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Abstract

Gemcitabine (2,2-difluorodeoxycytidine, dFdC) is a prodrug widely used for treating various carcinomas. Gemcitabine exerts
its clinical effect by depleting the deoxyribonucleotide pools, and incorporating its triphosphate metabolite (dFdC-TP) into
DNA, thereby inhibiting DNA synthesis. This process blocks the cell cycle in the early S phase, eventually resulting in
apoptosis. The incorporation of gemcitabine into DNA takes place in competition with the natural nucleoside dCTP. The
mechanisms of indirect competition between these cascades for common resources are given with the race for DNA
incorporation; in clinical studies dedicated to singling out mechanisms of resistance, ribonucleotide reductase (RR) and
deoxycytidine kinase (dCK) and human equilibrative nucleoside transporter1 (hENT1) have been associated to efficacy of
gemcitabine with respect to their roles in the synthesis cascades of dFdC-TP and dCTP. However, the direct competition,
which manifests itself in terms of inhibitions between these cascades, remains to be quantified. We propose an algorithmic
model of gemcitabine mechanism of action, verified with respect to independent experimental data. We performed in silico
experiments in different virtual conditions, otherwise difficult in vivo, to evaluate the contribution of the inhibitory
mechanisms to gemcitabine efficacy. In agreement with the experimental data, our model indicates that the inhibitions due
to the association of dCTP with dCK and the association of gemcitabine diphosphate metabolite (dFdC-DP) with RR play a
key role in adjusting the efficacy. While the former tunes the catalysis of the rate-limiting first phosphorylation of dFdC, the
latter is responsible for depletion of dCTP pools, thereby contributing to gemcitabine efficacy with a dependency on
nucleoside transport efficiency. Our simulations predict the existence of a continuum of non-efficacy to high-efficacy
regimes, where the levels of dFdC-TP and dCTP are coupled in a complementary manner, which can explain the resistance
to this drug in some patients.
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Introduction

Gemcitabine (2,2-difluorodeoxycytidine, dFdC) is a prodrug,

which is commonly used in the treatment of patients with non-

small-cell lung cancer, pancreatic cancer, bladder cancer, and

breast cancer. It is currently the leading therapeutic for pancreatic

ductal adenocarcinoma treatment [1–3]. Gemcitabine is also used

in the treatment of relapsed or refractory low-grade non-

Hodgkin’s lymphoma and, in combination with other drugs, in

lymphatic and myeloid malignancies [4]. Gemcitabine occupies a

prominent place as a chemotherapeutic agent. However, for a

majority of patients the response rate following its administration

with respect to stability of disease is subject to resistance [1,5]. A

better understanding of the mechanisms of resistance to gemcita-

bine is thus important in cancer treatment, also due to the lack of

clinically effective markers for predicting which patient will benefit

from treatment.

Gemcitabine is a nucleoside analog in which the hydrogen

atoms on the 29-carbon of deoxycytidine are replaced by fluorine

atoms. Gemcitabine is metabolized to exert its clinical action [6],

whereby it is transformed into its triphosphate metabolite dFdC-

TP, and into its deaminated uracil triphoshate metabolite dFdU-

TP. Gemcitabine efficacy is mainly attributed to dFdC-TP, as the

uridine metabolite is largely excreted into the urine [2], while

recent evidence suggests partial contribution of dFdU-TP to

cytotoxicity [7]. The cytotoxic effect of gemcitabine on tumor cells

is realized by the inhibition of the DNA synthesis. As with

fluorouracil and other analogues of pyrimidines [8], the triphos-

phate analogue dFdC-TP replaces one of the building blocks of

nucleic acids, in this case cytidine, during DNA replication. As

only one additional nucleoside can be attached to the ‘‘faulty’’

nucleoside, this prevents cells from processing DNA, thereby

blocking the cell cycle in the early S phase and causing apoptosis

[9]. The incorporation of dFdC-TP takes place in competition

with the natural nucleoside dCTP, which also incorporates into

DNA. As a consequence, effective functioning of the cytotoxic

mechanism is enhanced by the depletion of the dCTP pools, which

is also attributed to gemcitabine efficacy (Figure 1).

In-vitro studies on pharmacokinetic properties of gemcitabine

indicate that resistance to this drug may result from multiple
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factors [5]. Efficient uptake is a requirement for anticancer efficacy

as it has been addressed by monitoring sensitivity in a variety of

established lymphoid cell lines with defined nucleoside transporter

activities and in tissue samples from pancreatic ductal adenocar-

cinoma patients treated with gemcitabine [6,10,11]. In this

respect, it has been suggested that diminished expression or

activity of nucleoside transporters, e.g., human equilibrative

nucleoside transporter 1 (hENT1) [12] and concentrative nucle-

oside transporter 1 (hCNT1) [13], could lead to reduced activity of

anticancer nucleosides both in vitro and in vivo. Although

transport across the plasma membrane is essential, a rate-limiting

step in gemcitabine activation is its phosphorylation by deoxycy-

tidine kinase (dCK) [14,15]. The correlation between dCK levels

and gemcitabine sensitivity can thus be considered as a prognostic

parameter in gemcitabine therapy [11,12,16]. However, the

activity of dCK depends on other factors such as the inhibition

of this enzyme by dCTP. In return, phosphorylated gemcitabine

depletes the dCTP pool by inhibiting the enzyme ribonucleotide

reductase (RR) [17–19].

