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Malaria, an infectious disease caused by Plasmodium parasites, still accounts for amounts
of deaths annually in last decades. Despite the significance of Plasmodium falciparum as a
model organism of malaria parasites, our understanding of gene expression of this
parasite remains largely elusive since lots of progress on its genome and transcriptome
are based on assembly with short sequencing reads. Herein, we report the new version of
transcriptome dataset containing all full-length transcripts over the whole asexual blood
stages by adopting a full-length sequencing approach with optimized experimental
conditions of cDNA library preparation. We have identified a total of 393 alternative
splicing (AS) events, 3,623 long non-coding RNAs (lncRNAs), 1,555 alternative
polyadenylation (APA) events, 57 transcription factors (TF), 1,721 fusion transcripts in
P. falciparum. Furthermore, the shotgun proteome was performed to validate the full-
length transcriptome of P. falciparum. More importantly, integration of full-length
transcriptomic and proteomic data identified 160 novel small proteins in lncRNA
regions. Collectively, this full-length transcriptome dataset with high quality and
accuracy and the shotgun proteome analyses shed light on the complex gene
expression in malaria parasites and provide a valuable resource for related functional
and mechanistic researches on P. falciparum genes.

Keywords: Plasmodium falciparum, small protein, long non-coding RNA, alternative splicing, full-length RNA-seq
Abbreviations: AS, alternative splicing; APA, alternative polyadenylation; LncRNA, long non-coding RNA; TF, transcription
factor; NR, NCBI non-redundant protein sequences; NT, NCBI non-redundant nucleotide sequences; Pfam, protein family;
KOG/COG, Clusters of Orthologous Groups of proteins; Swiss-Prot, SWISS-PROT Protein Sequence Data Bank; KO, KEGG
Ortholog database; GO, Gene Ontology; NCBI, National Center for Biotechnology Information; iProx, Integrated
Proteome Resources.
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INTRODUCTION

Malaria is still a major threat to public health globally caused by
Plasmodium genus with the occurrence of artemisinin resistance
(van der Pluijm et al., 2020). Plasmodium, especially P. falciparum,
is one of the deadliest pathogens that causes malaria in humans
which is a disease transmitted by Anophelesmosquitoes. Therefore,
potential mechanistic regulation pathways should be researched
urgently (White et al., 2014). P. falciparum as a research model
specie of malaria disease was widely studied in a long period,
however, the infection and resistance mechanism are still unclear
entirely, which attributes to the great adaptation ability of P.
falciparum to evade host immunity and develop drug resistance.
Further understanding of P. falciparum will give us clues on
discovering the new therapy to cure malaria.

In the last two decades, second-generation sequencing
approaches were widely used in genome and transcriptome
sequencing which assisted us furtherly understanding the
molecular mechanism and function of unknown genes. However,
sequences obtained by second-generation short reads assembly
always lead to errors so that we could not obtain the full-length
transcripts directly and characterize the gene structure accurately,
such as the alternative splicing events. RNA-seq as a routine
approach was widely used in research of gene discovery and
biological functions. Recently, the full-length RNA-seq platform
showed advantages in biological research, especially in gene
structure identification, gradually taking the place of short-read
RNA sequencing in transcriptome profiling.

The understanding of the infection was hindered by high
variable and repetitive sequences in the P. falciparum genome in
previous genetic studies by using short-read sequencing platform.
As known, gene structural variations (alternative splicing,
alternative polyadenylation, lncRNA and gene fusion, etc.) in
transcriptional process resulted in transcriptome complexity
which affects the gene function and gene expression regulation
(Ma et al., 2018). Gene structural variations were proved to drive
genomic diversity in P. falciparum (Miles et al., 2016). Besides,
mRNA polyadenylation is a universal phenomenon in the
transcriptional process in eukaryotes. For the understanding of
the mRNA polyadenylation, the high throughout sequencing study
of Sarcocystis neurona, a unicellular parasite, was performed and it
indicated that alternative polyadenylation (APA) is a common
phenomenon in unicellular parasites that has the potential to
impact growth and development.

