi-RNN model requires a large amount of IID
data of the target application scenario. To use the accumulated dataset and save time for
transfer learning of posture reconstruction, we proposed a method to select useful training
data that meet the IID condition from the accumulated motion dataset. At the same time,
the position and number of sensors placed on the human body affect the performance
of human posture reconstruction, so we also studied the optimal selection of the sensor
placement to improve the reconstruction accuracy for target applications. An overview of
the entire pipeline of the proposed method is shown in Figure 1. The upper left part of
Figure 1 is the training data selection. We collect corresponding sample data according to
specific application scenarios, and then select the data which has similar distribution to the
sample data with small redundancy from the accumulated motion dataset. The bottom left
part of Figure 1 is the optimal sensor configuration. We train the neural network on the
right side of Figure 1 based on the selected training data and sensors. In actual use, the
measurements of selected sensors is used as the input of the neural network, and finally
the neural network outputs the posture.

Figure 1. The workflow of data selection, optimal sensor configuration and pose reconstruction.

4. Sparse Sensor Pose Reconstruction
4.1. Data Pre-Processing

In this study, inertial motion-capture suit Perception Neuron Studio is used to obtain
human motion data [43]. Data obtained from the inertial sensors include the acceleration
W aS and rotation matrix S

W R of the sensor with respect to the world coordinate system W.
To express the bone kinematics in W as (1), the kinematics of the sensors must be subjected
to a set of calibrations wherein the orientation of sensor with respect to the bone is obtained.
To identify the sensor to body alignment, the subject is asked to stand in a known pose for
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calibration. The rotation from sensor to body B
S R is determined by matching the orientation

of the sensor in the world coordinate system S
W R with the known orientation of each bone

B
W R in this pose.

B
W R =S

W R ·BS R (1)

For better generalization, the input data are normalized with the person’s orientation.
Then, we standardized all bone orientations with respect to the root bone, which is the
pelvis. Root

w R denotes the orientation of the root bone with respect to the world coordinate
system, and Root

w a denotes the acceleration of the root with respect to world coordinate
system. The normalized orientation and acceleration of each bone are obtained as (2)
and (3).

B
RootR =W

Root R ·BW R (2)

RootaB =W
Root R · (W aB −W aRoot) (3)

4.2. Bi-RNN Model

Human body motion pattern has temporal characteristics, and the pose of the current
frame is often correlated with history and future motion data. Bidirectional Recurrent
Neural Network (Bi-RNN) is suitable to learn the temporal relationship between history
and future pose data and the current frame pose [44], so Bi-RNN is adopted in this study.
The basic structure of our Bi-RNN model refers to the work done by Huang et al. [9],
which is shown in Figure 2. Given a training dataset D = {(xi, yi)}N

i=1 including N data
frames, the objective is to train a f : x → y function which can predict the distribution of
the kinematic data of unselected sensors y from the measurements of selected sensors x.
Huang et al. tried to fit the model to predict the human body Skinned Multi-Person Linear
Model (SMPL). SMPL is a parametrized model of 3D human body and pose that takes
72 pose parameters and 10 shape parameters, and returns a mesh with 6890 vertices. Unlike
Huang et al. that train the model to predict both pose and shape parameters, we directly
predict the body posture. Numbers in brackets in Figure 2 are the input dimensions, output
dimensions and number of units in the respective layer. The dropout probability of the
input layer is 0.2. The middle layer is composed of Long Short-Term Memory (LSTM) units,
and the sequence length of Bi-RNN is 300 frames including 150 frames of both past and
future data.

The inputs of the Bi-RNN are the acceleration vector and orientation in rotation matrix
format of selected bones, and the outputs are the acceleration norm and orientation in
axis angle format of all other unselected bones. Through comparison of the reconstruction
performance using different orientation formats in the Bi-RNN, the combination of rotation
matrix input and axis angle output achieves the highest accuracy in the experiments.

Figure 2. The structure of the Bi-RNN, and n is the sparse sensor number.

