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Abstract: A simple approach toward the synthesis of the marine sponge derived pigment
fascaplysin was used to obtain the marine alkaloids 3-bromofascaplysin and 3,10-dibromofascaplysin.
These compounds were used for first syntheses of the alkaloids 14-bromoreticulatate and
14-bromoreticulatine. Preliminary bioassays showed that 14-bromoreticulatine has a selective
antibiotic (to Pseudomonas aeruginosa) activity and reveals cytotoxicity toward human melanoma,
colon, and prostate cancer cells. 3,10-Dibromofascaplysin was able to target metabolic activity of
the prostate cancer cells, without disrupting cell membrane’s integrity and had a wide therapeutic
window amongst the fascaplysin alkaloids.
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1. Introduction

Fascaplysin, homofascaplysins A–C, and their brominated analogues form the group of marine
alkaloids based on the 12H-pyrido [1–2-a:3,4-b′] diindole ring system [1]. The red pigment fascaplysin
(1, Figure 1) is the first isolated compound among these alkaloids and at the present time is the most
investigated one [2]. This compound could be used in the field of medicinal chemistry due to a
broad range of bioactivities including antibacterial, antifungal, antiviral, and antimalarial properties.
In addition, it is able to inhibit the proliferation of numerous cancer cell lines and reveals
anti-angiogenesis properties on human umbilical vein endothelial cells (HUVEC) [3–9]. Fascaplysin
suppresses the growth of S180 cell-implanted tumors in vivo [10]. Remarkably, it effectively decreases
the growth of small cell lung cancer (SCLC) spheroids derived from circulating tumor cells. In fact,
high numbers of circulating tumor cells are linked to the dismal prognosis of SCLC [11]. Its mechanisms
of action include the selective inhibition of cyclin-dependent kinase 4, which regulates the G0–G1/S
checkpoint of the cell cycle, the intercalation of DNA, and the induction of apoptosis, partially, as a
result of the activation of the TRAIL signaling pathway by the upregulation of DR5 expression [12–15].
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It was also found that fascaplysin induced autophagy as a cytoprotective response via ROS and p8 in
vascular endothelial cells (VECs) [16]. A cooperative interaction between apoptotic and autophagic
pathways is exhibited by fascaplysin through the inhibition of PI3K/AKT/mTOR signaling cascade
in human leukemia HL-60 cells [17]. It also causes the downregulation of survivin and HIF-1α
and inhibition of VEGFR2 and TRKA, and sensitizes anti-cancer effects of drugs targeting AKT and
AMPK [18,19]. Fascaplysin could be used as a P-gp inducer for the development of anti-Alzheimer
agents [20]. It may also serve as a “balanced agonist” of the µ-opioid receptor with a signaling profile
that resembles endorphins [21].
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Figure 1. Structures of fascaplysin (1) and its derivatives (2–5); reticulatine (6), 14-bromoreticulatine 
(7), 7,14-dibromoreticulatine (8), reticulatate (9), 14-bromoreticulatate (10), reticulatol (11), 14–
bromoreticulatol (12). 

Remarkably, some derivatives of fascaplysin were found to have an increased therapeutic 
potential compared to the parental alkaloid. Thus, methylation of fascaplysin at C-9 results in the 
more potent Aβ aggregation inhibitor than alkaloid 1 [22]. The synthetic chloro derivative of 
fascaplysin (2) inhibited the VEGF-mediated microvessel sprouting with blood vessel formation in 
the matrigel plug of C57/BL6J mice and the tumor growth in ET (solid) mouse tumor model [23]. In 
addition, natural 3- and 10-bromofascaplysins (3,4) showed anti-cancer activity at submicromolar 
concentrations. This was, at least in part, mediated through the induction of caspase-8, -9, and -3-
dependent apoptosis [24]. Antitumor effects of 3-bromofascaplysin and 10-bromofascaplysin were 
comprehensively examined in an in vitro glioma C6 cell model. The cytotoxic efficiency of 
compounds 3 and 4 was higher than that of unsubstituted fascaplysin; 3-bromofascaplysin exhibited 
the best capacity to kill glioma C6 cells [25]. 3,10-Dibromofascaplysin (5)—the last representative of 
fascaplysin alkaloids was synthesized in eight steps from 6-bromoindole and 4-amino-2-
bromotoluene, but the therapeutic potential of that perspective compound has not been investigated 
yet [26]. 

Herein, we report the two-step method for the syntheses of 3-bromofascaplysin and 3,10-
dibromofascaplysin, which has been previously used for the synthesis of fascaplysin. The similarity 
in structures lets us to use these compounds as starting materials for the first syntheses of several 
alkaloids of reticulatine group (compounds 6–12, Figure 1, [27]). Also, the bioactivities of the obtained 
compounds were investigated. 
  

