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Abstract

Background—Sleep fragmentation during late gestation (LG-SF) is one of the major 

perturbations associated with sleep apnea and other sleep disorders during pregnancy. We have 

previously shown that LG-SF induces metabolic dysfunction in offspring mice during adulthood.

Objectives—To investigate the effects of late LG-SF on metabolic homeostasis in offspring and 

to determine the effects of LG-SF on the epigenome of visceral white adipose tissue (VWAT) in 

the offspring.

Methods—Time-pregnant mice were exposed to LG-SF or control sleep (LG-SC) conditions 

during the last 6 days of gestation. At 24 weeks of age, lipid profiles and metabolic parameters 

were assessed in the offspring. We performed large-scale DNA methylation analyses using MeDIP 

coupled to microarrays (MeDIP-chip) in VWAT of 24-week-old LG-SF and LG-SC offspring 

(n=8 mice/group). Univariate multiple-testing adjusted statistical analyses were applied to identify 

differentially methylated regions (DMRs) between the groups. DMRs were mapped to their 

corresponding genes, and tested for potential overlaps with biological pathways and gene 

networks.

Results—We detected significant increases in body weight (31.7 vs. 28.8 g; p=0.001), visceral 

(642.1 vs. 497.0 mg; p=0.002) and subcutaneous (293.1 vs. 250.1 mg; p=0.001) fat mass, plasma 

cholesterol (110.6 vs. 87.6 mg/dL; p=0.001), triglycerides (87.3 vs. 84.1 mg/dL; p=0.003) and 

HOMA-IR values (8.1 vs. 6.1; p=0.007) in the LG-SF group. MeDIP analyses revealed that 2148 

DMRs (LG-SF vs. LG-SC; p< 0.0001, MAT algorithm). A large proportion of the DMR-
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associated genes have reported functions that are altered in obesity and metabolic syndrome, such 

as Cartpt, Akt2, Apoe, Insr1, etc. Overrepresented pathways and gene networks were related to 

metabolic regulation and inflammatory response.

Conclusions—Our findings show a major role for epigenomic regulation of pathways 

associated with metabolic processes and inflammatory response in VWAT. LG-SF-induced 

epigenetic alterations may underlies increases in the susceptibility to obesity and metabolic 

syndrome in offspring.

Introduction

Two-thirds of women in the United States are currently overweight or obese at the time of 

conception (1). Gestational sleep disorders are highly prevalent during late gestation (2, 3) 

and their occurrence is increased obese women (4, 5). Importantly, gestational sleep 

disorders may result in altered developmental trajectories (6), as well as long-term 

consequences in the offspring that may last until adulthood (7, 8). Gestational sleep 

disorders include restricted sleep duration, fragmented sleep, snoring, and especially 

obstructive sleep apnea (OSA). OSA is characterized by repetitive obstructions of the upper 

airway during sleep that result in sleep fragmentation (SF) as well as gas exchange 

abnormalities (9, 10). In general, OSA, and more specifically SF, promote obesogenic 

phenotypes, elicit changes in insulin sensitivity, and increase the risk for metabolic 

syndrome (11, 12).

Recent findings suggest an association between OSA and an increased risk for insulin 

resistance in pregnant women (13). Intrauterine and early postnatal environments have a 

significant long-term influence on body weight, energy homeostasis and metabolic function 

in offspring (14). Offspring of rats exposed to a model of OSA exhibit lower birth-weight 

and an increased propensity for accelerated body weight accrual later in life (15). Similarly, 

infants born to snoring mothers are more likely to have small for gestational age infants a 

well as higher risk for perinatal complications (16-18). Despite increasing experimental 

evidence, the mechanisms for the origin and reversal of metabolic consequences of 

gestational sleep alterations remain to be elucidated.

More than 20 years ago, Hales and Barker proposed the “thrifty phenotype” hypothesis, 

whereby poor nutrition in early life produces permanent changes in the glucose-insulin 

metabolic homeostatic pathways, and potentially results in poor fetal and infant growth and 

subsequent development of type-2 diabetes and metabolic syndrome (19). Initial 

observations indicated that early environmental exposures, such as gestational 

hyperglycemia, maternal obesity and overfeeding during pregnancy, epigenetically alter the 

programming of genes resulting in a long-term imprint on gene expression that lasts into 

adulthood (20-23). Epigenetic processes explain the decreases in selective aspect of cellular 

plasticity by the establishment of cell-specific epigenomes during development (24) and are 

responsible for transgenerational inheritance in several complex traits (25).