5. Training Data Selection
5.1. Problem Formulation

Conventionally, the entire available dataset is used for deep neural network training.
However, there may be redundant data or irrelevant data, which may affect the training
performance of the model for specific application scenarios. For example, when learning
motion model for walk reconstruction, the motion-capture data of other types of activities,
such as run, jump, and dance, are irrelevant and may not contribute to the reconstruction
performance of walk. In addition, human walk is a repetitive movement consisting of
consecutive similar gait cycles, and a long sequence of normal walk data with consistent
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pattern may have large redundancy, which will only increase the training time of the model.
Therefore, selecting appropriate training data according to the target scenario is desirable
to improve the accuracy of pose reconstruction and reduce model training time.

We denote the accumulated dataset as DA and the motion feature distribution within
the dataset can be different from the target application scenario. To select IID data for a
specific application scenario from the accumulated dataset, we first collect a small amount
of reference sample data DRe f in this scenario and estimate its a priori distribution of
movements features. The goal of training data selection is to re-sample continuous data
segments from DA to obtain actual training data D that has similar distribution to the
reference data with small redundancy. Then, the selected training data and reference data
are used for the Bi-RNN pose reconstruction model training. The training data selection
problem can be formulated into an optimization problem as (4). Here, D is the selected data,
which has K continuous segments with various lengths. H(D) is the amount of information
of the selected data, i.e., the entropy of D, dDP evaluates the distribution difference between
D and DRe f , and N(D) means the amount of data in D. The objective is to select adequate
data with enough information for the target scenario.

max
D⊆DA

αH(D)− βdDP(D, DRe f )− γN(D), (4)

Assuming D includes K motion data segments and DA includes M motion data
segments, D can be expressed as {Sk}, k ∈ [1, K] where Sk = [mk, tk, τk] representing a data
segment selected from mth

k data segment from DA. Sk = { f j}, j ∈ [1, τk] starts from the
tth
k frame and takes τk frames in total. Every data frame f j contains N f features denoted

by {θi}, i ∈ [1, N f ]. Because the value function is non-derivable and discontinuous, it
is challenging to solve this problem from the perspective of theoretical analysis. Thus, a
heuristic algorithm is proposed to solve the problem into two steps. First, a similar and
continuous dataset DB ⊆ DA is chosen from the dataset using cosine angle to evaluate
the difference between the chosen data and the reference data. In this way, we can delete
irrelevant motion data from DA, reducing the search space of heuristic algorithm. Second,
we select data with distribution similar to the reference data from DB by adopting a
heuristic algorithm to find an approximate optimum value of the optimization problem.
An illustration of the data selection process is shown in Figure 3.

Figure 3. Illustration of the training data selection process. The upper part of the figure is the data
segments selected during the procedure. The lower part of the figure shows the data distribution in
histograms of both reference data and selected data. In this first step of similar data selection, the
selected data segments share the same range of values with the reference data. In the second step of
heuristic algorithm of data selection optimization, the selected data segments tend to have similar
distribution as the reference data.
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5.2. Similar Data Selection

The data selection problem is equivalent to determining a Boolean flag of selected or
not for every data frame in the whole dataset. Since the dataset may have a huge number
of frames inside, the variable state space to be optimized can be huge as well. Considering
that continuous pieces of data segments are preferred in the data selection for Bi-RNN
training, we divide each complete segment of data in DA into data units with a length
of N = 50 frames (i.e., 0.5 s) to lower down the state space dimension. To select data
following the IID condition of the target application scenario, we designed a two-step
efficient algorithm. First, we select data units from the whole dataset that are similar to
any piece of the reference data unit in terms of motion feature values. The selected data
are regarded as the similar dataset DB . The similar dataset further narrows down the state
space of optimal training data searching.