Figure 1. Structures of fascaplysin (1) and its derivatives (2–5); reticulatine (6), 14-bromoreticulatine (7),
7,14-dibromoreticulatine (8), reticulatate (9), 14-bromoreticulatate (10), reticulatol (11),
14–bromoreticulatol (12).

Remarkably, some derivatives of fascaplysin were found to have an increased therapeutic potential
compared to the parental alkaloid. Thus, methylation of fascaplysin at C-9 results in the more potent
Aβ aggregation inhibitor than alkaloid 1 [22]. The synthetic chloro derivative of fascaplysin (2)
inhibited the VEGF-mediated microvessel sprouting with blood vessel formation in the matrigel plug
of C57/BL6J mice and the tumor growth in ET (solid) mouse tumor model [23]. In addition, natural 3-
and 10-bromofascaplysins (3,4) showed anti-cancer activity at submicromolar concentrations. This
was, at least in part, mediated through the induction of caspase-8, -9, and -3-dependent apoptosis [24].
Antitumor effects of 3-bromofascaplysin and 10-bromofascaplysin were comprehensively examined
in an in vitro glioma C6 cell model. The cytotoxic efficiency of compounds 3 and 4 was higher than
that of unsubstituted fascaplysin; 3-bromofascaplysin exhibited the best capacity to kill glioma C6
cells [25]. 3,10-Dibromofascaplysin (5)—the last representative of fascaplysin alkaloids was synthesized
in eight steps from 6-bromoindole and 4-amino-2-bromotoluene, but the therapeutic potential of that
perspective compound has not been investigated yet [26].

Herein, we report the two-step method for the syntheses of 3-bromofascaplysin and
3,10-dibromofascaplysin, which has been previously used for the synthesis of fascaplysin. The similarity
in structures lets us to use these compounds as starting materials for the first syntheses of several
alkaloids of reticulatine group (compounds 6–12, Figure 1, [27]). Also, the bioactivities of the obtained
compounds were investigated.

2. Results

2.1. Chemistry

Several groups have synthesized fascaplysin and its naturally occurring analogs and more than
10 syntheses have been reported to date [28–38]. Among them the two-step scheme by Zhu et al.
is the most suitable for the preparation of the target compounds [36]. To apply that synthetic
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scheme for the synthesis of 3,10-dibromofascaplysin, the reaction between 3-bromophenylhydrazine
(13) and 4-bromobutanal (14) in an autoclave at 150 ◦C was used to prepare the mixture of
6-bromotryptamine (15) and 4-bromotryptamine (16) (Scheme 1). Thereafter, the obtained mixture
and 2,4-dibromoacetophenone (17) were subjected to the cascade coupling protocol, previously
developed by Zhu et al., which included the sequential iodination of the corresponding acetophenone,
the Kornblum oxidation of the intermediate in the presence of DMSO to phenylglyoxal, and its
Pictet–Spengler condensation with the derivative of tryptamine followed by the oxidation of the
intermediate. After chromatography purification, two isomeric 1-benzoyl-β-carbolines (18, 19) were
obtained with the yields of 20% and 19%, respectively. These products were subsequently transformed
to 3,10-dibromofascaplysin (5) and its isomer 20 according to the procedure reported by the group of
Radchenko [31].
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Scheme 1. Reagents and conditions. (a) 4-bromobutanal (14, 4.0 equiv.), EtOH, H2O, autoclave, 150 
°C, 1 h; (b) 2,4-dibromoacetophenone (17) (1 equiv.), I2 (0.8 equiv.), DMSO, 110 °C, 1 h, then 
tryptamines 15, 16 (1.0 equiv.), DMSO, 110 °C, 4 h; (c) 220 °C, 15 min, then HCl (aq). 

3-Bromofascaplysin was prepared in a similar manner from tryptamine (21) and 2,4-
dibromoacetophenone (17) with a total yield of 32%. Taking into account the high biological activity 
of synthetic chloro derivatives of fascaplysin, we obtained the corresponding derivative at C-2 (25) 
from tryptamine and 2,5-dichloroacetophenone (22) by a similar method (Scheme 2) [20]. 
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1 h; (b) 2,4-dibromoacetophenone (17) (1 equiv.), I2 (0.8 equiv.), DMSO, 110 ◦C, 1 h, then tryptamines 15,
16 (1.0 equiv.), DMSO, 110 ◦C, 4 h; (c) 220 ◦C, 15 min, then HCl (aq).

