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Abstract: Forward genetics in the mouse continues to be a useful and unbiased approach to identi-
fying new genes and alleles with previously unappreciated roles in mammalian development and
disease. Here, we report a new mouse allele of Cse1l that was recovered from an ENU mutagenesis
screen. Embryos homozygous for the anteater allele of Cse1l display a number of variable phenotypes,
with craniofacial and ocular malformations being the most obvious. We provide evidence that Cse1l is
the causal gene through complementation with a novel null allele of Cse1l generated by CRISPR-Cas9
editing. While the variability in the anteater phenotype was high enough to preclude a detailed
molecular analysis, we demonstrate a very penetrant reduction in Pax6 levels in the developing eye
along with significant ocular developmental phenotypes. The eye gene discovery tool iSyTE shows
Cse1l to be significantly expressed in the lens from early eye development stages in embryos through
adulthood. Cse1l has not previously been shown to be required for organogenesis as homozygosity
for a null allele results in very early lethality. Future detailed studies of Cse1l function in craniofacial
and neural development will be best served with a conditional allele to circumvent the variable
phenotypes we report here. We suggest that human next-generation (whole genome or exome)
sequencing studies yielding variants of unknown significance in CSE1L could consider these findings
as part of variant analysis.

Keywords: Cse1l; ENU; Pax6; microphthalmia; mutagenesis; anophthalmia; CAS

1. Introduction

Chromosome segregation 1-like (S. cerevisiae) (Cse1l; also known as cellular apoptosis
susceptibility gene CAS or exportin-2) has been linked to nuclear transport, cell cycle
maintenance, cell proliferation, apoptosis, and many other cellular functions [1,2]. Nuclear
transport is an integral component of many cellular processes and involves several specific
transport proteins. Cargo tagged by a classical nuclear localization signal is discriminately
bound by an importin-α protein which then forms a heterotrimer with importin-β proteins
to be conveyed through the nuclear pore complex [3,4]. Once inside the nucleus, RAN-GTP
binds to importin-β, dismantling the heterotrimer and releasing the cargo [5,6]. Importin-α
proteins must then be returned to the cytosol to be reused in the next transport cycle. The
CSE1L protein functions as a re-exporter of importin-α, ensuring its continued availability
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for nuclear import [7]. Under a variety of cellular stress conditions, importin-α can be
imported into the nucleus in the absence of RAN and importin-β. In these conditions, the
consequent disturbance in the Ran gradient results in the loss of CSE1L-mediated export of
importin-α which initiates a blockage of nuclear import and accumulation of importin-α in
the nucleus [8]. This accumulation has been implicated in the expression of factors inducing
non-apoptotic cell death [9]. CSE1L protein has been shown to localize to microtubule
structures in some cells and to play an important role in the G1 cell cycle checkpoint,
spindle formation, and chromosome alignment and segregation [2,10]. Lee and colleagues
have demonstrated that Cse1l interacts with the Ras/Raf/MEK/ERK pathway, as well as
acting on the cAMP/PKA pathway via the regulation of CREB and MITF, establishing
Cse1l as a link between the two signaling networks [11]. CSE1L is a microvesicle membrane
protein involved in the formation, and possibly maintenance, of microvesicles induced
by Ras activity [12]. Cse1l plays a role in maintaining chromosomal stability and DNA
repair by regulating RAD51-mediated homologous recombination [13]. Along with other
proteins, CSE1L facilitates the formation of the apoptosome [14]. The misregulation of Cse1l
has been associated with a wide variety of cancers, and it is often utilized as a prognostic
marker of tumor grade and pathogenicity. Interestingly, CSE1L has the capacity to directly
affect transcription of p53 by association with its promoter [15]. It has been shown that the
nuclear transport mechanism requiring CSE1L demonstrates distinct cargo specificity, and
this selectivity may indirectly contribute to some epigenetic control within the cell [16,17].