Precursor cells from different VWAT depots (visceral, subcutaneous) differ in their capacity 

to replicate and differentiate, and adipocytes differentiated from these cells display discrete 

metabolic (26) and genetic profiles (27) in vitro. Depot-specific characteristics are retained 
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in adipocytes and can be transferred to subsequent daughter cells for up to forty generations 

(28). Changes in DNA methylation have also been observed during adipogenesis (29). This 

raises the possibility that the epigenome in VWAT is not merely a static, inherited state, but 

also a highly dynamic regulator of cellular differentiation which can be influenced by 

external stimuli. In previous studies, we found evidence suggesting that offspring of 

pregnant mice exposed to either late gestational high fat diet (23) or late gestational SF are 

more likely to accrue higher body weight (7). Furthermore, the expression of the gene 

encoding for adiponectin (Adipoq) was significantly reduced in VWAT samples of SF 

offspring compared to those from sleep control (SC) mothers, correlating with epigenetics 

marks (7). Based on the intriguing findings revolving around a single gene and locus levels, 

we here explored how late gestational SF (LG-SF) affects whole DNA methylation profiles 

in VWAT samples in the offspring.

Materials and Methods

Animals and gestational SF exposures

All experimental procedures were approved by The Institutional Animal Care and Use 

Committee (IACUC) at the University of Chicago. Timed pregnant C57BL/6J female mice 

were obtained from a commercial supplier (Jackson Laboratory, Bar Harbor, ME). All mice 

were allowed access to food and water ad libitum, and received standard chow containing 10 

kcal% fat (Research Diet, New Brunswick) throughout the experiments. Pregnant mice were 

maintained in custom-made cages operated under a 12-hour light-dark cycle (7:00 AM to 

7:00 PM) and exposed to SF, from 15 days post coitus (dpc) until delivery. A commercially-

available device developed in our laboratory (Lafayette Instruments, cat# Model 80391; 

Lafayette, IN) was used to induce SF in mice as previously described (23, 30). After birth, 

litters were culled to 6 mice with equal distributions of sexes when possible (estimate of 8 

male and 8 female offspring per experimental condition), and allowed to breastfeed under 

normal conditions until weaning at postnatal day 21. After weaning, mice were fed with 

normal chow diet as above. The reported sample set in this study (n=8 mice per group) 

represents a subset of randomly selected male mice out the data set previously reported 

(n=24 mice per group) in (23).

Phenotype assessments

Phenotypic and metabolic profiles were assessed at 24 weeks of age. Previous time-course 

experiments revealed that LG-SF offspring displayed significant phenotypic (i.e. body 

weight and food consumption) starting in early adulthood (i.e. week 20 onwards) and by 24 

weeks exhibited the full metabolic phenotype (i.e. increase in insulin resistance) (23). Body 

weight and food consumption were measured weekly. At 24 weeks of age, animals were 

euthanized and visceral fat was carefully dissected by a blinded investigator. Blood samples 

were collected from the 3-hour fasted offspring mice, and lipid profiles and glucose and 

insulin levels were assessed.

DNA methylation profiling

DNA was isolated from epididymal VWAT using DNeasy Tissue kit (Qiagen, Valencia, 

CA) and quantified on a Nanodrop 2000 (NanoDrop products, Wilmington, DE). Isolated 
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DNA was stored at -20 °C until use. The methylated fraction of the genome was 

immunoprecipitated using the MeDIP protocol (31). Immunoprecipitated DNA was 

amplified using an adaptor mediated PCR strategy, as described elsewhere (32) and 

subsequently fragmented, biotin-labeled, and hybridized on Affymetrix GeneChip Mouse 

Promoter Array 1.0R (Affymetrix, Santa Clara, CA) and scanned, according to 

manufacturer’s protocol. The array consisted of over 4.6 million probes tiled to interrogate 

over 28,000 mouse promoter regions. Probes in the microarray were tiled at an average 

resolution of 35 base pairs, as measured from the central position of adjacent 25-mer oligos, 

leaving a gap of approximately 10 base pairs between probes. Each promoter region covered 

approximately 6 kb upstream through 2.5 kb downstream of 5’ transcription start sites.