In the implementation, the cosine angle metrics is used to evaluate the similarity
between a selected data unit u1 in DA and a reference data unit u2 in DRe f as (5). We
calculate the similarity between each pair of u1 and u2, and data units u1 whose maximum
similarity with any reference data unit ηmax(u1, u2) ≥ η0 are selected into DB . Since the
input sequence length of Bi-RNN is L = 300, only data segments with more than L frames
are selected. If η0 is too large, the searching space will be too large; if η0 is too small,
some useful data will be filtered out. Through experimental tuning, η0 = 0.8 is chosen in
this study.

η(u1, u2) =
1
N

N

∑
i=1

〈x1i, x2i〉
‖x1i‖‖x2i‖

, x1i ∈ u1, x2i ∈ u2, (5)

5.3. Optimal Data Selection

After DB is selected from the original dataset DA, we need to further select training
data D ⊆ DB to follow the IID condition of the target scenario and be as continuous as
possible, contain more information, and has small redundancy at the same time. This
optimization problem has been introduced in (4). IID condition requires that the joint
distribution of the motion features of the selected training data D should be the same as
the reference data DRe f . However, evaluating the similarity of the joint distribution of
motion features is difficult due to the high dimensionality of the data. When the motion
data features of both D and DB are Gaussian and have similar value range (guaranteed
by similar data selection), and the marginal probability distributions of each feature are
similar, then the joint probability distribution should be similar.

The Kullback–Leibler (KL) divergence is a measure of the difference between one
probability distribution and another. We use the KL divergence to evaluate the marginal
distribution difference between each feature of D and DRe f , and obtain the overall distribu-
tion distance as (6). Here, N f is the number of features, Pi(x) is the probability distribution
of the ith feature of D, Qi(x) is the probability distribution of the ith feature of reference
data. To discretize each feature to better express its distribution, we divide the value range
of every feature into 20 intervals χ according to the maximum and minimum values of
each feature to calculate its probability distribution. The calculation of Pi(x) is given as (7)
and (8). Ni(x) counts the number of data falling into the data interval of x ∈ χ. Similarly,
Qi(x) can be calculated.

dDP(D, DRe f ) =
1

N f

N f

∑
i=1

∑
x∈χ

Pi(x)log
Pi(x)
Qi(x)

, (6)

Pi(x) =

K
∑

k=1

lk
∑

j=1
δkji(x)

K
∑

k=1
lk

, i ∈ [1, N f ], (7)
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δkji =

{
1, i f θkji ∈ x,
0, otherwise.

(8)

In this paper, we use information entropy to evaluate the amount of information of
the data as (9). In the same way, we divide the features into 20 intervals x ∈ χ according to
the maximum and minimum values of each feature to calculate the probability distribution
of each feature. N(D) is the number of data we selected given in (10), which needs to be
minimized to remove redundant data.

H(D) =
1

N f

N f

∑
i=1

∑
x∈χ

Pi(x)logPi(x). (9)

N(D) = log(∑
k

lk). (10)

In summary, the cost function of the training data selection optimization problem can
be rewritten as (11). Considering maximizing the information term, it is desirable to choose
the data distribution P similar to Q and preferably uniformly distributed. When considering
minimizing the data amount, data with fewer segments and frames are preferred. Because
D is discontinuous and fds(D) is non-derivable, it is difficult to find the optimal value
of fds from the perspective of theoretical analysis, so we propose a heuristic searching
algorithm. To solve the optimization problem, a greedy algorithm is adopted to break
down the original problem into a series of sub-problems, and in each iteration, we try to
identify the optimal data segment that can be deleted from the existing selected dataset.
Initially, set D = DB which can be expressed as {SkB}, kB ∈ [1, KB]. To delete the first data
segment SkB ,0, we need to consider the fds value and the data segment satisfies (12) will
be deleted. The next data segment S∗kB

to be deleted is the data segment satisfying (13).
Equation (13) is iterated until fds(D\S∗kB

) converges to a local minimum.

max
D⊆DB

fds(D) =
α

N f

N f

∑
i=1

∑
x∈χ

Pi(x)[log(Pα
i (x))− log(

Pβ
i (x)

Qβ
i (x)

)]− log(∑
k

lk) (11)