The broad expression of Cse1l is mostly correlated with proliferating cells [2,18]. Cse1l
has been implicated in trophoblast and placenta development via regulation of proliferation
and apoptosis [19]. In a study considering endometriosis progression, the downregulation
of Cse1l was found to affect β-catenin signaling in complex with other interactors, impacting
the epithelial to mesenchymal transition [20]. While it has long been known that Cse1l is
required for early development, it has been difficult to study its mechanism due to the very
early lethality of null mice [21]. Here, we present a hypomorphic mutant allele of Cse1l
discovered in a forward genetic screen which displays a variable range of neural and ocular
phenotypes including microphthalmia and ventral telencephalic defects. Our Cse1l mouse
model presents an invaluable tool to demonstrate a pleitropic role for Cse1l in embryonic
development.

2. Materials and Methods
2.1. Animal Husbandry

All animals were maintained through a protocol approved by the Cincinnati Chil-
dren’s Hospital Medical Center IACUC committee (IACUC2019-0068). Mice were housed
in a vivarium with a 12 h light cycle, with food and water ad libitum. Mice to be dis-
sected were euthanized with isoflurane and subsequent cervical dislocation. Genotyping
was performed with the following primers: Cse1lant F: TTTGTGCCAAGAAGTGTGATG,
R: TCAGCAGAGCACAGTCAACA; Cse1lnull F: AGATTCAGAGTCATGGAGCTCA, R:
CAATCAGTCAAGGAACAAAGCC; Cse1lant TaqMan SNP Genotyping custom probe ID
AHMSY60.

2.2. ENU Mutagenesis

ENU mutagenesis was performed as previously described on C57BL/6J males [22,23].

2.3. Cse1lnull CRISPR Design

CRISPR transgenesis was performed with the Cincinnati Children’s Transgenic and
Genomic Editing Core. A single guide RNA was used (GATCCTGCCATTAGACGGCC).
Genotyping primers were separately designed to detect a large deletion (F: GTTACTTACT-
CACTTTCTCCTCAGA R: GAATCAATCAGCTGGGCAGAG) and a smaller deletion (F:
AGATTCAGAGTCATGGAGCTCA, R: CAATCAGTCAAGGAACAAAGCC). Founders
were screened by PCR and Sanger sequence analysis.
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2.4. Weight

Mice were weighed individually on postnatal day 28 using a standard metric balance.

2.5. Histology

Embryos were dissected, fixed in Bouin’s fixative for 48 h, washed in 70% EtOH,
and dehydrated and embedded in paraffin by the CCHMC Pathology Core. Blocks were
sectioned by microtome at 10 µm, then sections were placed on SuperFrost slides (Cardinal
Health, Dublin, OH, USA), baked >1 h, and stained with hematoxylin and eosin using
standard methods. All histological and immunohistochemical studies are performed on at
least three animal pairs.

2.6. Skeletal Preparations

Embryos were dissected at E17.5–E18.5 and frozen. Skin and fat were removed from
the embryos which were then fixed in 95% ethanol for 2–5 days. The skeletons were stained
with Alizarin-Red and Alcian-Blue (SIGMA-Aldrich, St. Louis, MO, USA) and cleared with
potassium hydroxide using standard procedures.

2.7. Exome Analysis

Mouse exome analysis was performed at the CCHMC DNA core. Pooled samples
were analyzed as a group to find shared homozygous variants as well as individually for
each animal. Each variant is annotated based on predicted consequences for the encoded
protein. “High-” impact variants are those which are clearly and obviously disruptive
to the protein. This would include frame-shift, stop gain variants and disruptions of
canonical splice sites. “Moderate-” impact variants include non-synonymous substitutions
and in-frame insertions/deletions. Details of analysis are in Supplementary Table S1.

2.8. RNA-Seq

E10.5 embryo heads were dissected, snap frozen, and stored at −80 ◦C. A total of
3 WT and 3 anteater mutant heads were each pooled to create one pooled sample of each
genotype. RNA was isolated, and pooled samples were each used for paired end bulk
RNA sequencing (BGI Americas, Cambridge, MA, USA). Analysis was performed by BGI
RNA Sequencing services which includes a proprietary analysis pipeline.