Microarray data analysis

Raw data of the tilling array experiments (.cel files) were imported into Partek® Genomic 

Suite® Software, version 6.6 (Partek Inc., St. Louis, MO, USA) and pre-processed with 

probe sequence adjustment, Robust Multichip Averaging (RMA) (33) background 

correction, quantile normalization and log2 transformation. Multidimensional scaling 

(MDS) analysis was performed to examine the relationship between samples and identify 

potential outliers that might affect the data. Signals of 4.1 million probes were compared 

between the LG-SF and LG-SC groups using ANOVA and t-statistic was calculated for each 

probe. The Model-based Analysis of Tilling-arrays (MAT) (34) algorithm was used to detect 

differentially methylated regions (DMRs) at a sliding window of fixed genomic length (500 

bp), requiring at least 10 probes present in a window. MAT score of each window was 

generated using the trimmed mean of probe t-statistics, which is calculated by taking the 

average of all probes within a window excluding 10% of the highest and lowest probes. 

Windows at p value < 0.0001 were extracted, merged and reported as significant DMRs. 

DMRs with positive and negative MAT scores represent hyper- and hypo-methylated 

regions in the LG-SF group as compared to LG-SC, respectively. Regions supported by less 

than 80% of the probes were removed from further analysis. The detected DMRs were then 

annotated for nearby genes and promoters by comparing genomic coordinates of the probes 

with RefSeq transcript annotation (release date 07/30/2014) of mouse reference genome 

assembly mm8 (NCBI build 36). The probe locations were obtained from the array’s 

annotation file. Gene promoter was defined as the region between 1.5 kb upstream and 0.5 

kb downstream of a transcription start site (TSS). DMRs located in the promoter region were 

extracted and used for heatmap generation with samples on the row and DMRs on the 

column. Networks and pathways significantly enriched in the genes of interest were 

identified through Ingenuity Pathways Analysis (IPA) (Ingenuity® Systems, 

www.ingenuity.com). The probe signals and DMRs were visualized on the University of 

California at Santa Cruz (UCSC) genome browser as custom tracks (.bigwig and .bed files). 

Statistical analysis were further performed using R statistical environment (version 3.0.2) 

(35). The data generated in this study have been deposited in the NCBI’s Gene Expression 

Omnibus (GEO) with accession number GSE63208.

Single locus analysis of the Pparg locus by MeDIP-qPCR

Microarray data at the Pparg locus were verified by SYBR-green based real-time PCR 

analysis of the adaptor-mediated PCR products from the MeDIP samples (LG-SF and LG-
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SC groups). PCR products were purified using the MinElute kit (Qiagen) and quantified 

using the Nanodrop 2000. Twenty nanograms of purified amplicon were subjected to real-

time PCR. The reaction consisted of 1× ABI master mix containing Taq polymerase, dNTPs, 

SYBR green dye and ROX as passive dye (Life Technologies, Carlsbad, CA, USA) and 200 

nM of specific primers (Supplementary Material Table S1). The PCR program started with a 

Taq polymerase activation step (10 min at 95°C) followed by 40 cycles at 95°C for 15 s, 

60°C for 1 min and 95°C for 15 s. Data analyses were performed using the 7500 System 

SDS software version 1.4 (Applied Biosystems). A fragment within the Actb locus was used 

as calibrator. Adaptor-mediated PCR products from the input fractions were used as 

reference to calculate the IP/INPUT enrichment for the target (IP/IN target) and the 

calibrator (IP/IN calibrator) loci. Fold change enrichment (FCE) was calculated using the 

equation: FCE=2ˆ-(IP/IN target- IP/IN calibrator).

Results

Metabolic consequences of gestational SF exposure in the offspring

We first verified that the previously described phenotypic and metabolic features of the 

offspring mice included in this study were recapitulated at 24 weeks after birth, as 

previously described (Table 1; (23)). Indeed, offspring of mothers exposed to late 

gestational SF (LG-SF group) had significantly higher body weight (n=8, mean weight = 

31.7 ± 1.2 g) than those from sleep controls (LG-SC group) (n=8, mean weight = 28.8 g ± 

0.9 g; p=0.001, t-test). Moreover, significant differences emerged in both visceral (mean 

weight: LG-SF= 642.1 ± 7.8 mg; LG-SC= 497.0 ± 6.9 mg; p=0.002, t-test) and 

subcutaneous adipose tissues (mean weight: LG-SF= 293.1 ± 8.6 mg; LG-SC= 250.1 ± 6.8 

mg; p=0.001, t-test). In addition, elevated plasma lipid levels emerged in the LG-SF 

offspring group as evidenced by triglycerides (LG-SF=98.9 ± 6.8 mg/dL and LG-SC=72.9 ± 