SkB ,0 = arg min
SkB

,kB∈[1,KB ]

fds(SkB) (12)

S∗kB
= arg max

SkB
⊆D,kB∈[1,KB ]

fds(D\SkB) (13)

6. Optimal Sensor Placement
6.1. Problem Formulation

The purpose of the sensor selection is to find a sparse sensor configuration that
uses fewer sensors and has high body posture reconstruction accuracy. Generally, when
selecting sensors, only the amount of information that can be measured by different sensors
is considered. However, our objective is to estimate the measurements of the unselected
sensors from the measurements of the selected sensors, thus, we need to maximize the
correlation between the measurements of the selected sensors and the unselected sensors.
Due to correlation between the sensors, the selected sensors will also contain related
measurements. Traditional information-based feature selection methods usually only
consider the correlation between the selected sensors and the unselected sensors. In this
way, the sensors with more information redundancy are usually selected at the same time,
and the sensor with less correlation with the unselected sensors but no redundancy is
usually ignored. This is actually not preferred.

In order that the selected sensors can measure as much body motion information as
possible, this paper draws on the idea of Max-Relevance and Min-Redundancy (mRMR)
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feature selection method in sensor selection [45]. It not only considers the relevance of the
candidate sensor and the unselected sensors, but also considers the redundancy among
the candidate sensor and the selected sensors. In this section, we introduce the relevance
evaluation of the candidate sensor and the unselected sensors, and the measurement of the
redundancy between the candidate sensor and the selected sensors. Then, we determine
the optimal sensor placement based on the proposed metrics.

All available sensor placements in an inertial motion-capture system are shown in
Figure 4. There are a total of 21 positions to be selected, including hands, forearms, arms,
thighs, shanks, feet, shoulders, spine, root bone, head and neck. Because it is necessary
to calculate the relative posture and acceleration of each bone to the root bone, a sensor
placed at the root bone (i.e., pelvis) is required.

Figure 4. Available positions of inertial sensors in an inertial motion-capture system.

6.2. Maximum Information Coefficient

The maximum information coefficient (MIC) proposed by Reshef et al. can evaluate
most of the relationships between two sets of data, including linear and nonlinear relation-
ships [46]. Compared with other coefficients, MIC has the characteristics of universality,
fairness and symmetry, and can accurately evaluate the connection between various sensor
measurements. The idea of MIC is to discretize variables in a two-dimensional space based
on the relationship between two variables and use a scatter plot to represent them. The
coefficient will divide the two-dimensional space into a certain number of intervals in
the x and y directions, and then check how the current scatter points fall into each grid.
Equation (14) gives the definition of the MIC, where I(X, Y) is the mutual information
between two variables X and Y, a, b are the number of grids divided in the x, y directions,
and B is about 0.6 power of the amount of data.

MIC(x; y) = max
|a||b|<B

I(x; y)
log2(min(|a|, |b|)) (14)

6.3. Max-Relevance and Min-Redundancy

Suppose there are sensor position X and sensor position Y, and the dimension of
measurement feature of each sensor is s, then the correlation between the two sensor
position measurements is defined as (15). We sum up the MIC between each feature in the
measurements of sensor position X and Y to obtain the correlation value.
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Rele(x; y) =
s

∑
i=1

s

∑
j=1

MIC(xi; yj) (15)

We use Max-Relevance and Min-Redundancy (mRMR) to evaluate the measurement
information quality of a sensor group. Then, the purpose of optimal sensor selection is
to find a sensor group that has greater correlation with the unselected sensors and less
redundancy among the selected sensors. First, we find the first sensor with the greatest
correlation with all unselected sensors based on the principle of maximum correlation.
Second, we use the principle of maximum correlation and minimum redundancy to find
the sensor with the largest correlation with the unselected sensor minus the redundancy
with the selected sensor as the next sensor to be chosen. This iteration is repeated until the
number of sensors and the accuracy of posture reconstruction meet the requirements.