The indirect competition, that is, the competition for common

resources, between dFdC-TP and dCTP for integration into DNA

is an efficacy parameter. In this respect, the expression of the

metabolite genes that are involved in the gemcitabine metabolism

plays an important role in determining efficacy [3,12]. However,

the inhibitions between synthesis cascades of the metabolites

dFdC-TP and dCTP also have a direct influence on each other’s

levels by exerting a mechanism of direct competition, where RR

and dCK play a dual role, inhibiting or increasing the

accumulation of the two metabolites. The phenomena that result

in impaired drug responsiveness are thus interconnected with

factors such as deficiency in dCK, increased dCTP pools, and

decreased influx into cell [20,21], quantification of which are

blurred in the literature. In particular, despite a plethora of articles

on gemcitabine pharmacodynamics and pharmacokinetics, little is

known regarding the interplay within the metabolic network that

exerts an inhibitory effect on gemcitabine and the inhibitory effects

exerted by gemcitabine on the network [4,22].

We investigate the contribution of the inhibitory mechanisms to

the gemcitabine machinery. For this purpose, we present an

algorithmic model that describes the intracellular metabolic

network that involves gemcitabine and its main metabolites. We

use continuous time discrete stochastic simulations, which provide

an account of the random fluctuations due to the variability of the

conditions in the biochemical environment [23–25]. This allows us

to give an algorithmic interpretation [26] of the experimental data

mechanistically with respect to the time series concentrations [7]

and efficacy measurements [27].

Following the intuition of Nobel laureate Nurse [28], we think

that a language-based computational approach is adequate for

modeling complex biological systems, because it brings about an

ease in extending and managing the models. The algorithmic

representations of biological systems [26] are then amenable to

computer execution, and the state changes of computer programs

can be directly mapped to dynamic state changes of biological

networks [24,25,29]. Language technology and compiler theory

provide the means to build high-level abstractions, comprehensible

to non expert modelers, to be mapped onto executable languages

[30–32]. This allows computational and wet-lab experts to easily

dialogue over a model and map it to a desired setting for

simulation and analysis.

In agreement with the experimental data, our model indicates

that the inhibitions due to the association of dCTP with dCK and

the association of dFdC-DP with RR play a key role in adjusting

the efficacy. While the former tunes the catalysis of the rate-

limiting first phosphorylation of dFdC, the latter is responsible for

depletion of dCTP pools, thereby providing higher efficacy. Our

simulations predict the existence of a continuum of non-efficacy to

high-efficacy regimes where the levels of the metabolites dFdC-TP

and dCK are coupled in a complementary manner, which can

explain the resistance to this drug in some patients. Our model

indicates that nucleoside transport efficiency is essential for

efficacy, whereas the complementarity of the dCK and dFdC-

TP metabolite levels is a function of the association of dFdC-DP

with RR. Due to the modeled mechanisms that are conserved

among various cancers and the explicit stochasticity, which

Figure 1. Gemcitabine biochemical machinery. The biotransformation and pharmacologic action of dFdC and its metabolites. The different
arrows, with respect to the legend on the right, are (i:) transport into cell (by a nucleoside transporter hENT1); (ii:) enzymatic reaction (where dCK is
the enzyme); (iii:) inhibition (of dCK by binding with dCTP); (iv:) synthesis (of CDP); (v:) DNA incorporation (of dFdC-TP). See the text for or a more
detailed description.
doi:10.1371/journal.pone.0050176.g001

Complementarity in Gemcitabine Metabolic Machinery

PLOS ONE | www.plosone.org 2 December 2012 | Volume 7 | Issue 12 | e50176



provides a representation of the intrinsic noise due to genetic

variations in different patients, our model can also serve as a

general tool to study gemcitabine resistance in specific clinical

applications, where the model can be further enriched with

relevant genetic parameters.

Results

We developed an algorithmic model [26] describing the

intracellular metabolic network that involves gemcitabine and its

main metabolites, depicted in Figure 1. The model describes the

following machinery.