3-Bromofascaplysin was prepared in a similar manner from tryptamine (21) and
2,4-dibromoacetophenone (17) with a total yield of 32%. Taking into account the high biological activity
of synthetic chloro derivatives of fascaplysin, we obtained the corresponding derivative at C-2 (25)
from tryptamine and 2,5-dichloroacetophenone (22) by a similar method (Scheme 2) [20].Mar. Drugs 2019, 17, x FOR PEER REVIEW 4 of 12 
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Previously zwitter-ionic β-carboline 26 was obtained from fascaplysin that was treated with
aqueous solution of NaOH or 30% NH4OH [39]. After optimization of the reaction conditions



Mar. Drugs 2019, 17, 496 4 of 12

14-bromoreticulatate (10) and its dibromo analog (27, not isolated from marine organisms) were
obtained from compounds 3 and 5 in DMF at r.t. with 86% and 80% yields, respectively (Scheme 3).
Different conditions for methylation of compounds 10 and 27 were investigated, including (i) the
interaction with diazomethane; (ii) with POCl3 and following treatment with methanol; (iii) the reaction
with dimethyl sulfate. In the latter case, best results were achieved. However, 7,14-dibromoreticulatine
(8) was not obtained after methylation of compound 27. Instead, the product of dimethylation (28)
was obtained. Because of the insolubility of compound 28 in most solvents, only MS and 1H NMR
were used to identify its structure. The spectral characteristics of synthetic 3-bromofascaplysin,
3,10-dibromofascaplysin, 14-bromoreticulatate, and 14-bromoreticulatine were identical to those of the
natural products.
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2.2. Biology

The bioactivities of obtained compounds were investigated using fascaplysin (1) as a standard.
First, the cytotoxic effects of the compounds against human colorectal carcinoma (HT-29), human breast
cancer (T-47D), and melanoma (SK-MEL-28) cell lines were evaluated by MTS assay (Table 1).
The cells were incubated with different concentrations of the respective compounds (0–5 µM) for 24 h.
The concentration that caused inhibition of 50% of cell viability (IC50) was 5 µM for compound 1
against T-47D cells. Other investigated compounds were less cytotoxic against this type of cancer
cells at concentrations up to 5 µM. However, the IC50 of 1, 3, and 7 were detected at concentrations
ranging from 1.1 to 1.9 µM against SK-MEL-28 cells. Among the investigated cancer cells, the most
resistant cell line to the cytotoxic effect of the compounds was found to be breast cancer cells T-47D,
while the most sensitive were melanoma cells SK-MEL-28. It was shown that compounds 1 and 3
possessed comparable IC50 against colorectal carcinoma cells HT-29. Our results indicated that the
investigated compounds reveal selective cytotoxic effects to different cancer cell lines, with highest
efficacy in melanoma cells SK-MEL-28.
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Table 1. Cytotoxic activities of fascaplysin and its derivatives. Values are indicated as mean ±
standard deviation.

Compound Inhibiting Concentration, (IC50), µM IC50 (ViCell)/IC50
(MTT) for 22Rv1

CellsHT-29 a T-47D a SK-MEL-28 a PC-3 b 22Rv1 b 22Rv1 c

Fascaplysin (1) 2.7 ± 0.05 5 ± 0.2 1.3 ± 0.08 0.78 ± 0.16 0.24 ± 0.04 0.34 ± 0.11 1.39
3-Bromofascaplysin (3) 3.3 ± 0.12 >5 1.9 ± 0.04 10 ± 1.75 0.42 ± 0.29 0.24 ± 0.14 0.58

Compound 20 >5 >5 >5 1.39 ± 0.43 0.21 ± 0.04 0.26 ± 0.05 1.24
Compound 25 >5 >5 1.8±0.02 0.91 ± 0.06 0.27 ± 0.01 0.5 ± 0.19 1.88

14-Bromoreticulatate (10) >5 >5 >5 n/d n/d n/d n/d

14-Bromoreticulatine (7) >5 >5 1.2 ± 0.1 > 50 35.72 ±
10.1 n/d n/d

3,10-Dibromofascaplysin (5) >5 >5 >5 7.28 ± 0.73 0.69 ± 0.05 5.14 ± 1.16 7.45

IC50, the concentration of compounds that caused a 50% reduction in cell viability of tested normal and cancer cells; a

MTS assay was used; b MTT assay was used; c ViCell assay (trypan blue exclusion) was used, n/d—not determined.