Recently, it was revealed that non-coding RNAs play an
important role in biological processes and gene function
regulation in Apicomplexan parasites by experimental and
sequencing technologies (Li et al., 2020). As for Plasmodium
species, various strategies were carried out for non-coding RNA
characterization (Mourier et al., 2008; Raabe et al., 2010; Liao et al.,
2014; Siegel et al., 2014; Broadbent et al., 2015; Chappell et al., 2020).
Gene fusion is a common phenomenon which was overlooked for a
long time. This phenomenon was confirmed with the development
of long reads sequencing approach (Rhoads and Au, 2015). For
decades, open reading frames (ORF, > 100 codons) were considered
as coding sequences which can be translated into proteins (Cabrera-
Quio et al., 2016; Yin et al., 2019). However, amounts of small open
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
reading frames (<100 codons) were also produced in the
transcriptional stages which were dismissed by current
bioinformatic algorithms and always considered meaningless
because known functional proteins longer than 100 amino acids
(Frith et al., 2006; Ladoukakis et al., 2011). The first research on
sORFs were carried out on baker’s yeast, revealing 299 sORFs not
annotated before (Kastenmayer et al., 2006). Later, sORFs with high
potential of encoding microproteins were found in kinds of
organisms like bacteria, insects, plants, and human (Cabrera-Quio
et al., 2016; Hsu and Benfey, 2018; Fesenko et al., 2019; Miravet-
Verde et al., 2019; Ruiz-Orera and Alba, 2019; Segonzac and
Monaghan, 2019; Orr et al., 2020; Patraquim et al., 2020). Among
them, it was reported that one small peptide that regulates
metabolism and reduces obesity (Lee et al., 2015). Based on these
research results, we predicted that sORFs or small proteins probably
play an important role in growth development and infection
processes in P. falciparum which were ignored for a long period.
To further understand the functional genes and exploit the infection
mechanism of P. falciparum for drug discovery and new therapy
development, it is necessary to obtain the full-length transcriptional
isoforms of its genes and characterize the gene structures.

Defining all the transcripts expressing in the whole asexual
blood stages of P. falciparum with full length would avoid the
assembly errors and assist significantly in understanding the
malaria infection process. Herein, we performed the full-length
transcriptome sequencing to characterize the full-length
transcripts and uncovered alternative splicing, long non-coding
RNA, alternative polyadenylation (APA) sites. Besides,
combining the full-length transcriptome and the shotgun
proteome approaches were used to validate the small proteins
coded by CDS in long non-coding RNA. In this process, a
modified cDNA library construction procedure for TA-rich
species and mixtures of samples at six time points in the whole
asexual blood stages were applied into P. falciparum
resequencing. This work broadens our knowledge far beyond
the existing resources in terms of accuracy (full-length
sequencing without assembly). Collectively, we not only
systematically characterize the complexity of the transcriptome
and proteome but also provide a valuable resource for
investigating the infection mechanisms of Plasmodium parasites.
MATERIALS AND METHODS

Parasites Culture and Collection
P. falciparum 3D7 strains were used in this study. P. falciparum
parasites were grown in 5% O+ human erythrocytes in
RPMI1640/25 mM Hepes supplemented with 0.5% Albumax I,
and were cultured in vitro at 37°C under a gaseous mixture
of 5% O2, 5% CO2, and 90% N2. Parasites were repeatedly
synchronized with 5% sorbitol treatment in ring stage during
two consecutive lifecycles when grown at 3–5% parasitemia and
then maintained culturing in 175 cm2

flasks. After reinvasion,
the parasites were started to collect mainly in ring stage when
grown at 5–8% parasitemia and then collected by every 8 h. We
collected six time-point (8, 16, 24, 32, 40, and 48 hpi) samples
February 2021 | Volume 11 | Article 631545
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with a time window of ~8 h which may cover all stages of
parasites in an intraerythrocytic lifecycle. Two biological
replicates of pelleted parasites were stored in TRIzol reagent
(Invitrogen) at −80°C prior to RNA isolation. Meanwhile,
aliquots of the mixed samples were also used for total protein
extraction. The proteome extracted from P. falciparum mixtures
of two biological replicates were used for proteome profiling.