Specifically, the purpose of maximum correlation is to find a sensor group S with
the highest correlation with the unselected sensor group C. We add up the correlations
between all selected sensors and unselected sensors, and divide by the number of selected
and unselected sensors for normalization. The correlation between selected sensors and
unselected sensors is defined as (16). On the other hand, the redundancy between sensors
in the selected sensor group is defined as (17). The smaller the value of R, the lower the
redundancy between sensors. In combination with the correlation and redundancy, the
criteria for evaluating the information quality of a sensor group is defined as (18). The
larger Φ is, the larger the amount of information can be obtained by the sensor group
measurements in the posture reconstruction task.

maxT(S, C), T =
1
|S||C| ∑

xi∈S
∑

cj∈C
Rele(xi; cj) (16)

minR(S), R =
1
|S|2 ∑

xi∈S
∑

xj∈S
Rele(xi; xj) (17)

maxΦ(T, R), Φ = T − R (18)

6.4. Sensor Selection

A greedy algorithm is adopted to find the optimal solution of Φ. When selecting the
first sensor, only the correlation between the sensor and the unselected sensor is considered.
The greater the correlation, the more important the sensor is for measuring body motion
information. We calculate the correlation between each sensor and the unselected sensor
through the previous definition and choose the most relevant as the first selected sensor. For
better computational efficiency, incremental search method is used based on mRMR to find
the approximate optimal sensors. Assuming that M− 1 sensor groups Sm−1 have already
been chosen, the goal is to find the mth sensor from the unselected sensors {S0 − Sm−1} to
maximize Φ. Correspondingly, the incremental algorithm needs to optimize the objective
function (19).

max
xj∈X−Sm−1

( 1
|C| ∑

xi∈S
∑

cj∈C
Rele(xi; cj)−

1
|S| ∑

xi∈S
∑

xj∈S
Rele(xi; xj)

)
(19)

7. Experiment
7.1. Data Collection and Model Training

In the experiments, we collected motion data in daily activities and sports, including
walking, running and jumping, playing basketball, football, table tennis, and so on. The
entire dataset contains about 800,000 frames of motion data of 4 people with a total length
of 2.5 hA total of 20,000 frames of walking, running, and playing basketball are selected as
test set, and the rest data are regarded as the training set. On average, the Bi-RNN model
was trained on GPU RTX 2080 for about 6 h until convergence.
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7.2. Data Selection Algorithm Performance

To verify the performance of data selection algorithm, we train the model separately
with the entire dataset, manually selected data, and the data selected by the proposed
data selection algorithm, and then test in the corresponding motion of the test set. In
this case, the sensor configuration is the default 6 sensor configuration including head,
forearms, shanks and pelvis. The pose reconstruction error and the number of data frames
used for model training are shown in Table 1. The pose reconstruction error refers to the
relative rotation angle between the reconstructed pose and the actual pose. The manual
data selection assumes that the person already knows the type of movement of the dataset,
and manually selects the corresponding labeled data files as the training data. The general
model is trained by the entire dataset. As the results, the model trained on the algorithm-
selected data achieves the best performance in the posture reconstruction accuracy in all
the motion types. The model trained on the entire dataset performs better than the model
trained on manually selected data.

Moreover, the amount of data selected by our data selection algorithm is less than
all the data, but higher than the amount of data selected manually. This indicates that in
addition to data files with corresponding labels, other data files of other motion types may
also contain useful motion data that are similar to target motion type. Our data selection
algorithm can extract these effective data segments from different test files across the entire
dataset. The smaller amount of data selected by the proposed algorithm significantly
reduces the training time of the model to less than 1/3, compared to the entire dataset.

Table 1. Motion Reconstruction Errors of Models with Default 6 Sensors Configuration.