We have also investigated the effect of the synthesized compounds on the viability and the growth
of human prostate cancer drug-resistant PC-3 and 22Rv1 cells. IC50s of the substances have been
determined by both, MTT and trypan blue exclusion assay (ViCell assay) (Table 1, Figure 2). It is
known that MTT assay accesses the metabolic activity of the cells, while the trypan blue exclusion assay
shows the alive cells with either intact (non-stained) or disrupted (stained) membranes. Compound 20
was identified to be the most active among the tested fascaplysin derivatives. However, its cytotoxicity
determined by MTT assay was within the range of compounds 3 and 25 and fascaplysin (1). Interestingly,
compound 5, having a higher IC50 of 0.69 ± 0.14 µM, had a very smooth cytotoxicity profile, suggesting
a wide therapeutic window (Figure 2). Moreover, for compound 5, the IC50 determined by trypan
blue exclusion assay was ~8-fold higher than the IC50 accessed using MTT test. In contrast, for the
other compounds the difference of the IC50s generated by the two different methods was distinctly
less pronounced. This may indicate an antimetabolic effect of compound 5 rather an effect on
the cell membrane integrity (necrotic-like cell death). Compound 5 starts to suppress cancer cell
viability/proliferation already at 0.1µM, while the ranges of active concentrations for the other two tested
compounds were rather narrow. Fascaplysin (1) started to suppress cancer cell viability/proliferation at
0.125 µM. Remarkably, for this compound no difference between IC50s generated with the two different
methods was observed. The high potential of compound 5 for therapeutic assays was also confirmed
by its low cytotoxity (IC50 50 µM) against normal MRC-9 lung cells.
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Figure 2. Effect of the compounds on viability of 22Rv1 cells. The effect was accessed using MTT assay.
Cells were treated with the compounds for 48 h. The values are presented as mean expression levels ±
SD are shown.

It is known that fascaplysins exhibit potent but nonselective antibiotic activities. To evaluate
activity of reticulatines in comparison to known fascaplysin derivatives, compounds 1, 3, 7, 25 were
studied in vitro for antibiotic activity against several microbes using the disk diffusion soft agar assay
as shown in Table 2. 14-Bromoreticulatine (7) showed potent activity against Pseudomonas aeruginosa
while it exhibited low activity or no activity at all against other tested microbes. As expected, high and
non-selective antibiotic activities were demonstrated for the other tested compounds (1, 3, 25).
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Table 2. Antibiotic activity of compounds 1, 3, 25, and 7.

Compound Conc.,
mg/disc

Zone Unit Differentials in the Disk Diffusion Soft Agar Assay a

Bacillus subtilis
(KMM 430)

Staphylococcus aureus
(ATCC 21027)

Pseudomonas aeruginosa
(KMM 433)

Escherichia coli
(ATCC 15034)

Candida albicans
(KMM 455)

1 0.4 25 25 >35 20 n/a
3 0.1 25 20 >35 20 *

25 0.2 20 20 >35 20 n/a
7 0.2 10 n/a >35 10 n/a

a Measured in mm; * fungistatic effect; n/a, not active.

3. Materials and Methods

3.1. Chemistry

All starting materials are commercially available. Commercial reagents were used without
any purification. The products were isolated by MPLC: Buchi B-688 pump, glass column C-690
(15 × 460 mm) with Silica gel (particle size 0.015–0.040 mm), UV-detector Knauer K-2001. The analytical
examples were purified by Shimadzu HPLC system (model: LC-20AP) equipped with a RID detector
(model: RID 10A) using Supelco C18 (5 µm, 4.6 × 250 mm) column using ACN:water (20:80, 50:50,
70:30) mobile phase by isocratic elution at flow rate of 1 mL/min. NMR spectra were recorded with
a NMR instrument operating at 400 MHz (1H) and 100 MHz (13C). Proton spectra were referenced
to TMS as internal standard, in some cases, to the residual signal of used solvents. Carbon chemical
shifts were determined relative to the 13C signal of TMS or used solvents. Chemical shifts are given
on the δ scale (ppm). Coupling constants (J) are given in Hz. Multiplicities are indicated as follows:
s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), or br (broadened). The original spectra of
the relative compounds could be found in Supplementary Materials. High-resolution mass spectra
(HRMS) were obtained with a time-of-flight (TOF) mass spectrometer equipped with an electrospray
source at atmospheric pressure ionization (ESI).

3.1.1. Preparation of Mixture of Tryptamines 15 and 16

A mixture of 4-bromobutanal (1.33 g, 8.8 mmol), 3–bromophenylhydrazine hydrochloride (0.50 g,
2.2 mmol), EtOH (3 mL), and H2O (1 mL) was placed into an autoclave and heated at 150 ◦C for 1 h.
After cooling, the mixture was poured into H2O (100 mL) and extracted with EtOAc (3 × 50 mL).
Then aqueous solution was treated with NaOH to pH 12 and extracted with CH2Cl2 (3 × 50 mL).
The combined organic layer was washed with brine (2 × 100 mL), dried over Na2SO4, and evaporated.
After flash column chromatography (EtOAc, then EtOH/NH3), compounds 15 and 16 were isolated as
a mixture in ratio of 1:1 (brown oil, 300 mg, 57%).