RNA Preparation and cDNA Library
Construction
Total RNA from six time-points (8, 16, 24, 32, 40, and 48 hpi)
were prepared by treated in TRIzol reagent and processing
according to the manufacturer’s instruction of Zymo RNA
Extract kit. To remove genomic DNA, each sample was treated
with RNase-free DNase I digestion for 15 min at room
temperature and eluted with 50 ul RNase-free water
(Invitrogen). Each total RNA was quantified and assessed
using an Agilent Bioanalyzer 2100, and then the six RNA
samples were pooled into one sample with equal amounts for
further library construction. The full-length cDNA was
synthesized and library amplified by using the SMARTer PCR
cDNA Synthesis Kit (Clontech, CA, USA). After purification, the
BluePippin Size Selection System (Sage Science, MA, USA) was
used for selection and the cDNA library was constructed by using
SMARTbell Template Prep kit (Clontech, CA, USA). The cDNA
library was sequenced on PacBio Sequel platform. To obtain the
sequencing data with better quality, the optimized method for
TA-rich species was applied: an AT-rich optimized KAPA
protocol using KAPA HiFi HotStart ready mix (KAPA
Biosystems, KM2602) with the following PCR program: 95°C
for 5 min; 14 cycles of 95°C for 10 s, 65°C for 1 min; 65°C for
5 min to reduce the bias in the process of cDNA library
construction, which improved the coverage of RNA-seq notably.

PacBio Sequencing Processing and
Transcriptome Analysis Pipeline
Sequencing data were processed using the SMRTlink 5.0
software. Circular consensus sequence (CCS) were generated
from subread BAM files, parameters: min_length 200,
max_drop_fraction 0.8, no_polish TRUE, min_passes 1,
min_zscore -9999, min_passes 1. Min_predicted_accuracy 0.8,
max_length 18000. CCS.BAM files were output, which were then
classified into full length (as defined by reads both with 5’ primer,
3’ primer, and a polyA tail) and non-full length reads using
pbclassify.py script, ignore polyA false, minSeq Length 200. Non-
full length and full-length fasta files produced were then fed into
the cluster step, which dose isoform-level clustering (ICE),
followed by final Arrow polishing, hq_quiver_min_accuracy
0.99, bin_by_primer false, bin_size_kb 1, qv_trim_5p 100,
qv_trim_3p 30. The misread of nucleobases are much higher
in PacBio sequencing reads than in shorter Illumina sequencing
reads and can lead to incorrectly detected gene structures. The
sequencing errors in the consensus reads were corrected using
the Illumina RNA-seq data with the software LoRDEC (Salmela
and Rivals, 2014). The corrected consensus reads were then
aligned to reference genome using GMAP with parameters: –no-
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
chimeras –cross-species –expand-offsets 1 –B 5 –K 50000 –f
samse –n 1 against reference genome (Wu and Watanabe, 2005).
The GMAP output bam format file and gff/gtf format genome
annotation file were used for gene and transcript determination.
All transcripts were mapped on reference genome of P.
falciparum and unmapped transcripts without overlapping
were considered as novel genes. Novel gene transcripts
function were annotated based on the following databases: NR,
NT, Pfam, KOG/COG, Swiss-Prot, KO, and GO database.