Gemcitabine is transported into cells by equilibrative and

concentrative nucleoside transporters [6,13], e.g., human equili-

brative nucleoside transporter 1 (hENT1) and human concentra-

tive nucleoside transporter 1 (hCNT1). It is then phosphorylated

by deoxycytidine kinase (dCK) to its monophosphate dFdC-MP. It

is subsequently phosphorylated to its active metabolites dFdC-DP

and dFdC-TP with the intervention of nucleoside monophosphate

kinase (NMPK) and nucleoside diphosphate kinase (NDPK),

respectively. Gemcitabine exerts its effect by two main mecha-

nisms: while the diphosphate metabolite dFdC-DP plays an

inhibitory role for the synthesis of natural nucleoside triphosphate

dCTP, the triphosphate metabolite dFdC-TP competes with the

dCTP for incorporation into nascent DNA chain, thereby

inhibiting DNA synthesis and blocking cells in the early DNA

synthesis phase. That is, in a competing pathway, while dCTP

inhibits dCK [33–35], dFdC-DP inhibits ribonucleotide reductase

RR in an irreversible manner [4,36,37], whereby it eventually

depletes the dCTP pool, decreasing the dCK inhibition and

facilitating the DNA incorporation of dFdC-TP. A competing and

inactivating pathway is triggered with the rapid deamination of

dFdC by cytidine deaminase (CDA) to 2,2-difluorodeoxyuridine

dFdU. Alternatively, dFdC-MP is converted to dFdU-MP by

deoxycytidylate deaminase (dCMPD) whereas dCMPD is inhib-

ited by dFdC-TP [38]. dFdU is transported into cells by nucleoside

transporters and phosphorylated to its monophosphate dFdU-MP,

diphosphate dFdU-DP and its triphosphate dFdU-TP, whose

activity has been recently associated with the cytotoxic effect of the

drug [7].

In the following, we abbreviate the inhibitions of the metabolic

network as follows: (i:) dCK inhibition refers to the inhibition due

to the association of dCK and dCTP; (ii:) RR inhibition refers to

the inhibition due to the association of RR and dFdC-DP; (iii:)
dCMPD inhibition refers to the inhibition due to the association of

dCMPD and dFdC-TP.

Gemcitabine efficacy is correlated with the dCK inhibition
propensity

The biochemical mechanism of gemcitabine mimics the cascade

that results in the incorporation of dCTP to DNA, while

competing with it for incorporation into DNA. The two cascades

interact with each other by means of the dCK inhibition and RR

inhibition. It is known that dCK is the rate-limiting enzyme in the

gemcitabine activation cascade due to its role in the first

phosphorylation [14,15]. We ran simulations and measured the

effect of the inhibitory mechanism to gemcitabine efficacy.

Following [7], we assumed that efficacy is proportional to the

area under the curve (AUC) of the dFdC-TP in the simulations for

the 24 hours after the administration of the drug. Similarly, we

assumed that dCTP levels relative to dFdC-TP during the

simulation is an efficacy determinant, thus AUC of dCTP provides

a measure of efficacy as well. These assumptions provide

observations that are consistent with the experiments reported in

[27] (see Materials and Methods, Figures 6, and Figure 7).

In order to estimate the effect of all three inhibitions to dFdC-

TP accumulation, we performed simulations by varying their

rates, in isolation and in combination with others. We first

considered the contribution of the individual inhibitions in

isolation within a spectrum of 105 to 10{15 with the unit of

measure #{1:h{1 for the association rates and h{1 for the

dissociation rates. Because the rates of these inhibitions can

depend on many factors, these experiments model variations in the

propensities of these inhibitions due to metabolic conditions. We

scaled down the initial number of molecules by three orders of

magnitude, and measured the AUC of the metabolites in order to

factor for the intrinsic noise [23].

Our simulations, depicted in Figure S2 in the supplementary

material, show that the propensity of the dCK inhibition plays an

important role in adjusting the dFdC-TP levels, hence the

gemcitabine efficacy. This observation emphasizes the role played

by dCK inhibition in determining the dFdC-TP levels, and the

contribution of dCTP accumulation as a factor with direct

influence on the first phosphorylation of dFdC. This also indicates

that other factors that are not included in our model can however

determine gemcitabine efficacy by influencing the dCK-dCTP

association affinity. The experiments, where we fixed the

unbinding rates to 10{1h{1, and considered the contributions of

pairs of inhibitions, indicated that the RR and dCMPD inhibitions

have a minor effect on dFdC-TP accumulation, in particular with

respect to dCK inhibition. However, their effect is cumulative as

demonstrated in Figure 2.

dFdC-TP and dCTP levels complement each other with
RR inhibition

Gemcitabine exerts its clinical effect by incorporating its

triphosphate metabolite dFdC-TP into DNA in competition with

the natural nucleoside triphosphate dCTP. We distinguish

between direct and indirect competition in determining efficacy

associated with the cytotoxic effect of gemcitabine: the indirect

competition between dFdC-TP and CTP is given by the race for

incorporation into DNA as they compete for common resources.