1.8 mg/dL; p=0.005, t-test), and total cholesterol levels (LG-SF=104.9 ± 4.1 mg/dL and LG-

SC=86.9 ± 2.7 mg/dL; p=0.007, t-test). Similarly, fasting Homeostatic Model Assessment – 

Insulin Resistance (HOMA-IR) revealed increased values in the LG-SF group compared to 

the LG-SC group (mean HOMA-IR values: LG-SF= 8.1 ± 0.6 and LG-SC=6.1 ± 0.9; 

p=0.007, t-test).

Large-scale epigenetic profiling in adipose tissue samples of offspring of SF-exposed 
mothers

We investigated how LG-SF affects the VWAT epigenome in the offspring using MeDIP-

chip in VWAT samples of 24 week old offspring of the LG-SF and LG-SC groups (n=8 

mice per group). Microarray data underwent extensive quality control. Quantile 

normalization with correction for probe sequence resulted in homogenous distribution of the 

microarray signal (Figure S1), and enabled the unbiased detection of DNA methylation 

differences between the LG-SF and LG-SC groups. All microarrays (n=16) passed technical 

quality control, without the need to exclude any of the data from downstream analysis. 

Based on the full set of probes in the microarray (n=4,103,551 probes), samples from the 

same groups showed higher correlation coefficients (Figure 1A) and clustered together in 

Principal Component Analysis (PCA) (Figure 1B). We detected 45,756 probes differentially 

methylated probes between the groups (p-value < 0.01; two-way ANOVA), with 25,258 and 
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20,498 probes showing increased DNA methylation in the LG-SF and LG-SC groups, 

respectively (Figure 1C). Next, we defined differentially methylated regions (DMRs) 

between the groups by combining adjacent probes showing statistically significant 

differential DNA methylation using the MAT algorithm (34) and the criteria detailed in 

Materials and Methods. We identified 2,148 DMRs (Figure 2A and Table S2). Of these, 497 

and 1,651 DMRs showed higher DNA methylation in the LG-SF or LG-SC groups, 

respectively.

We did not detect significant differences in number of probes per DMR (16.4 ± 0.2 and 16.9 

± 0.2 probes, respectively; p>0.05, Wilcoxon rank sum test) between DMRs with higher 

methylation in the LG-SF or LG-SC groups (Figures 2B). DMRs with higher methylation in 

the LG-SF group were significantly shorter than those with higher methylation in LG-SC 

(598.1 ± 7.2 and 629.6 ± 4.3 nucleotides; p<0.001, Wilcoxon rank sum test; Figure 2C). 

Among the DMRs, 1,977 were associated to annotated transcripts (490 and 1,487 DMRs 

associated to highly methylated DMRs in the LG-SF and LG-SC groups, respectively), with 

1,861 (455 and 1,406) being associated to mRNA transcripts, and 116 (35 and 81) to non-

coding RNAs (ncRNA). No significant differences emerged in the distribution of the 

distance to the TSS between DMRs with higher methylation in the LG-SF (n=497; mean 

distance to TSS=39,850.86 ± 5,690.51 bp) and the LG-SC groups (n=1,651; mean distance 

to TSS=44,267.49± 3,766.50 bp; p=0.601; Wilcoxon rank sum test; Figure 2D).

Genes associated to DMRs between LG-SF and LG-SC groups have functions related to 
obesity and metabolic syndrome

Selected DMRs (p< 0.0001, two-ways ANOVA) were associated to 1,412 genes, of which 

351 and 1,061 genes were associated to DMRs with higher methylation in the LG-SF and 

LG-SC groups, respectively (Table S2). Many of the DMR-associated genes were reported 

as involved in metabolic pathways related to the establishment of obesogenic phenotypes 

and the development of metabolic syndrome. Among them, we detected a DMRs located 4 

kb upstream of the TSS for the transcript variant 1 of the Pparg gene displaying higher 

methylation in the LG-SF group (Figure 3). There are two major annotated transcripts for 

this gene (36). The transcript variant 1 (NM_001127330.1) is expressed in liver and other 

tissues, whereas the transcript variant 2 (NM_011146.3) is expressed exclusively in adipose 

tissue (37). To verify the microarray findings and to further determine how LG-SF 

influences the DNA methylation profile of the Pparg transcripts, we studied 6 regions of 

interest (ROI) by MeDIP-qPCR analysis. ROIs were located at the DMR detected by the 

microarray (ROI1), a putative enhancer 600 bp upstream of the transcript variant 1 TSS 