Characterization of Alternative Splicing
Events
SUPPA was used to calculate expression weight (Psi) of alternative
splice based on transcript TPM values (Alamancos et al., 2015).
Differential alternative splice of two conditions was performed using
significance test of Psi. The dpsi value was adjusted using theMann-
Whitney U test method. The absolute dpsi value of 0.1 and p-value
of 0.05 were set as the threshold for significantly differential
alternative splice. Alternative splicing events were classified into
SE (skipped exon), MX (mutually exclusive exon), A5 (alternative 5’
splice site), A3 (alternative 3’ splice site), RI (retained intron), AF
(alternative first exon), AL (alternative last exon).

Alternative Polyadenylation Sites
Detection and Transcription Factor
Identification
Alternative polyadenylation (APA) sites detection was
performed using TAPIS pipeline (Abdel-Ghany et al., 2016).
Transcription factors (TFs) were identified and assigned into
different families by HMMER 3.0 (Eddy, 2009).

Gene Fusion Characterization
Fusion transcripts were determined as transcripts mapping to
two or more long-distance range genes (Weirather et al., 2015).
All the consensus sequences were used for fusion transcripts
identification and the criteria used in the process was as follows:
(a) a full-length transcript must be mapped to two or more loci
on the P. falciparum genome; (b) minimum coverage for each
locus is 10% of the full-length transcripts; (c) > = 99% total
coverage of the full-length transcript was mapped on the P.
falciparum genome; (d) the distance between each locus mapped
on the P. falciparum genome is more than 100 kb.

LncRNA Identification From PacBio
Sequences
We used CNCI (Coding-Non-Coding-Index), CPC (Coding
Potential Calculator), Pfam-scan, and PLEK four tools to predict
the coding potential of transcripts. We use CNCI with default
parameters (Sun et al., 2013).We used the NCBI eukaryotes’ protein
database and set the e-value “1e-10” in CPC analysis (Kong et al.,
2007). Pfam searches used default parameters of –E 0.001 –domE
0.001 (Finn et al., 2016). PLEK used parameters of –minlength 200
(Li et al., 2014). Transcripts predicted with coding potential by
either/all of the three tools above were filtered out, and those
without coding potential were our candidate set of lncRNAs.
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Global Proteomic Profiling of Plasmodium
falciparum
P. falciparum cultures in different growth stages (8, 16, 24, 32, 40,
and 48 hpi) were collected. The proteomics experiment was
performed in biological duplicates. Then the cultures were washed
with PBS, harvested and lysed with SDT lysis buffer (100 mM Tris-
HCl pH 7.6, 4% SDS, 0.1 M DTT) at 95°C for 3 min. The lysates
were centrifuged at 14,000 g for 15 min and the supernatants were
collected. Each of 300 mg of protein was alkylated with 55 mM of
iodoacetamide and subjected to in-solution tryptic digestion
utilizing the FASP (filter aided sample preparation) protocol
(Wisniewski et al., 2009). The digested peptides were combined
and fractionated by high-pH reversed-phase chromatography on a
1-mm Xbridge column (Waters), and eight fractions were collected.
Each fraction was evaporated to dryness on a SpeedVac and dried
peptides were resuspended in 15 µl of ddH2O containing 0.1%
formic acid with sonication for subsequent MS analysis. A volume
of 1 ml of each sample was desalted by loading on a Thermo C18
PepMap100 precolumn (300 µm × 5 mm) and eluted on a Thermo
Acclaim PepMap RSLC analytical column (75 µm × 15 cm). Mobile
phase A (0.1% formic acid in H2O) and mobile phase B (0.1%
formic acid in acetonitrile) were used to establish the 120 min
gradient comprised of 85min of 4−30%B, 15min of 30−50% B, and
5 min of 90% B, followed by re-equilibrating at 4% B for 15 min.
The flow rate was 0.3 ml/min. Peptides were then analyzed on
Thermo Orbitrap Fusion Lumos proteomic mass spectrometer
(Thermo Scientific) in a data-dependent manner, with automatic
switching between MS and MS/MS scans using a cycle time 3 s. MS
spectra were acquired at a resolution of 120,000 with AGC target
value of 4 × 105 ions or a maximum integration time of 50 ms. The
scan range was limited from 375 to 1,500 m/z. Peptide
fragmentation was performed via high energy collision
dissociation (HCD) with the energy set at 38 NCE. The MS/MS
spectra were acquired at a resolution of 50,000 with AGC target
value of 1 × 105 ions or a maximum integration time of 105 ms. The
fixed first m/z was 120, and the isolation window was 0.7 m/z.