3.1.2. Preparation of Substituted 1-Benzoyl-β-Carbolines 18, 19, 23, 24

Corresponding acetophenone (0.458 mmol) and iodine (92 mg, 0.366 mmol) were added to 2 mL
of DMSO, and the resulting solution was heated at 90 ◦C for 1 h. After that tryptamine, its derivative
or their mixture (0.458 mmol) was added to the solution and this solution was stirred at the same
temperature for 3–4 h till completion of reaction (monitored by TLC). Then the reaction mixture was
cooled to room temperature followed by the addition of water (50 mL) and extraction with EtOAc
(2 × 25 mL). The extract was washed with 10% Na2S2O3, dried over Na2SO4, filtered and evaporated
under reduced pressure. The residue was purified by MPLC using benzene and benzene/hexanes as
eluent to give the desired product.

For 1-(2,4-dibromobenzoyl)-7-bromo-β-carboline (18): yellow solid, 20%. 1H-NMR (400 MHz, CDCl3):
δ 10.45 (br. s, 1H), 8.57 (d, J = 4.9 Hz, 1H), 8.15 (d, J = 4.9 Hz, 1H), 8.05 (d, J = 8.3 Hz, 1H), 7.88 (d,
J = 1.7 Hz, 1H), 7.79 (d, J = 1.1 Hz, 1H), 7.62 (dd, J = 8.3, 1.7 Hz, 1H), 7.50 (dd, J = 8.3, 1.5 Hz, 1H), 7.46
(d, J = 8.2 Hz, 1H). 13C-NMR (100 MHz, CDCl3): δ 196.7, 141.4, 138.9, 138.4, 136.5, 135.2, 134.7, 130.9,
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130.6, 129.8, 124.4, 124.2, 122.9, 122.6, 120.5, 119.2, 118.9, 114.8. HRMS-ESI, m/z: [M + H]+ calculated for
C18H10

79Br3N2O+: 506.8340, found 506.8345.

For 1-(2,4-dibromobenzoyl)-5-bromo-β-carboline (19): yellow solid, 19%. 1H-NMR (400 MHz, CDCl3):
δ 10.55 (br. s, 1H), 8.81 (d, J = 5.1 Hz, 1H), 8.62 (d, J = 5.1 Hz, 1H), 7.88 (d, J = 1.8 Hz, 1H), 7.63 (dd,
J = 3.2, 1.4 Hz, 1H), 7.61 (dd, J = 2.9, 1.4 Hz, 1H), 7.54–7.58 (m, 1H), 7.51 (d, J = 7.80 Hz, 1H), 7.46 (d,
J = 8.2 Hz, 1H). 13C-NMR (100 MHz, CDCl3): δ 197.5, 142.4, 142.4, 139.4, 139.1, 137.0, 135.9, 135.1,
131.6, 131.3, 130.4, 130.2, 125.4, 125.1, 121.5, 121.2, 118.5, 111.3. HRMS-ESI, m/z: [M + H]+ calculated for
C18H10

79Br3N2O+ 506.8340, found 506.8347.

For 1-(2,4-dibromobenzoyl)-β-carboline (23): yellow solid, 38%. 1H-NMR (400 MHz, DMSO-d6):
δ 12.23 (br. s, 1H, NH), 8.48 (d, J = 4.9, 1H, H-3), 8.44 (d, J = 4.9, 1H, H-4), 8.34 (d, J = 7.9, 1H, H-5), 8.02
(d, J = 1.9, 1H, H-3′), 7.85 (d, J = 8.0, 1H, H-8), 7.76 (dd, J = 8.3, 1.9, 1H, H-5′), 7.64 (ddd, J = 7.2, 7.2, 1.0,
1H, H-7), 7.57 (d, J = 8.3, 1H, H-6′), 7.35 (ddd, J = 7.2, 7.2, 1.0, 1H, H-6). 13C-NMR (100 MHz, DMSO-d6):
δ 195.9, 142.0, 140.5, 137.9, 135.3, 134.8, 134.3, 131.4, 131.0, 130.3, 129.2, 128.3, 123.2, 121.9, 120.5, 120.0,
119.8, 113.1. HRMS-ESI, m/z: [M + H]+ calculated for C18H11

79Br2N2O+ 428.9235, found 428.9239.