(ROI2), within a CpG island containing the transcript variant 1 TSS (ROI3), and 2 kbp, 1 

kbp and 100 bp upstream of the TSS for the transcript variant 2 (ROI4, ROI5 and ROI6, 

respectively; Figure 3A). In concordance with the microarray results, ROI1 region showed 

significantly increased DNA methylation (p<0.05, t-test) in LG-SF group compared to then 

LG-SC group (mean fold change enrichment (mFCE): LG-SC=3.69±0.48, LG-SF=19.45 

±3.34). Moreover, we found significantly increased DNA methylation in LG-SF group in 

ROI3 (mFCE: LG-SC=3.48±0.51, LG-SF=16.29 ±2.82), ROI5 (mFCE: LG-SC=3.14±0.29, 

LG-SF=18.23 ±2.82) and ROI6 (mFCE: LG-SC=3.72±0.61, LG-SF=17.69 ±2.98). 

Increased DNA methylation differences also emerged in ROI2 (mFCE: LG-SC=3.31±0.47, 

Cortese et al. Page 6

Int J Obes (Lond). Author manuscript; available in PMC 2016 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



LG-SF=12.69±2.76) and ROI4 (mFCE: LG-SC=3.55±0.49, LG-SF=16.89±3.28), although 

the differences did not reach statistical significance (p>0.05, t-test)

Pathways and gene networks with a major role in lipid metabolism and inflammatory 
response

We created two lists of candidate genes that corresponded to DMRs showing higher DNA 

methylation in the LG-SF (n=92) and LG-SC (n=330) groups, respectively (Table S3) and 

used them as input in the Ingenuity Pathway Analysis software. Table 2 shows the top ten 

canonical pathways overrepresented in DMR associated gene with higher methylation in the 

LG-SF and LG-SC groups, respectively. The full list of overrepresented canonical pathways 

in each group is provided as Supplementary Material (Tables S4 and S5). Among the highest 

overrepresented canonical pathways those associated to molecular processes related to lipid 

metabolism and inflammatory response (i.e. PPARα/RXRα Activation, Protein 

Ubiquitination Pathway, Glycolysis and Gluconeogenesis, etc.) were particularly prominent. 

Next, we generated non-directional gene networks for candidate genes associated with 

higher methylation in LG-SF and LG-SC groups (Figure 4 A and B, respectively). The 

majority of the molecules included in both networks have reported activities in lipid 

metabolism and inflammatory response and are also associated to canonical pathways 

related to those functions. Very importantly, molecules that had the highest number of 

connections in each network (main nodes) were encoded by genes associated to DMRs 

showing statistically significant higher DNA methylation (i.e. TSS-associated CpG island at 

the Irs1 gene, Figure S2 A) or lower DNA methylation (i.e. CpG rich region upstream to 

TSS of the Apoe gene, Figure S2 B) in the LG-SF group compared to the LG-SC group. 

Lastly, we cross-referenced the lists of candidate genes associated with higher methylation 

in LG-SF and LG-SC groups to databases of molecules that are known to be involved in a 

particular type of toxicity or that are etiologically relevant in particular diseases. Among the 

lists corresponding to genes associated with DMRs with higher methylation in the LG-SF 

group (Table S6), we found those related to pro-inflammatory phenotypes in macrophages 

(i.e. PPARα/RXRα Activation, LPS/IL-1 Mediated Inhibition of RXR Function, etc.), and 

are related to progression of metabolic syndrome by controlling dyslipidemia, inflammation 

and glucose intolerance (38). In turn, among the lists corresponding to genes associated with 

DMRs with higher methylation in the LG-SC group (Table S7) we found genes and proteins 

associated with activation of the FXR/RXR heterodimer. The farnesoid X receptor (FXR) is 

a key regulator of numerous metabolic pathways, and plays a crucial role in linking bile acid 

regulation with lipoprotein, lipid and glucose metabolism, adipocyte differentiation and 

insulin sensitivity in pre-adypocytes (39, 40).