2.9. RNAscope

Embryos were dissected at ages E10.5, E12.5, and E14.5 and were fixed in formalin
for 16–24 h. The tissue was washed in PBS, then dehydrated and embedded in paraffin by
the CCHMC Pathology Core. Paraffin blocks were sectioned on the microtome at 5 µm,
placed on SuperFrost slides, then baked at 60 ◦C for 1 h. Target retrieval steps outlined in
the manual assay protocol were followed based on recommendations for brain tissue, then
slides were dried at room temperature overnight. Hybridization and amplification steps
were performed using the HybEZ oven (Advanced Cell Diagnostics, Newark, CA, USA,
ACD)set at 40 ◦C. Manual assay protocol from was followed using RNAscope Multiplex
Fluorescent Reagent Kit V2 (323100), TSA Cyanine 3 Fluorophores (NEL744001KT) at 1:750,
and a C1 Cse1l probe made to order (Catalog # 591691). All reagents were purchased from
Advanced Cell Diagnostics, ACD).

2.10. Immunofluorescence (Ascl1, Gsx2, Nkx2.1, Olig2, Pax6)

E12.5 and E14.5 embryo heads were dissected, fixed in 4% PFA overnight, equilibrated
in 30% sucrose for 48 h, cryo-embedded in OCT, then sectioned by cryostat at 10 µm.
Antigen retrieval was performed with 1% citrate buffer, then sections were incubated in
primary antibodies overnight at 4 C: rabbit anti-Pax6 (MBL International, Woburn, MA,
USA #PD022, 1:500), goat anti-OLIG2 (R&D Systems, Minneapolis, MN, USA 1:4000),
rabbit anti-NKX2.1 (Seven Hills BioReagents, Cincinnati, OH, USA, 1:2000), rabbit anti-
GSX2 (Campbell Lab, 1:300 [24]), and rabbit anti-ASCL1 (AbCam, Cambridge, UK 1:400).
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Sections were incubated for 3 h with Alexafluor 488-conjugated goat anti-rabbit (Ther-
moFisher Scientific, Waltham, MA, USA #A11008, 1:200) or Alexafluor 488-conjugated
donkey anti-goat (AbCam #ab150129, 1:200), counterstained with DAPI, and sealed with
ProLong Gold (Invitrogen/ ThermoFisher). Sections were imaged on the Nikon C2 703
confocal microscope.

2.11. Immunofluorescence (PHH3, CC3, Tbr2)

Embryo heads were dissected at E12.5 and E14.5, fixed in 4% PFA overnight, equi-
librated in 30% sucrose for 48 h, cryo-embedded in OCT, then sectioned by cryostat at
10 µm. Antigen retrieval for pHH3, CC3, was performed with 10% citrate buffer; antigen re-
trieval for Tbr2 was performed with antigen unmasking solution (Vector Labs, Burlingame,
CA, USA). Sections were blocked with 4% normal goat serum in PBST and incubated
in primary antibodies overnight at 4 ◦C: rabbit anti-pHH3 (Sigma #H0412, 1:500), rabbit
ant-CC3 (Cell Signaling, Danvers, MA, USA #9661 S, 1:300), and rabbit anti-TBR2 (AbCam
#ab31940, 1:200). Sections were incubated for 1 h with Alexafluor 488-conjugated goat
anti-rabbit (Thermo #A11008, 1:500), counterstained with DAPI, and sealed with ProLong
Gold (Invitrogen). Sections were imaged on the Nikon C2 703 confocal microscope (Nikon
Instruments, Melville, NY, USA).