We define the direct competition mechanism with the dCTP

depletion due to inhibitory interactions between the cascades that

result in dFdC-TP and dCTP. Since RR plays an important role

in the synthesis of dCTP, its inhibition by dFdC-DP is a direct

competition mechanism that controls the dCTP accumulation.

In order to estimate the effect of all three inhibitions to dCTP

accumulation relative to dFdC-TP, we compared the AUC of

these metabolites during simulations, where the inhibition rates

are varied as depicted in Figure 3. Our simulations indicate that

dCTP accumulation is insensitive to dCMPD inhibition. While a

decrease in RR inhibition propensity has a significant positive

effect to dCTP accumulation, a propensity for the RR inhibition,

which is greater than those given by the rate value 10{7#{1:h{1

in our simulations, provides dCTP levels that are complementary

to those of dFdC-TP. This indicates that the metabolic conditions,

providing a sufficiently high propensity for the RR inhibition, give

rise to dCTP and dFdC-TP levels that are complementary with

respect to their relative amounts. In particular, for dCK inhibition

regimes that result in dFdC-TP accumulation, the simulations

show a corresponding complementary low level of dCTP

accumulation due to optimal RR inhibition exerted by dFdC-

DP. Similarly, for dCK inhibition regimes where dFdC-TP does

not accumulate, we observe a high plateau for dCTP levels,

resulting in low efficacy.

Complementarity in Gemcitabine Metabolic Machinery
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A decrease in dCK inhibition propensity has a significant

positive effect to dFdC-TP accumulation for all the RR regimes.

However at lower RR inhibition propensities, dCK inhibition

propensity has a minor effect on the dCTP levels. As depicted in

Figure 3, for the RR propensity regimes that do not result in a

complementarity (RR inhibition ratev10{7#{1:h{1), an in-

crease in dCK inhibition propensity causes a depletion in the

dFdC-TP pool, while dCTP demonstrates a minor tendency

towards depletion which is subject to noise. An increase in dCK

inhibition propensity causes a dFdC-TP accumulation, where

dCTP demonstrates a tendency towards accumulation with noise.

In contrast, the RR propensity regimes that result in a

complementarity (RR inhibition ratew10{7#{1:h{1) are more

robust with respect to the noise in dCTP levels.

These observations indicate that in a continuum of non-efficacy

to high-efficacy regimes, dCK inhibition propensity plays a role in

determining dFdC-TP levels, whereas RR inhibition determines

the complementarity of dFdC-TP and dCTP such that these

metabolites complement each other with respect to their relative

amounts.

Sensitivity to RR and dCK inhibitions versus influx
efficiency

It has been reported that efficient uptake is a requirement for

gemcitabine efficacy, thus deficiency in nucleoside-transport is a

possible mechanism of resistance [6,10]. Indeed, experimental

evidence indicates a significant correlation between gemcitabine

chemotherapy outcome and human equilibrative nucleoside

transporter-1 (hENT1) gene expression in pancreatic ductal

adenocarcinoma [12]. In order to assess the effect of the efficiency

in nucleoside transport in correlation with the inhibitory

mechanism, we performed simulations where we varied the influx

rate of dFdC, modeling variations in nucleoside-transporter

expression levels in combination with the rates of the inhibitory

mechanism.

In our simulations, at high dCK inhibition propensity regimes,

dFdC-TP does not accumulate at all; this effect cannot be reverted

by an increase in dFdC influx. The same results are observed with

all tested RR inhibition regimes as depicted in Figure 4. When

dCK inhibition is very low, influx propensity exerts a strong

inducing effect on dFdC-TP accumulation that reaches its plateau

very quickly. In all tested conditions of varying dCK inhibition

Figure 2. Sensitivity to paired inhibitions. The plots displaying the area under the curve (AUC) for dFdC-TP that result from the simulations
where the association rates of the inhibitions are varied from 105#{1:h{1 to 10{15#{1:h{1 , given in logarithmic scale. The dissociation rates for the
inhibitions are set to 10{1h{1 . At the simulations for the plot on the left, dCMPD inhibition rate is set to zero, and the dCK and RR are varied. At the
middle plot, dCK inhibition rate is set to zero, and at the plot on the right RR inhibition rate is set to zero.
doi:10.1371/journal.pone.0050176.g002