For 1-(2,5-dichlorobenzoyl)-β-carboline (24): yellow solid, 44%. 1H-NMR (400 MHz, CDCl3): δ 10.38
(br. s, 1H), 8.57 (d, J = 4.9 Hz, 1H), 8.19 (m, 2H), 7.65 (m, 2H), 7.57 (t, J = 1.4 Hz, 1H), 7.43 (d, J = 1.1 Hz,
2H), 7.39 (m, 1H). 13C-NMR (100 MHz, CDCl3): δ 196.1, 141.2, 139.6, 139.0, 136.8, 134.9, 132.5, 132.0,
131.1, 131.1, 130.1, 129.7, 129.6, 122.0, 121.2, 120.7, 119.5, 112.2. HRMS-ESI, m/z: [M + H]+ calculated for
C18H11

35Cl2N2O+ 341.0247, found 341.0242.

3.1.3. Preparation of Fascaplysin Derivatives

Substituted 1-benzoyl-β-carboline (0.326 mmol) was heated in sealed tube at 220 ◦C for 15 min.
After cooling, the reaction mixture was washed with EtOAc (3 × 3 mL) and H2O (3 × 10 mL).
The combined aqueous layer was acidified with hydrochloric acid and evaporated under reduced
pressure to give target product as a red powder.

For 3,10-dibromofascaplysin (5): red solid, 91%. 1H NMR (400 MHz, MeOH-d4): δ 9.38 (d, J = 6.4, 1H,
H-6), 8.97 (d, J = 6.4, 1H, H-7), 8.69 (bs, 1H, H-4), 8,41 (d, J = 8.8, 1H, H-8), 8.05 (d, J = 1.4, 1H, H-11),
7.97 (d, J = 0.8 × 2, 2H, H-1, H-2), 7.71 (dd, J = 8.6, 1.7, 1H, H-9). 13C-NMR (100 MHz, MeOH-d4):
δ 180.2, 147.7, 147.6, 140.8, 134.0, 131.4, 130.7, 128.7, 126.6, 126.4, 126.0, 124.8, 122.7, 119.5, 119.5, 118.7,
118.4, 115.9. 13C-NMR (100 MHz, DMSO-d6): δ 181.3, 148.0, 147.8, 140.2, 134.4, 131.2, 130.5, 128.2,
127.7, 127.1, 126.6, 126.1, 123.5, 123.3, 120.8, 119.6, 118.6, 116.4. HRMS-ESI, m/z: [M]+ calculated for
C18H9

79Br2N2O+ 426.9079, found 426.9085.

For compound 20: red solid, 93%. 1H-NMR (400 MHz, MeOH-d4): δ 9.44 (d, J = 4.7 Hz, 1 H), 9.36 (d,
J = 4.5 Hz, 1 H), 8.76 (s, 1 H), 7.98 (s, 2 H), 7.76–7.88 (m, 3 H). 13C-NMR (100 MHz, MeOH-d4): δ 180.1,
148.1, 147.5, 140.1, 134.5, 134.2, 131.4, 130.7, 126.8, 126.0, 122.7, 122.4, 120.3, 119.5, 118.9, 118.9, 118.5,
112.2. HRMS-ESI, m/z: [M]+ calculated for C18H9

79Br2N2O+ 426.9079, found 426.9083.

For 3-bromofascaplysin (3): red solid, 84%. 1H-NMR (400 MHz, MeOH-d4): δ 9.35 (d, J = 6.2, 1H, H-6),
8.95 (d, J = 6.2, 1H, H-7), 8.68 (s, 1H, H-4), 8.48 (d, J = 8.1, 1H, H-8), 7.93 (s, 2H, H-1, H-2), 7.88 (t, J = 7.6,
1H, H-10), 7.79 (d, J = 8.1, 1H, H-11), 7.52 (t, J = 7.6, 1H, H-9). 13C-NMR (100 MHz, MeOH-d4): δ 182.0,
149.4, 148.9, 143.1, 136.0, 135.6, 132.3, 132.2, 127.7, 127.6, 125.1, 124.5, 124.5, 123.8, 121.1, 120.9, 120.3,
114.5. HRMS-ESI, m/z: [M]+ calculated for C18H10

79BrN2O+ 348.9974, found 348.9980.