Discussion

Epigenetic processes provide a viable molecular model underlying mechanisms by which 

LG-SF can lead to long-term metabolic dysfunction in the offspring. To understand the 

extent of the epigenetic alterations in offspring induced by LG-SF in the VWAT, we 

performed large-scale DNA methylation analyses using MeDIP coupled to tiling 

microarrays (MeDIP-chip), and current findings provide the first comprehensive map of 

epigenomic modifications associated with sleep perturbations during pregnancy.
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VWAT cells secrete a large number of hormones, growth factors, enzymes, cytokines, 

complement factors, and matrix proteins that underlie an elaborate and complex array of 

homeostatic systems. VWAT cells also express receptors for most of these factors indicating 

extensive crosstalk at a local and systemic level in response to specific external stimuli or 

metabolic changes (41). Indeed, the vast majority of adipocyte-derived factors have been 

shown to be de-regulated in alterations accompanying WAT mass changes, such as 

overfeeding (42) or gestational high fat diet (43-46). Thus, environmental perturbations 

during gestation such as LG-SF alter the adipocyte epigenome of the offspring and lead to 

changes whose phenotypic expression becomes manifest during adult life (7). In line with 

our previous findings (7), we recapitulated in the present study that body weight, as well as 

visceral and subcutaneous fat mass, plasma cholesterol, triglycerides and HOMA-IR values 

were all increased in offspring of mothers exposed to LG-SF compared to controls.

Whereas single loci epigenetic analysis provided very valuable information on how de-

regulation of candidate genes can affect particular cellular functions, epigenome-wide 

analysis enables a more integrative assessment that incorporates biochemical pathways and 

gene networks affected by LG-SF. Probe level analysis showed that distinctive DNA 

methylation profiles occur in LG-SF-exposed VWAT of offspring, and to identify gene-

associated functionally relevant regions adjacent probes with significant differential 

methylation were grouped in DMRs. We verified our microarray findings by single-locus 

analysis of the Pparg gene. The Pparg gene encodes a member of the peroxisome 

proliferator-activated receptor (PPAR) subfamily of nuclear receptors: PPAR-gamma, which 

is a regulator of adipocyte differentiation, insulin resistance and inflammation in adipose 

tissue (38) and has been implicated in the pathology of numerous diseases including obesity 

and metabolic syndrome, diabetes, atherosclerosis and cancer (38). In addition, we detected 

a large proportion of the DMR-associated genes that have reported functions that are altered 

in the metabolic syndrome, such as Cartpt, Akt2, Apoe, Insr1, etc. For example, the Cartpt 

gene encodes the prepropeptide for the cocaine and amphetamine regulated transcript 

(CART) protein, which was found to be expressed in both subcutaneous and visceral white 

adipose tissues (47). It was reported that in mouse adipocytes under normal conditions 

CART avoids lipid and glucose accumulation by increasing isoprenaline-induced lipolysis 

as well as lipase activation, and by inhibiting glucose uptake and lipogenesis (47). 

Conversely, the expression of Akt2 is elevated in insulin-sensitive tissues, such as adipose 

tissue, skeletal muscle and liver (48). It has been shown that Akt2 promotes the increase of 

adipose tissue mass in human and mouse. Akt2-null mice exhibited lipodistrophy and severe 

insulin resistance (49). Knockdown of Akt2 in human adipocytes inhibited the proliferation 

of pre-adipocytes and increased sensitivity to apoptosis (50).

Among the highest overrepresented canonical pathways and non-directional gene networks 

we found molecular processes related to metabolic regulation and inflammatory response 

(i.e. PPARα/RXRα Activation, Protein Ubiquitination Pathway, Glycolysis and 

Gluconeogenesis, etc.) (Figure 4 and tables 1 and S3-6). Activation of the immune system as 

well as chronic low grade inflammation are involved in the pathogenesis of the obesity-

related insulin resistance and type 2 diabetes (51-53). Our group and others have previously 

shown that SF promotes inflammation in several end-organs (30, 54-56), including in 
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offspring of LG-SF exposed mothers (57). Taken together with the findings of metabolic 

alterations in the LG-SF offspring, our pathway analysis findings suggest a complex 

activation of pathways promoting VWAT inflammation via epigenetic alterations.

Thus, the current study provides a large body of novel information that should enable further 

study of the impact of epigenetics in gestational sleep disorders and their long term 

metabolic consequences in the offspring. However, given the scope and nature of our work 

we acknowledge several limitations of current work: First, we focused only on gestational 

SF, whereas the study of other characteristics of sleep disorders such as late gestational 

Intermittent Hypoxia (LG-IH), alone or in combination with LG-SF, as would occur in 

gestational sleep apnea, may reveal other important epigenetic regulatory mechanisms. 