Protein identification and quantification were performed
using Proteome Discoverer 2.1 software (Thermo Scientific).
Peptide sequences (and hence protein identity) were searched
against the protein database constructed by using the PacBio
sequencing and the database of small protein (<100 amino acids)
from identified lncRNA with the acquired fragmentation pattern
by SEQUEST HT algorithm. The precursor mass tolerance was
set to 10 ppm and fragment ion mass tolerance to 0.02 Da. One
missed cleavage site of trypsin was allowed. Oxidation (M) was
used as variable modifications. All spectra were searched against
protein database using a target false discovery rate (FDR) of 1%.
The proteins identified in both channels were additionally
filtered by at least two spectral counts and one unique peptide
in each experimental replicate. Protein ratios were calculated as
the median of peptide with S/N ratio higher than 10 of a protein.

Proteome Analysis and Potential Small
Proteins Validation
For global profiling of P. falciparum and validating the
transcripts identified by full-length transcriptome sequencing,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
the transcripts with open reading frames (ORF, >300 bp) were
translated to construct the protein database. Firstly, all the
proteins characterized by liquid chromatography-mass
spectrometry were discovered by searching against the protein
datasets. And then, these sequences were annotated by KEGG
database (Kyoto encyclopedia of genes and genomes) by using
BLAST and classified into different KEGG pathway.

To identify small ORFs with high coding potential, the long
non-coding RNA (lncRNA) sequences were used to predict the
small proteins by selecting the sequences with small open reading
frames (ORF, <300 bp). It is considered that these small open
reading frames were likely to be translated into small proteins.
And then, all of the small ORFs were translated as the small
protein (<100 amino acids) database. For small protein detection
and validation, these small proteins were validated by using the
peptides searching against the small protein database.

Gene Structure Visualization
The structures of chromosomes, alternative splicing sites,
alternative polyadenylation, novel transcripts distribution,
novel genes distribution, lncRNA density, and gene fusion
were visualized by Circos (Krzywinski et al., 2009).
RESULTS

Sample Preparation and PacBio
Sequencing
To further understand the mechanism and discover the novel
genes in P. falciparum, the study was designed to perform the
full-length transcriptome sequencing by collecting the samples at
six time points over the whole asexual blood stages (6, 12, 18, 24,
36, and 48 h). The time window of each sample is 6 h. Two
approaches were applied into cDNA library construction and the
transcriptome sequencing was performed on PacBio Sequel. For
the conventional library construction (1st-PacBio), a total of
18.69 Gb clean data were generated by the mixed sample. The
genome of P. falciparum is extremely TA-rich, so we carried out
the sequencing again by using optimized method (2nd-PacBio)
for cDNA library construction and a total of 24.56 Gb clean data
was generated. The length distribution of the PacBio sequencing
reads from the PacBio sequencing data by using the different
cDNA library construction approaches were compared (Figure
1A), and it indicated that the optimized library construction
method improved the transcriptome data quality a lot. Thus, the
sequencing data obtained from the optimized cDNA library
approach was used for following analysis.

PacBio Sequencing and GAMP Mapping
After filtering using the subreads, 7,309,966 subreads were obtained.
Next, the Circular consensus sequence (CCS) was generated using
the SMRTlink software and the CCS was classified into full-length
and non-full length reads according to the 5′ and 3′ adapters and
the poly(A) tails. A total of 376,592 circular consensus sequences
(CCS) reads were generated and 299,462 (79.5%) sequences were
considered as full-length transcripts. A total of 145,469 polished
CCS reads with average size 2,387 bp ranging from 155 to 14,521 bp
February 2021 | Volume 11 | Article 631545
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were obtained. The statistics information of transcriptome in detail
were summarized in Supplementary Table 1.