For compound 25: red solid, 70%. 1H-NMR (400 MHz, MeOH-d4): δ 9.36 (d, J = 5.8, 1H), 8.96 (d, J = 6.0,
1H), 8.49 (d, J = 8.0, 1H), 8.35 (d, J = 8.6, 1H), 8.05 (d, J = 1.2, 1H), 7.98 (d, J = 7.5, 1H), 7.90 (d, J = 6.8,
1H), 7.82 (m, 1H), 7.55 (t, J = 7.6, 1H). 13C-NMR (100 MHz, MeOH-d4): δ 180.3, 147.2, 145.3, 136.7, 135.8,
134.3, 127.6, 126.5, 126.2, 126.1, 125.8, 124.9, 123.6, 123.0, 121.9, 119.5, 116.3, 112.9. HRMS-ESI, m/z: [M]+

calculated for C18H10
35ClN2O+ 305.0480, found 305.0486.
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3.1.4. Preparation of Compounds 10, 27

A solution of compound 3 or 5 (0.15 mmol) in DMF (10 mL) was treated with solution of NaOH
(24 mg, 0.6 mmol) in 0.1 mL of H2O at room temperature for 0.5 h. The mixture was neutralized with
AcOH and evaporated under reduced pressure. The residue was washed with Et2O and dried.

For 14-bromoreticulatate (10): yellow solid, 86%. 1H-NMR (400 MHz, MeOH-d4): δ 9.37 (s, 1H), 8.75
(d, J = 6.3, 1H), 8.59 (d, J = 6.5, 1H), 8.47 (d, J = 8.1, 1H), 8.17 (d, J = 8.4, 1H), 8.06 (s, 1H), 8.00 (d, J = 8.4,
1H), 7.83 (m, 2H), 7.50 (t, J = 7.4, 1H). 13C-NMR (100 MHz, MeOH-d4): δ 152.1, 144.6, 142.4, 134.2, 133.4,
133.4, 133.1, 132.1, 131.9, 130.0, 129.1, 123.0, 122.7, 121.5, 119.5, 119.0, 116.0, 112.1. HRMS-ESI, m/z: [M]+

calculated for C18H12
79BrN2O2

+ 367.0079, found 367.0084.

For compound 27: insoluble in most solvents ivory solid, 80%. It was introduced into next step without
further purification.

3.1.5. Preparation of 14-Bromoreticulatine (7) and Compound 28

A mixture of compound 10 or 27 (0.08 mmol), acetonitrile (1 mL), sodium carbonate (0.57 mmol)
and dimethyl sulfate (0.32 mmol) was stirred at room temperature for 0.5 h. The mixture was evaporated
under reduced pressure and washed with H2O (3 mL). The resulting oil was triturated with Et2O
and dried.

For 14-bromoreticulatine (7): yellow solid, 52%. 1H-NMR (400 MHz, MeOH-d4): δ 9.40 (s, 1H), 8.76
(d, J = 6.4 Hz, 1H), 8.60 (d, J = 6.4 Hz, 1H), 8.48 (d, J = 8.1 Hz, 1H), 8.20 (d, J = 8.5 Hz, 1H), 8.12 (d,
J = 1.9 Hz, 1H), 8.05 (dd, J = 8.5, 1.8 Hz, 1H), 7.79–7.87 (m, 2H), 7.50 (ddd, J = 7.5, 7.5, 0.9 Hz, 1H), 3.64
(s, 3H). 13C-NMR (100 MHz, MeOH-d4): δ 162.8, 144.8, 143.2, 134.2, 134.2, 133.7, 133.1, 132.8, 132.4,
130.8, 130.0, 127.1, 124.5, 122.8, 121.7, 119.0, 116.1, 112.3, 51.5. HRMS-ESI, m/z: [M]+ calculated for
C19H14

79BrN2O2
+ 381.0235, found 381.0242.

For compound 28: yellow solid 48%. 1H-NMR (400 MHz, MeOH-d4): δ 8.90 (br. s, 1H), 8.43 (d,
J = 6.1 Hz, 1H), 8.20 (d, J = 8.7 Hz, 1H), 8.05 (d, J = 6.3 Hz, 1H), 7.91 (s, 1H), 7.77–7.88 (m, 3H), 7.26
(d, J = 8.4 Hz, 1H), 3.69 (s, 4 H), 3.35 (s, 3H). HRMS-ESI, m/z: [M]+ calculated for C20H15

79Br2N2O2
+

473.0096, found 473.0103.

3.2. Biological Evaluation

McCoy’s 5A Medium (McCoy), Roswell Park Memorial Institute Medium (RPMI 1640),
Dulbecco’s Modified Eagle Medium (DMEM), phosphate buffered saline (PBS), L-glutamine,
penicillin–streptomycin solution, trypsin, fetal bovine serum (FBS), sodium hydrocarbonate (NaHCO3),
and agar were purchased from “Biolot” (Russia).