Figure 3. Sensitivity to dCK, dCMPD and RR inhibitions. The plots displaying the area under the curve (AUC) for dFdC-TP (top row) and dCTP
(bottom row) that result from the simulations with respect to different rate values. At every column, there are plots for different RR inhibition
association rates, varied from 10{9#{1:h{1 to 10{6#{1:h{1 with an order of magnitude at each step. In each plot, the association rates of the dCK
and dCMPD inhibitions are varied from 105#{1:h{1 to 10{15#{1:h{1 , given in logarithmic scale. The dissociation rates are set to 10{1 . A scaling
factor of 103 is used for intrinsic noise, which is observed at the dCTP plots where RR inhibition rate values are less than 10{6#{1:h{1 .
doi:10.1371/journal.pone.0050176.g003
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and gemcitabine intake, the inhibition plays a major role in

controlling both dFdC-TP and dCTP levels. However, dCTP

accumulation is not greatly influenced by gemcitabine intake rate

at low RR inhibition regimes. Increasing the RR inhibition

propensity, the dCTP accumulation becomes highly sensitive to

both dCK inhibition and gemcitabine influx. At RR inhibition of

10{6#{1:h{1 the dCTP and dFdC-TP complementary accumu-

lation effect is fully restored.

Our simulations confirm that influx efficiency is essential for

gemcitabine efficacy, implementing a switch-like mechanism: the

rate value 10{7h{1 for influx is sufficient for the transformation of

the dFdC into dFdC-TP, resulting in an immediate plateau,

whereas an increase in influx efficiency does not provide a directly

proportional increase in efficacy with respect to dFdC-TP

accumulation. However, for certain regimes, corresponding to

area around the rim of the dFdC-TP hills in Figure 4, deficiency in

first phosphorylation of gemcitabine can be slightly compensated

with a greater influx efficiency. Increased dFdC intake has no

effect to dCTP accumulation for low RR inhibition propensities,

while for greater propensities the complementarity between dCTP

and dFdC-TP is preserved. Our model thus indicates that

nucleoside transport efficiency is essential for efficacy, while with

sufficient influx, gemcitabine efficacy with respect to dCTP

depletion remains a function of RR inhibition. This also preserves

the complementarity of the dCK and dFdC-TP metabolite levels,

which require propensities for the RR inhibition that are greater

than those given by the rate value 10{7#{1:h{1 in order to

maintain the robustness of the complementarity in our simula-

tions.

Discussion

Modeling and simulation of the interplay between metabolism

and the pharmaceutical agents are gaining increasing attention in

drug development due to their potential in reducing costs and

accelerating the development process [39,40]. In silico models

promise the possibility of addressing preliminary queries regarding

the interactions between the drug and the metabolic machinery by

resorting to inexpensive resources. These models can provide

better experimental design, and an improved understanding of

clinical results. In this respect, gemcitabine is an ideal target for in

silico experiments by models.

Based on experimental data by Veltkamp et al. [7], we have

presented an algorithmic model of gemcitabine molecular

machinery. Simulations with our model allowed us to quantify

the gemcitabine efficacy, given by the AUC of dFdC-TP and

dCTP metabolites in correlation with metabolic enzymes. AUC,

which we use in our analysis, is a common measurement of

efficacy. As in Veltkamp et al. ’s analysis, it is used in our model as

an index of the total exposure to the gemcitabine, and thereby

provides an influence assessment of the inhibitory mechanisms

within the metabolic network. In our model, CDP production can

be extended to the previous steps of the cascade. We designed our

model to capture the experimentally observed CDP availability,

which is a requirement for the antagonistic behavior, given by the

Figure 4. dCK and RR inhibitions versus influx. The plots displaying the area under the curve (AUC) for dFdC-TP (top row) and dCTP (bottom
row) that result from the simulations with respect to different rate values for the RR and dCK inhibitions and the influx. At every column, there are
plots for different RR inhibition association rates, varied from 10{8#{1:h{1 to 10{6#{1:h{1 with an order of magnitude at each step. In each plot,
the association rates of the dCK inhibition rate is varied from 105#{1:h{1 to 10{15#{1:h{1 , and the influx rate is varied from 105h{1 to 10{15h{1 ,
given in logarithmic scale. The influx rate 10{5h{1 is the control regime used in the other simulations. The dissociation rates are set to 10{1h{1. A
scaling factor of 103 is used for intrinsic noise, which is observed at the dCTP plots, where RR inhibition rate values are less than 10{6#{1:h{1 .
doi:10.1371/journal.pone.0050176.g004
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competition between dFdC-TP and dCTP. Other chemical agents

that interfere with various parts of the machinery, e.g., tetra-

hydrouridine for inhibiting the effect of cytidine deaminase (CDA)

and dCMPD, can be included as well.

Our model is a phenomenological model, as it is based on the

knowledge of the processes in terms of structural connectivity and

functional mechanisms. Alternatively pharmacological studies rely

on empirical models, which are commonly used to describe and

simulate single experiments in experimental or clinical pharma-

cokinetics [41]. In contrast to phenomenological models, these

experiments consist in sampling biological fluids in order to

measure the decline in drug concentration versus tumor size.