Second, the occurrence of sleep disorders may overlap with nutritional alterations during 

gestation that may in turn further modify the offspring epigenome and phenotype. 

Furthermore, LG-SF may alter epigenomes in other metabolically active tissues such as liver 

and skeletal muscle. Third, other epigenetic processes not covered in this study may be 

involved in the establishment phenotypes in the offspring (i.e., 5 hydroxylmethylation and 

histone modifications) and other genomic elements not covered by the microarray (i.e. distal 

enhancer/silencers) may also be involved. Thus, future studies combining different 

epigenetic marks and high resolution epigenetic profiling (e.g., MeDIP-Seq or ChIP-Seq) 

will provide an even more comprehensive survey of the epigenome landscape induced by 

gestational sleep disorders. Lastly, more mechanistic studies are needed to elicit the 

molecular mechanisms involved. Specifically, future studies should address the relative role 

of the individual epigenetic modifying enzymes (DNA methyltransferases (DNMTs), 

histone deacetylases (HDACs), histone methyltransferases (HMTs), etc.).

In summary, we provide the first large-scale profiling of DNA methylation alterations in the 

VWAT of offspring caused by gestational sleep disorders. Such studies have revealed that 

LG-SF-induced epigenetic alterations appear to increase the susceptibility to obesity and 

metabolic syndrome in the offspring, and provide a detailed map of epigenetic alterations at 

single locus and epigenome-wide level that suggest a major role for epigenomic regulation 

of pathways associated to metabolic processes and inflammatory responses in VWAT.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Microarray probe-level analysis of VWAT samples
A) Pairwise sample correlation heatmap. Probes with p-value < 0.01 were extracted from the 

ANOVA results and used for calculating Pearson’s correlation coefficient between samples. 

Bi-dimensional unsupervised clustering was performed in samples from the LG-SF and LG-

SF groups. Correlation coefficients are shown as a color gradient ranging from light blue 

(0.0) over white (0.5) to light pink (1.0). B) Multiple dimensional scaling (MDS) plot of 

sample relationships. Principal component analysis (PCA) was performed using microarray 

data from LG-SF (red points) and LG-SC (blue points) samples. Samples from the same 

group clustered together. Three principal components determine sample clustering: PC1 

(12%, x-axis), PC2 (9.9%, y-axis) and PC3 (7.3%, z-axis). C) Volcano plot of microarray 

data. The x-axis represents fold changes differences between the groups, with coefficients 

expressed in the log2 scale. Samples with increased microarray signals in LG-SF and LG-

SC groups had positive and negative coefficients, respectively. Probes showing 

differentially methylated values are shown in red. The y-axis represents the -log10-

transformed p-values. The horizontal dashed red line depicts the cut-off values for the p-

value (-log10(p< 0.05)=1.3). The vertical dashed red lines depict the cut-off values for the 

fold changes (log2(4)=2).
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Figure 2. Differentially methylated regions between LG-SF and LF-SC groups
A) Unsupervised clustering of samples in the LG-SF and LG-SC groups based on DMR 

values. Samples are accommodated in columns and DMRs in rows. Z-score depicting the 

DNA methylation differences between the groups (DMRs with increased DNA methylation 

in LG-SF and LG-SC groups had positive and negative values, respectively) are shown in a 

color gradient ranging from blue (negative Z-scores) to red (positive scores). B) The number 

of probes per DMR did not differ between DMRs with increasing DNA methylation in the 

LG-SF (red box) and LG-SC (blue box) groups (p-value = 0.075, Wilcoxon rank sum test). 

C) Density plot of DMR lengths. DMRs with higher methylation in the LG-SF group were 

significantly shorter than those with higher methylation in the LG-SC group (p=0.003, 

Wilcoxon rank sum test). D) Distance to TSS did not differ significantly between DMRs 

higher methylated in the LG-SF and LG-SC groups (p=0.601; Wilcoxon rank sum test). The 

distance from the beginning of each region to the closest TSS are shown in the X-axis. Red 

and blue lines represent the LG-SF and LG-SC groups, respectively.
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Figure 3. Single locus analysis: DNA methylation differences at Pparg locus
A) Genome browser images showing the location of the DMRs, transcript variants for the 

Pparg gene and the location of the qPCR assays. Transcript variants for the Pparg gene are 

shown in dark blue. CpG island at the 5’-end of the transcript variant 1 is shown in dark 

green. The location of single-locus MeDIP-qPCR assays (ROI1-6) are shown as light green 

boxes. A DMR at 4 kbp upstream of the transcript variant 1 showing higher DNA 

methylation in the LG-SF group compared to the LG-SC group is shown as a red box. 