3.2.1. Cell Lines and Culture Conditions

Human colorectal carcinoma HT-29 (ATCC® no. HTB-38™), human breast cancer T-47D
(ATCC® no. HTB-133™), and melanoma SK-MEL-28 (ATCC® no. HTB-72™) cell lines were
gifted by Hormel Institute University of Minnesota (Austin, MN, USA). Human prostate cancer
PC-3 (ATCC® no. CRL-1435™) and 22Rv1 (ATCC® no. CRL-2505) cells were purchased from
ATCC (Manassas, VA, USA). Human colorectal carcinoma HT-29, human breast cancer T-47D, and
melanoma SK-MEL-28 cell lines were cultured in McCoy, RPMI-1640, and DMEM medium, respectively.
Medium were supplemented with 5% and 10% fetal bovine serum (FBS), 200 mM L-glutamine, and
penicillin-streptomycin solution. The cell cultures were maintained at 37 ◦C in humidified atmosphere
containing 5% CO2. The human prostate cancer PC-3 and 22Rv1 cells were cultured according to the
manufacturer’s instructions in RPMI media (Invitrogen), supplemented with GlutamaxTM-I (Invitrogen,
Paisley, UK) and contained 10% FBS (Invitrogen) and 1% penicillin/streptomycin (Invitrogen). Cells were
continuously kept in culture for a maximum of 3 months, and were routinely checked for contamination
with mycoplasma and inspected microscopically for stable phenotype. Several test cultures were
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used to determine antibiotic activity, including Bacillus subtilis (KMM 430), Staphylococcus aureus
(ATCC 21027), P. aeruginosa (KMM 433), Escherichia coli (ATCC 15034), and Candida albicans (KMM 455).
All cultures are stored in the collection of marine microorganisms of the PIBOC FEB RAS, the official
acronym of CMM [40]. Antibiotic activity was determined with the disk diffusion soft agar assay as
described before [41].

3.2.2. Cytotoxicity Assays

MTS and MTT assays were used as an indicator of cell viability as determined by
mitochondrial-dependent reduction of formazan or its salts. For MTS assay, the cells were seeded
in density of 1.0 × 104 cells/200 µL of complete medium in 96-well plates. After incubation for 24 h
attached cells were treated with various concentrations of the compounds (0.05; 0.1; 0.5; 1; 5 µM),
while the control was treated with the complete McCoy, RPMI-1640, and DMEM medium only. Cells
were cultured for additional 24 h at 37 ◦C in 5% CO2 incubator. After incubation, MTS-reagent (20 µL)
was added to each well, and then cells were incubated for 3 h at 37 ◦C in 5% CO2. Absorbance was
measured at 490/630 nm by microplate reader (Power Wave XS, American). All tested samples were
carried out in triplicates. MTT assay was performed as previously described with the 48 h drug
treatment [42]. The trypan-blue-based viability assay (ViCell assay) was performed using Beckman
Coulter Vi-CELL (Beckman Coulter, Krefeld, Germany) as has been described before [43].

3.2.3. Statistical Analysis

Statistical analyses were performed using GraphPad Prism software v. 5.01 (GraphPad Prism
software Inc., La Jolla, CA, USA). Data are presented as mean ± SD. The unpaired Student’s t-test
was used for the comparison of two groups. Statistical significance was represented as * p < 0.05 and
** p < 0.01.

4. Conclusions

Thus, the two-step approach toward the synthesis of the marine sponge derived
pigment fascaplysin was used to obtain the marine alkaloids 3-bromofascaplysin and
3,10-dibromofascaplysin. These compounds were used as the starting materials for first syntheses
of the alkaloids 14-bromoreticulatine and 14-bromoreticulatate. Preliminary bioassays showed that
14-bromoreticulatine reveals selective antibiotic (to P. aeruginosa) and cytotoxic (to melanoma SK-MEL-28
cell line) activities. It was also demonstrated that 3,10-dibromofascaplysin was able to suppress the cell
metabolism at concentrations at least 7 times lower than the cytotoxic concentrations, which induced
cell membrane disruption. The examination of biological activity of the synthesized compounds
showed that even minimal modification of fascaplysin structure has a significant effect on the bioactivity
of this lead compound. At the present time, the biological activities of a large series of novel synthetic
derivatives of fascaplysin are being investigated thoroughly. This should open new opportunities
for the detailed studies of the structure–activity relationships among these potent and promising
biologically active substances.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-3397/17/9/496/

s1, Comparison of 1H-NMR data of synthetic and natural 3-bromofascaplysin, 3.10-dibromofascaplysin,
14-bromoreticulatate and 14-bromoreticulatine. Spectra Data.
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