Along these lines, Tham et al. [42] presented a kinetic-dynamic

empirical model of gemcitabine-treated tumors in non-small-cell

lung cancer patients. Using this model, the authors were able to

predict the tumor size following treatment with gemcitabine. In

this respect, a promising direction of investigation is the

relationship between the phenomenological and the empirical

models of gemcitabine, which can also help to better understand

the relationships between the pharmacokinetics (that is, the

mechanisms of absorption, distribution, and excretion) and the

pharmacodynamics (that is, how the drug concentration is

translated into a pharmacological effect) of gemcitabine.

In a related work, Battaglia et al. [43] developed a deterministic

model of the intracellular metabolism of gemcitabine, coupled

with a systemic pharmacokinetics model and a simplified cell cycle

pharmacodynamics model. The model was fit to in vitro data

collected by Heinemann et al [44] to estimate the parameters of

gemcitabine triphosphate generation and elimination in leukemia

cells. Stochasticity was introduced only through a randomization

of the parameter vector to simulate inter-patient variability.

Stochasticity of our model is helpful in capturing the intrinsic

variability of the biochemical network [23]. In this respect, the

choice of the stochastic framework is motivated by the intrinsic

stochastic nature of the interactions governing the biochemical

network responsible for the transformations of the drug. Recent

studies indicate that stochastic models can reflect clinical data, as

they take into account the intrinsic random fluctuations due to the

variability of the environmental conditions caused by the

differences in the genetic background of the patients [45–47]. In

our model, by using scaling factors we alter the noise in the system,

mimicking the variations in the environment under different

regimes. While a scaling factor of 103 results in fluctuations in the

AUC analysis in some cases, smaller scaling factors flatten out

these fluctuations, hence the noise in the system.

Gemcitabine is broadly used in cancer therapy [5]. Because of

the significant advances made by the experimental and theoretical

studies about gemcitabine pharmacokinetics [48–52], detailed

phenomenological models of the intracellular metabolism of

gemcitabine can be built to enhance the understanding of its

efficacy determinants. In this respect, an important question that is

related to our model from a clinical point of view is the interplay

between toxicity and efficacy, which requires a treatment of the

system at the tissue level. The toxicity of gemcitabine is influenced

by multiple factors. These include the interplay between the

dosing schedule, and the first phosphorylation rate, which is a

function of the amount of available dCK; the efficiency of cellular

transport by hNTs; and the deamination to dFdU, which is

influenced by the amount of available CDA. Moreover, the

efficiency of the elimination kinetics of dFdC-TP plays a crucial

role in modulating the levels of gemcitabine accumulation [2,44].

A treatment of these factors together with genetic parameters

specific to each person, for instance CDA genetic polymorphisms

[2,53,54], within a tissue level consideration can provide the

Table 1. Intracellular concentration of observed metabolites.

Time (h) dFdC dFdCMP dFdCDP dFdCTP dFdU dFdUMP dFdUDP dFdUTP

0 0 0 0 0 0 0 0 0

4 3 7 59 121 0.08 1.12 0.68 1.34

12 1 8 53 75 0.06 1.15 0.41 0.66

24 0.1 4 35 37 0.03 0.2 0.07 0.2

The values have been taken from the concentration profiles reported in [?], where the units are given in pico-moles/mg of cellular protein.
doi:10.1371/journal.pone.0050176.t001

Table 2. Estimated parameters.

reaction rate unit reaction rate unit

1 9.97234 1=h 11 0.00000968 1=(#:h)

2 0.000261675 1=h 12 5.60415E-10 1=(#:h)

3 4.72336E-06 1=h 13 7.844E-07 1=(#:h)

4 0.0508194 1=h 14 4.20541E-08 1=(#:h)

5 1.04994E-05 1=(#:h) 15 1.64322E-06 1=(#:h)

6 8.75208E-07 1=(#:h) 16 9.05139E-10 1=(#:h)

7 2.37162E-05 1=(#:h) 17 4.76746E-09 1=(#:h)

8 2.12216E-06 1=(#:h) 18 4.559E-08 1=(#:h)

9 2.52037E-05 1=(#:h) 19 0.0544456 1=h

10 1.44908E-05 1=(#:h) 20 0.000737496 1=h

doi:10.1371/journal.pone.0050176.t002
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predictions on the interplay between toxicity and efficacy. From a

clinical consideration, the main point of interest here is obtaining

an estimate of the minimal amount of drug that is effective with

minimal side effects. In this respect, the plots in Figures 2, 3, and 4

show that the AUC of dFdC-TP is a step-wise function of the

enzyme concentrations and provide a quantification of the

enzymes that are required to have a rapid significant increase of

the AUC of dFdC-TP in conjunction with the subsequent

saturation of the dCTP accumulation rate. As a consequence,

given the dose of the drug, our model links the administered dose

to the accumulation of the active metabolites. Specification and

quantification of further aspects of the interplay between efficacy

and the toxic effects can be achieved by considering cell

Figure 5. A sample simulation with the gemcitabine metabolization pathway. A sample gemcitabine metabolization pathway simulation is
compared with the experimental data. The dashed lines connect the data points given by the experiments in [7].
doi:10.1371/journal.pone.0050176.g005