2.12. Immunofluorescence (Lhx2, Pax6)

For Pax6 and Lhx2 immunostaining, mouse embryo heads were dissected at stage
E10.5, fixed in 4% PFA overnight, equilibrated in 30% sucrose for 48 h, cryo-embedded in
OCT, then sectioned by cryostat at 10 mm. For Pax6 immunostaining, sections were thawed
and subjected to blocking buffer (2% Bovine Serum Albumin (BSA, Sigma, #A2153-50G),
0.3% TritonX-100 (Fisher Scientific, #NC1365296) in 1X TBS (Tris Buffer Saline)) for 1 h at
room temperature followed by permeabilization in 0.05% TritonX-100 in 1X PBS (Phosphate
Buffer Saline, Fisher scientific BP243820) for 5 min. Sections were incubated with Pax6
primary antibody (MilliporeSigma, Burlington, MA, USA, #AB2237, raised in Rabbit) in
blocking buffer (dilution: 1:150) at 4 ◦C for 18 h. This was followed by three washes (10 min
each) performed in 0.3% TritonX-100 in a 1X TBS solution. Sections were then incubated
for 1.5 h at room temperature with Alexafluor 568-conjugated goat anti-rabbit (Thermo
Fisher Scientific, #A-11011) and DAPI (1:1000) (Thermo Fisher Scientific, #D21490). This
was followed by three washes (10 min each) performed in 0.3% TritonX-100 in a 1X TBS
solution. Mounting media was applied and slides were sealed with coverslip and nail
polish and visualized by confocal microscopy (Zeiss LSM880 Confocal microscope, Zeiss
International, Oberkochen, Germany). For Lhx2 immunostaining, sections were thawed
and subjected to an additional fixation step in ice cold 100% 1:1 acetone:methanol for
20 min. Sections were permeabilized in 0.3% TritonX-100 for 10 min in 1X PBS. Sections
were then blocked in blocking buffer (10% goat serum (Jackson ImmunoResearch, West
Grove, PA, USA, #005-000-121), 0.3% TritonX-100 in a 1X TBS) for 1 h at room temperature.
This was followed by incubation with Lhx2 primary antibody (Abcam, #ab184337, raised
in Rabbit) in blocking buffer (1:100) at 4 ◦C for 18 h. This was followed by three washes
(10 min. each) performed in 0.3% TritonX-100 in a 1X TBS solution. Sections were then
incubated for 1.5 h at room temperature with Alexafluor 568-conjugated goat anti-rabbit
(Thermo Fisher Scientific, #A-11011) and DAPI (1:1000) (Thermo Fisher Scientific, #D21490).
This was followed by three washes (10 min. each) performed in 0.3% TritonX-100 in a 1X
TBS solution. Mounting media was applied and slides were sealed with coverslip and nail
polish and visualized by confocal microscopy (Zeiss LSM880 Confocal microscope).

2.13. Immunofluorescence Quantification

Nikon Elements software (v 5.21) was used to quantify various aspects of pHH3, Tbr2,
CC3, and Pax6 immunofluorescence images. For pHH3, the VZ was delineated as the
region of interest, and positive cells within that region were counted. For Tbr2 and CC3,
the entire cortex was delineated as the region of interest, and positive cells within that
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region were counted. Pax6 expression was quantified by delineating the entire cortex as
the region of interest, and positive cells within the region were counted. Pax6 expression
relative to cortex thickness was quantified by designating linear distances at three regions
of the cortex for each image. Pax6 expression area was quantified by designating linear
distances spanning the Pax6-positive region at three locations per image.

2.14. Western Immunoblotting

E14.5 embryos were microdissected to isolate brain, eyes, and face (frontonasal, max-
illary, and mandibular prominences). Tissues were snap-frozen and stored at −80 ◦C.
Tissues were lysed with RIPA buffer with protease inhibitor. BCA assay was performed
to determine protein concentration. Protein was loaded into a 4–12% Tris-glycine gel.
Protein was transferred to a PVDF membrane, blocked in Intercept blocking buffer, and
incubated overnight at 4 C with rabbit anti-CSE1l (CAS) (AbCam #151546, 1:1000) and
mouse anti-Tubulin (Sigma #T6199, 1:1000) antibodies. Membranes were washed and
incubated for 1 h in goat anti-rabbit IRDye 800CW (LICOR #926-32211, 1:15,000) and goat
anti-mouse IRDye 680 Rd (LICOR, #926-68070, 1:15,000) antibodies. Blots were visualized
on a LICOR Odyssey imaging system. Relative protein concentration was determined by
normalizing Cse1l signal to Tubulin signal in Image Studio Lite Ver 5.2.

3. Results
3.1. Anteater Mutants Display Variable, Incompletely Penetrant Organogenesis Phenotypes

We recently continued a mouse forward genetic ENU mutagenesis screen to identify
novel alleles important for mammalian organogenesis with a particular emphasis on the
developing craniofacial structures. While screening for phenotypes at embryonic day (E)
18.5, we identified a line with a number of notable phenotypes. These were variable and
included ocular malformations ranging from microphthalmia (Figure 1B,C) to coloboma
(Figure 1I), shortened to nearly absent mandible (Figure 1E,F), exencephaly (Figure 1H,I),
polydactyly (Figure 1K,L), and cleft lip (Figure 1N). The most common phenotype was an
ocular malformation with decreasing incidence of micrognathia, exencephaly, polydactyly,
and cleft lip (Figure 1O). Based on the resemblance of mutants with the most severe
phenotypes to the eponymous land mammal, this mutant allele was named anteater.