Motion Type All Data Manual Selected Data Algorithm Selected Data

Walk 7.83◦ (787,000 frames) 8.84◦ (98,000 frames) 7.74◦ (170,000 frames)
Run 9.92◦ (787,000 frames) 11.94◦ (63,000 frames) 9.88◦ (210,000 frames)

Play Basketball 14.64◦ (787,000 frames) 15.22◦ (92,000 frames) 14.52◦ (206,000 frames)

7.3. Sensor Selection Algorithm Performance

To validate the effectiveness of the proposed sensor selection algorithm, we test the
performance of the algorithm against some other sensor selection methods using the entire
dataset. We compare our method with the modified PCA [47] for feature selection. The
modified PCA drawn from the PCA of the input data to leverage the relative importance
of the principal components along with the coefficients within the principal directions
of the data to uncover the ranking of the features and select the top few features. the
relationship curve between the average posture reconstruction angular error and the
number of sensors (including the root bone) are shown in Figure 5. In addition, we
manually selected the default 6 sensors and 10 sensors configuration (hands, arms, thighs,
feet, pelvis and head) by experiences as ‘intuition’ and evaluated its performance as well. It
is shown that our sensor selection algorithm outperforms PCA and at the same time more
practical and automated than the default manual sensor configuration. As the number of
sensors increases, the pose reconstruction error of our sensor selection algorithm gradually
decreases, while PCA fluctuates around a certain value. This may be because PCA did not
consider the information redundancy between the sensors, resulting in that the information
measured by the sensors selected later cannot reduce the posture reconstruction error.
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Figure 5. Curve of error and sensor number.

7.4. Performance of Combinations

To evaluate the performance of combinations of both training data selection and sensor
placement selection, we further conducted comprehensively comparison study on 6 sensors
configuration of different motion types. The experimental results are shown in Figure 6.
In the figure, we can see that the algorithm-based sensor selection results is better than
‘intuition’ and PCA in most cases. The accuracy of the model trained by the proposed data
selection method is also better than the model trained on the entire dataset and manually
selected data across different motion types.

Figure 6. Comprehensive evaluation of algorithm performance.

7.5. Pose Estimation Evaluation

The proposed method has a good posture reconstruction performance for regular
exercise reconstructed frames, such as simple walking and running. Table 1 summarizes the
posture reconstruction accuracy among different motion types. Figure 7 shows the posture
reconstruction performance of some motion frames of playing basketball with obtained
optimal 6 sensor configuration. The characters in mixamo [48] are used in the production
of the character animation in Figure 7. For some complex sports, such as playing basketball
in Figure 7, there are defects in the hand posture. For regular motions, the neural network
can easily learn the movement patterns. The complex movements have patterns with more
variations, and the amount of complex motion data contained in the training dataset is also
limited compared to the regular motions. Thus, the complex motion posture reconstruction
performance is worse than simple motion.
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Figure 7. Posture reconstruction results of some motion frames of playing basketball with optimal 6
sensor configuration.

8. Conclusions

In this work, we propose methods for training data selection and sensor position
selection in sparse inertial sensor human posture reconstruction under specific application
scenarios. The problem of deep-learning training data selection is formulated into an
optimization problem. We present a two-step information-based heuristic data selection
algorithm by selecting similar data and optimal data from the entire dataset with respect
to the reference data collected from the target scenario. Compared with model trained on
the entire dataset and manually selected data, the Bi-RNN model trained on the algorithm-
selected data have the better performance and less training time.

On the other hand, the sparse sensor position selection is also studied to exploit
most information from partial observation of human movement. A greedy algorithm is
proposed to search a relative optimum sensor group for maximum motion information
and minimum redundancy. Experimental results show that the posture reconstruction
performance of the sensor configuration selected by our sensor selection algorithm is better
than both PCA and the manually picked default sensor configuration. As the number of
sensors increases, the pose reconstruction error of our sensor selection algorithm gradually
decreases, which proves that the proposed algorithm takes into account the advantages of
sensor measurement information redundancy.

Currently, we proposed heuristic algorithms with greedy strategy to obtain approx-
imate solutions of the established optimization problem. In the future, we will further
investigate optimization methods for both training data selection and sensor position
selection from a theoretical point of view. Moreover, we will also conduct research on the
enhancement of deep neural network structure and the integration of motion analysis for
sparse inertial sensor posture construction tasks.
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