A total of 145,469 polished CCS reads were searched against
P. falciparum genome and 139,263 (95.73%) transcripts were
mapped on reference genome by GMAP (Figure 1B) and the
results were summarized in Supplementary Table 2. In addition,
the reads density showed that all the reads were distributed on
the chromosomes homogeneously (Figure 1C).

Alternative Splicing Events Analysis
As known, alternative splicing plays an important role in the process
of differentiation and growth in multicellular organisms. For the
unicellular protozoa, the study in P. berghei indicates that alternative
splicing is a stage-specific phenomenon regulating the cellular
differentiation into variable cell types (Yeoh et al., 2019).
Although alternative splicing events have been studied in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
P. falciparum, only short-read sequencing technologies were
applied into detecting the AS events by short reads assembly.
In this study, long-read sequencing platform was employed to
improve the detection accuracy. The results provide an accurate
AS events of all the genes by aligning all the transcripts on the
reference genome. Usually, AS events will be classified into seven
categories (Figure 2A): SE (skipping exon), MX (mutually exclusive
exons), A5 (alternative 5’ splice-site), A3 (alternative 3’ splice-site),
RI (retained intron), AF (alternative first exon), and AL (alternative
last exon). In our study, a total of 393 AS events were detected
in P. falciparum (Supplementary Table 3). Based on the
classification and statistics, the AS events were divided into
different types. Among these types, A3 (24%), A5 (33%), and RI
(31%) were dominant in these AS events (Figure 2B). Among
them, Apetala 2 (AP2) encode a set of transcription factors in
Apicomplexa including P. falciparum and the AS events of these
A B

C

FIGURE 1 | Mapping results of PacBio sequencing. (A) Reads length distribution of PacBio sequencing by two different library construction methods; (B) GMAP
mapping rates; (C) Reads distribution on chromosomes of P. falciparum. X-axis indicates the chromosome position, y-axis indicates the median of reads density.
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https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Yang et al. Full-Length Transcriptome in P. falciparum
genes were visualized: PF3D7_0730300 (A5), PF3D7_0420300 (RI),
PF3D7_0613800 (A5), and PF3D7_1239200 (AF) (Supplementary
Figure 3).

Long Non-coding RNA Analysis
In previous study, unlike those protein-coding RNAs, non-coding
RNAs especially lncRNAs are still not well investigated. Though
lots of lncRNAs were characterized by the second-generation
sequencing, amounts of lncRNAs are still not fully characterized
as well as un-correctly because of sequencing shortness. We
compared the length distribution (Supplementary Figure 4A)
and the exon number (Supplementary Figure 4B) of mRNA and
lncRNA in PacBio sequencing data. To identify lncRNAs in the
full-length sequencing transcriptome and obtain the high-
confidence lncRNA dataset, four algorithms including Coding-
Noncoding Index (CNCI), Pfam-scan (Pfam), the predictor of
long non-coding RNAs and messenger RNAs based on an
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
improved k-mer scheme (PLEK), and Coding Potential
Calculator (CPC) were employed to characterize the lncRNAs.
Among 12,553 potential lncRNAs predicted by four algorithms, the
intersection of 3,623 lncRNAs (Figure 3A, Supplementary Table
4) were identified and were divided into four categories: Antisense
(2,023, 55.84%), lncRNA (1,071, 29.56%), sense-overlapping
(394, 10.87%), and sense-intronic (135, 3.73%) (Figure 3B,
Supplementary Table 4).