Figure 6. The correlation between gemcitabine efficacy and the
ratio of dCK and RR. The correlation between gemcitabine efficacy,
measured as IC50 and the ratio of dCK and RR concentrations, given
with dCK=(RRM1|RRM2), with respect to the experiments reported
in [27].
doi:10.1371/journal.pone.0050176.g006

Figure 7. The correlation between gemcitabine efficacy and the
ratio of dCK and RR in the simulations. The correlation between
gemcitabine efficacy measured as dFdC-TP(AUC)=dCTP(AUC) and
the ratio of dCK and RR, given with dCK(AUC)=RR(AUC) with
respect to simulations with our model.
doi:10.1371/journal.pone.0050176.g007
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populations within a loop of in silico modeling and clinical and wet

lab experiments.

Our simulations predict the existence of a continuum of non-

efficacy to high-efficacy regimes where the levels of the metabolites

dFdC-TP and dCK are coupled in a complementary manner.

While confirming that efficiency in transporter proteins is crucial

for maintaining the high efficacy regimes, our model suggests that

the complementarity of the dCK and dFdC-TP metabolite levels is

a function of the association of dFdC-DP with RR. However, the

levels of both dFdC-TP and dFdU-TP metabolites are affected by

the inhibition due to the association of dCK and dCTP. Our

model suggests that the three main resistance mechanisms are due

to dCK deficiency, RR up-regulation upon gemcitabine admin-

istration, and decreased gemcitabine entry when nucleoside

transporters’ function is impaired. These three aspects should

undergo clinical investigations with respect to their combined

effects.

In this respect, clinical observations reported in [12] on

expression levels of RR indicate that patients with ribonucleotide

reductase regulatory subunit M1 (RRM1) above 1.00 gene

expression ratio with GAPDH had a median time to progression,

calculated from the date of diagnosis to the date of first progression

or or last follow-up in metastatic patients, of 5.85 months

compared with 13.30 and 9.92 months in patients with RRM1

below 1.00 and 0.95, respectively. Similar results are reported in

[55] on nonsmall cell lung cancer patients with low expression of

the RRM1, which significantly benefited from gemcitabine/

cisplatin neoadjuvant chemotherapy. While resistance to gemci-

tabine was associated with both RRM1 and RRM2 overexpres-

sion [17,56], small interfering RNA targeting the RRM2 catalytic

subunit, reported in [57], enhanced the chemosensitivity to

gemcitabine of pancreatic adenocarcinoma in vitro and in vivo.

As suggested by these results and our model, biochemical agents

that contribute to concomitant low dCK inhibition and high RR

inhibition propensities can be instrumental in overcoming

resistance. Other experiments can involve agents that enhance

RR inhibition to compensate for lower initial gemcitabine dose,

and decrease the dCTP accumulation. This can in turn decrease

dCK inhibition, favoring dFdC-TP accumulation. In patients with

impaired entry, further inhibiting RR can also provide a

mechanism to overcome resistance. With respect to these

observations, our model, appropriately tailored on pharmacolog-

ical and clinical measurements and observations, can be used as a

tool to predict resistance or sensitivity in selected patient

populations in specific circumstances.

Materials and Methods

We use time-continuous discrete stochastic models, specified in

the BlenX modeling language (BlenX [58,59], COSBILAB

MODEL – www.cosbi.eu). BlenX is explicitly developed to model

biochemical entities and their interactions, and it is a part of the

software platform COSBILAB that implements a modeling,

analysis and simulation framework that is inspired by algorithmic

systems biology [26]. BlenX is equipped with a stochastic

simulation engine based on Gillespie algorithm [60]. In the

model, the gemcitabine biochemical network is considered as a

complex parallel information processing system [26]. The code of

the model and its chemical reactions representation are provided

in the supplementary material and in Figure S1.

While constructing the model, we made a number of

assumptions: (i:) We simplified the distinction between the

intracellular and extracellular deamination of gemcitabine by

considering only intracellular deamination. This reflects a more

general setting, since extracellular deamination strongly depends

on the nature of the tissue in consideration. (ii:) For the enzymes,

which do not participate in an inhibition, we simplified by

assuming their constant concentration and factoring their amounts

into the reaction rates. (iii:) The activity in nucleoside-transport,

e.g., due to human equilibrative/concentrative nucleoside trans-

porters, is represented by influx and efflux rates by relying on mass

action kinetics. This way, variations in rates provide an implicit

representation of the variations in the expression levels of the

transport proteins, which are manifested during simulation as

propensities. (iv:) The indirect competition between the cascades

that result in dFdC-TP and dCTP is implicitly encoded by means

of the mass action dynamics that chooses an action at every

simulation step due to underlying continuous time Markov chain

semantics. The direct competition mechanisms between these

cascades are given by means of the inhibitions between

metabolites. In the experiments, where we vary the rates of the

inhibitory mechanisms, we rely on mass action kinetics to

implicitly implement various metabolic conditions that effect the

levels of the participating metabolites.