Normalized probe signal values for the LG-SF and LG-SC groups are shown as red and blue 

bars, respectively. B) Single locus MeDIP-qPCR results for VWAT samples in LG-SF (red 

bars) and LG-SC (blue bars) groups in candidate regions (ROI1-6). Fold change enrichment 

(FCE) values are shown in the y-axis as mean. Error bars corresponds to SEM. *: p<0.05, t-

test; n.s: non-significant (p>0.05).
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Figure 4. Functional gene networks for DMR associated genes
Gene network corresponding to genes associated to DMRs exhibiting higher DNA 

methylation in LG-SF (Panel A) and LG-SC (Panel B) groups. Networks were built using a 

bioinformatic tool (Ingenuity Pathway Analysis) based on databases relying on experimental 

evidence of gene functions. Molecules with a reported function in lipid metabolism and 

immune response are highlighted. Canonical pathways (CP) related to those functions are 

indicated with labels. Molecules in main nodes are colored in red and blue (for higher 

methylation in LG-SF and LG-SC, respectively) and indicated by a colored circle.
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Table 1

Body weight, fat mass and metabolic parameters for LG-SC and LG-SF offspring at 24 weeks of age.

LG-SF (n=8) LG-SC (n=8) p-value1

Body weight 31.7 ± 1.2 g 28.8 ± 0.9 g 0.001

Visceral fat 642.1 ± 7.8 mg 497.0 ± 6.9 mg 0.002

Subcutaneous fat 293.1 ± 8.6 mg 250.1 ± 6.8 mg 0.001

Triglycerides 98.9 ± 6.8 mg/dL 72.9 ± 1.8 mg/dL 0.005

Cholesterol 104.9 ± 4.1 mg/dL 86.9 ± 2.7 mg/dL 0.007

HOMA-IR 8.1 ± 0.6 6.1 ± 0.9 0.007

1
t-test LG-SC vs. LG-SF
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Table 2

Top 10 canonical pathways overrepresented in genes associated with DMRs highly methylated in LG-SF and 

LG-SC groups.

Higher methylation in LG-SF group

Canonical Pathways p-value1 Ratio2 # molecules

Dopamine Receptor Signaling 4.2 × 10-5 0.244 19

Neuroprotective Role of THOP1 in Alzheimer’s Disease 1.3 × 10-4 0.300 12

Cardiac β-adrenergic Signaling 2.8 × 10-4 0.188 25

Tight Junction Signaling 1.8 × 10-3 0.162 27

PPARα/RXRα Activation 2.5 × 10-3 0.156 28

Protein Ubiquitination Pathway 4.0 × 10-3 0.141 36

Gαi Signaling 4.7 × 10-3 0.167 20

RhoGDI Signaling 5.9 × 10-3 0.150 26

Aryl Hydrocarbon Receptor Signaling 6.5 × 10-3 0.157 22

CDK5 Signaling 6.5 × 10-3 0.172 17

Higher methylation in LG-SC group

Canonical Pathways p-value1 Ratio2 # molecules

Glycolysis I 2.8 × 10-4 0.360 9

Gluconeogenesis I 2.8 × 10-4 0.360 9

Urate Biosynthesis/Inosine 5’-phosphate Degradation 1.0 × 10-3 0.429 6

Purine Nucleotides Degradation II (Aerobic) 1.6 × 10-3 0.350 7

Dermatan Sulfate Degradation (Metazoa) 2.3 × 10-3 0.375 6

Heme Biosynthesis from Uroporphyrinogen-III I 3.0 × 10-3 0.750 3

Rapoport-Luebering Glycolytic Shunt 3.0 × 10-3 0.750 3

Axonal Guidance Signaling 3.2 × 10-3 0.134 58

Adenosine Nucleotides Degradation II 3.3 × 10-3 0.353 6

Role of BRCA1 in DNA Damage Response 3.7 × 10-3 0.213 13

1
Fisher’s exact test right-tailed.

2
# DMR associated genes / # of genes in pathway.
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