Alternative Polyadenylation and
Transcription Factors Identification
Differential alternative polyadenylation (APA) of mRNAs has
been proved to play an important regulatory role in different
species (Shen et al., 2011; Elkon et al., 2013). In this study, 1,555
APA events were detected and annotated in Supplementary
Table 5. Genes with different number of Poly(A) sites were
visualized in Figure 4A and 478 genes contain 1 poly(A) sites
A B

FIGURE 3 | Statistics of long non-coding RNA (lncRNA) in P. falciparum. (A) Venn diagram showing the number of lncRNAs predicted using four algorithms (CNCI,
Pfam, PLEK, and CPC). (B) The number of lncRNA classified into sense intronic, sense overlapping, lncRNA, and antisense.
A B

FIGURE 2 | Types of alternative splicing (AS) events and the classification of AS events in P. falciparum. (A) Types of AS events: SE (skipping exon), MX (mutually
exclusive exons), A5 (alternative 5’ splice-site), A3 (alternative 3’ splice-site), RI (retained intron), AF (alternative first exon), and AL (alternative last exon). (B) The
distribution of AS events in P. falciparum.
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were dominant in all APA events. In addition, 369 genes contain
more than five poly(A) sites. A total of 55 variant transcripts of
TFs were identified and assigned into different families (Figure
4B, Supplementary Table 6): NF-YB (19 members), zf-MIZ (17
members), NF-YA (8 members), andMYB (5 members) were the
most abundant in P. falciparum.

Full Scan of Proteome
To validate the full-length sequencing data, the full scan genome
was performed with the mixed samples containing the whole
asexual blood stages. Proteins in the mixed sample were
characterized by Lumos and the spectrums were searched
against the protein database constructed by full length
sequencing data of P. falciparum. A total of 1,535 proteins with
high confidence were characterized and list in Supplementary
Table 7. And then, KEGG analysis was performed by using the
proteome data which were classified into six main categories:
human diseases, organismal systems, cellular processes,
environmental information processing, genetic information
processing, and metabolism (Figure 5).

Small Proteins in Long Non-coding RNA
Recently, small proteins (<100 amino acids) were characterized
in different species and proved to be functional (Kastenmayer
et al., 2006; Fesenko et al., 2019; Sberro et al., 2019; Martinez
et al., 2020). P. falciparum as a very important species related to
human health, however, the small proteins in P. falciparum are
still unexplored. Thus, small proteins were analyzed in this study
and 160 small proteins (<100 aa) were validated by searching
against the small protein database (Supplementary Table 8).

Fusion Transcript Identification
Fusion transcripts , usually caused by chromosomal
rearrangements, have been proved to play an important role in
oncogenesis (Friedrich and Sonnhammer, 2020). In our study, a
total of 1,721 fusion transcripts were identified by long-read
sequencing. The fusion transcripts were distributed in different
chromosomes and shown in Figure 6. Among them, 84 and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
1,636 fusion transcripts were located in the intra- and inter-
chromosomic region (Supplementary Table 9).
DISCUSSION

Currently, the mechanisms of Plasmodium parasite invasion and
hijacking of host cells, transmission, and immune evasion
remain largely elusive. These processes are regulated precisely
by a complex dynamic system. Fortunately, a full genome
sequence of P. falciparum has been sequenced and partial
genes have been annotated functionally, which may reveal
some underlying mechanisms for physiological activities of
malaria parasites (Gardner et al., 2002). However, in most
cases, the routine approach of sequencing is not capable of
generating reads corresponding to entire transcripts because of
the short reads which will result in mistakes during the assembly
(van Dijk et al., 2014). Now, the single-molecule, real-time
(SMRT) sequencing technique producing kilobase-sized reads
has been developed (Eid et al., 2009), which help us obtain the
entire transcripts without assembly easily (Sharon et al., 2013).
As for the malaria parasites, though the genome annotation of
P. falciparum has been updated frequently based on more and
more microarray or RNA-seq data since 2002 (Gardner et al.,
2002), there are still many annotation mistakes. This interferes
those researches on gene function or underlying mechanism.
Here, the updated full-length transcriptome provides a valuable
resource for further studies on gene regulation and protein
functions in the human malaria parasites.