For the calibration of the model, we used the time series data of

the gemcitabine metabolite concentration measurements at

experiments provided by Veltkamp et al. [7]. In these experiments,

the concentrations of the intracellular metabolites have been

measured in human hepatocellular carcinoma (HepG2) at four

time points (0, 4, 12, and 24 hours). The measurements are

reported in Table 1 in units of pico-moles/mg of cellular protein

Table 3. Observed number of molecules of intracellular metabolites.

Time (h) dFdCout dFdC dFdCMP dFdCDP dFdCTP

0 9.70E+06 0 0 0 0

4 0 1.51E+05 3.51E+05 2.96E+06 6.07E+06

12 0 5.02E+04 4.01E+05 2.66E+06 3.76E+06

24 0 5.02E+03 2.01E+05 1.76E+06 1.86E+06

Time (h) dFdUout dFdU dFdUMP dFdUDP dFdUTP

0 0 0 0 0 0

4 0 4.01E+03 5.62E+04 3.41E+04 6.72E+04

12 0 3.01E+03 5.77E+04 2.06E+04 3.31E+04

24 0 1.51E+03 1.00E+04 3.51E+03 1.00E+04

Number of molecule obtained by a conversion of the concentration values given in Table 1.
doi:10.1371/journal.pone.0050176.t003
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[7]. Because in HepG2 cells, 1 mg of cellular protein corresponds

to 12|106 cells with a volume of 17fL per cell [7], in the model

there is an average of 8.33|1028 mg of protein per cell. For the

estimation of the parameters of the gemcitabine metabolization

cascade without the inhibitors, given in Table 2, we used the

Nelder-Mead least squares method [61] implemented in the

Systems Biology Toolbox 2 for Matlab [62], and obtained an

agreement between experimental time series and simulations.

Figure 5 provides a representative simulation output in compar-

ison with the experimental data, where different simulations differ

only in minor fluctuations due to the stochastic simulations.

Because we used stochastic simulations, the time series of

metabolite concentrations are converted into time series of

numbers of molecules. With respect to the experiments, the initial

extracellular concentration of dFdC (i.e., dFdCout) per cell is

unknown. We estimated this value by assuming that within the first

4 hours half-life is negligible, and the metabolites of concern

remain inside the cell. This way, the initial amount of gemcitabine

outside can be approximated as the sum of all the metabolites at

the 4th hour, that is, in the order of 10 million molecules.

According to these considerations, the quantity of metabolites in

number of molecules is given in Table 3.

For the parameters of the cascade that results in the integration

of dCTP to DNA, following [63], we took the average volume of

cells as 0.943 pl/cell and cellular concentration of dCTP as

38.4 microM, and estimated the production rate of CDP such that

the average number of molecules of dCTP is about 215,000 as

reported in [7].

To validate the sensitivity analysis with respect to the

parameters of the inhibitory mechanism, we have produced a set

of different experimental conditions, which provide varying dCK

and RR levels during simulations. By relying on the AUC ratio of

dFdCTP and dCTP as the efficacy metric of our model, we

compared our simulations with the experimental data in [27],

depicted in Figure 6. In agreement with the experimental data, our

model indicates that efficacy is proportional with the ratio of dCK

and RR levels as depicted in Figure 7.

Supporting Information

Figure S1 Model reactions. Reactions r1-r4 model the

transport through the membrane, resulting in influx and efflux.

Reactions r5-r10 model the transformation of dFdC to its

metabolites. Reactions r11-r16 model the transformation of dFdU

to its metabolites. Reactions r17 and r18 model the deamination of

gemcitabine. Reactions r19 and r20 model the incorporation of

dFdC-TP and dFdU-TP into DNA. Reactions r21-r24 model the

cascade that results in the incorporation of dCTP into DNA.

Reactions r25-r29 model the inhibitory mechanism.

(TIF)

Figure S2 The plots of the dFdC-TP AUCs resulting
from the simulations where the association and disso-
ciation rates of the inhibitions are varied from 10{4 to

10{15, given in logarithmic scale. The plots are from left to

right for the dCK, dCMPD, and RR inhibitions. For the RR

inhibition, only association rates are considered.

(TIF)

File S1 A description of the BlenX modeling language
and the source code of the model.

(PDF)
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