Long non-coding RNA (lncRNA) were proved to play a role
in transcriptional regulation in eukaryotic organisms including
P. falciparum (Broadbent et al., 2015). For instance, the antisense
lncRNAs produced by the intronic promoters of var genes were
involved in the transcriptional activation of these virulence genes
(Jing et al., 2018). To date, the non-coding transcriptome and
their biological functions remain largely unknown. In our study,
3,623 full-length lncRNA were characterized by using four
algorithms (CNCI, Pfam, PLEK, and CPC) and were divided
A B

FIGURE 4 | Alternative polyadenylation (APA) and transcription Factor (TF) in PacBio transcriptome. (A) Distribution of poly(A) with different poly(A) sites’ number;
(B) TF family classification of genes. Number of TF genes in each families, NF-YB and zf-MIZ proteins make up a large proportion.
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into four categories including Antisense, lncRNA, sense-
overlapping, and sense-intronic transcripts. This data will
facilitate the functional studies of lncRNAs in malaria
parasites. More importantly, lncRNA-derived small proteins
have been validated by integration of full-length transcriptomic
and proteomic data in this study. Until then, small proteins are
often ignored in transcriptome. Here, the proteome profiling was
applied successfully to characterize 1,535 proteins with high
confidence. Besides, 160 small proteins were validated by liquid
chromatography-mass spectrometry corresponding to lncRNA
regions of P. falciparum. These results not only provide an
updated proteome database within the whole asexual blood
stages, but also assist the small protein discovery and
functional investigation in P. falciparum.

Finally, to our knowledge, this is the first report of the PacBio
full-length transcriptome in Plasmodium, which compensates
the deficiency of the conventional sequencing methods using
Illumina-generated short reads in terms of gene expression.
Many of the predicted transcripts that did not correspond to
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
the annotated transcripts may potentially regulate P. falciparum
development and reveal a complex transcriptional landscape in
the asexual blood stage. However, the underlying molecular
mechanism of alternative splicing, long non-coding RNAs,
alternative polyadenylation, and fusion transcripts still requires
more sufficient research to investigate in the future, especially
how these novel proteins identified by multi-omics analysis are
involved in parasites growth and development process. We
believe this work provides a novel and valuable genetic
resource for functional and mechanistic studies of genes of
interest in P. falciparum.
CONCLUSION

In our study, full-length RNA sequencing was used to
reconstruct the transcriptome of P. falciparum. An improved
transcriptomic dataset covering the whole asexual blood stages
without short-read assembly was obtained. This is the first time
FIGURE 5 | KEGG pathway assignment of proteins characterized by liquid chromatography-mass spectrometry. The bottom x-axis indicates the number of
proteins. The left y-axis indicates the categories in detail, the right y-axis indicates the main clustered group of the specific categories.
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to reveal the full-length transcriptome in P. falciparum.
Among 145,469 transcripts, 139,263 (95.73%) of them were
mapped on reference genome, and 393 alternative splicing (AS)
events, 3,623 long non-coding RNAs (lncRNA), 1,555 alternative
polyadenylation (APA) events, 57 transcription factors (TF),
1,721 fusion transcripts were identified, respectively. In
addition, 1,535 proteins with high confidence were validated by
liquid chromatography-mass spectrometry. Notably, 160 small
proteins were identified by liquid chromatography-mass
spectrometry searching against the small protein database. This
study not only provides an improved full-length transcriptomic
dataset with high quality and accuracy, but also contributes
to better understanding of structural variations in the
transcription process.
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Supplementary Figure 3 | The representative AS events identified in PacBio
transcriptome. The AS events of Apetala 2 (AP2) genes: PF3D7_0730300 (A5),
PF3D7_0420300 (RI), PF3D7_0613800 (A5), and PF3D7_1239200 (AF).

Supplementary Figure 4 | Comparison of the lncRNA and mRNA. (A) Length
distribution of lncRNA and mRNA; (B) Distribution of exons in lncRNA
and mRNA.
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