3.2. The Anteater Phenotype Is Caused by a Variant in Cse1l

We performed exome sequencing on three phenotypic anteater mutants to identify
the causal ENU allele. From an initial list of 26,869 variants in the anteater mutants,
we filtered for variants which (1) were homozygous in the pooled sample, (2) had a
genotype quality score higher than or equal to 20, (3) were predicted to have a “high”
or “moderate” effect on the protein, (4) were not present in the dbSNP database (and
were thus known strain polymorphisms), and (5) were a single base pair change (known
mechanism of ENU mutagenesis). We then further excluded variants in genes for which
a null allele was reported and did not phenocopy the anteater mutants, or those that
were determined to represent a strain-specific polymorphism not recorded in dbSNP.
This left five variants, only one of which segregated completely with anteater mutants as
a homozygote (Figure 2A). The candidate variant is in the chromosome segregation 1-like
(S. cerevisiae) (Cse1l) gene (chr2: 166,761,506 Mb; A > G). Sanger sequencing confirmed
this sequence change as a heterozygote in carriers and homozygous for the alternate
allele in mutants (Figure 2B). The missense variant alters the coding of CSE1L protein
at a highly conserved portion of the sequence from an acidic, charged glutamate to a
hydrophobic glycine (NP_076054 Glu37Gly; Figure 2C). Based on the non-synonymous
nature of this variant and conservation of the protein, this was judged to be of “moderate”
impact (Figure 2A). Western immunoblotting of tissue isolated from the heads of anteater
mutant and wild-type E14.5 embryos (Figure 2D) showed an approximate 50% decrease
in CSE1L protein levels in mutant tissue as compared to controls (Figure 2D). No obvious
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changes in protein structure were observed when the predicted protein structure of Cse1l
was compared with the predicted structure of the anteater mutant protein (Figure 2E–H).

Figure 1. Cse1lant/ant mutants display variable, incompletely penetrant phenotypes. (A,D,G,J,M)
Control animals. (B,C,E,F,H,I,K,L,N) Cse1lant/ant mutants display a range of dysmorphic eye fea-
tures, (B,C) micrognathia and agnathia, (E,F) exencephaly, (H,I) polydactyly (K,L), and cleft lip (N);
(O) Incidence of phenotypes over 117 mutants collected.

We next performed a genetic complementation test to further address the hypothesis
that anteater is an allele of Cse1l. We first used CRISPR-Cas9 genome editing to create a
null allele. Mosaic founders were mated and produced Cse1lCRISPR /wt offspring with a
gene modification creating an 8 bp deletion and 4 bp insertion in Cse1l (Supplementary
Figure S1B). This is predicted to code for a CSE1L protein with 24 appropriate amino
acids followed by eleven nonsense residues and a premature stop codon (Supplementary
Figure S1B; NP_076054 A24LSQVKMALFLDX). Consistent with previous reports, when we
intercrossed these Cse1lCRISPR /wt mice we found no survival of CRISPR Cse1l homozygous
null embryos at weaning (Supplementary Figure S1C). We concluded from this that the
Cse1lCRISPR allele is a null allele with a requirement for survival similar to the previously
published allele. We then mated Cse1lant/wt heterozygous mice with Cse1lCRISPR /wt mice.
None of the offspring at weaning were Cse1lCRISPR/ant mutants (Supplementary Figure S1D).
Of the 42 embryos genotyped between E14.5 and E18.5, none were found to be carriers
for both CRISPR Cse1l and anteater (Supplementary Figure S1D). Thus, the anteater allele
fails to complement the CRISPR Cse1l null allele. We therefore conclude that anteater is a
hypomorphic allele of Cse1l as the mutants survive to organogenesis stages.
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Figure 2. The anteater mutant is an allele of Cse1l. (A) Exome filtering revealed Cse1l as a candidate
gene for the anteater phenotype. (B) Sanger sequence of the anteater allele. (C) CSE1L is a highly-
conserved protein: the anteater variant is highlighted in red. (D) Protein expression was decreased
but not absent in Cse1lant/ant brains; data are graphed as protein expression relative to the wild type
(unpaired t test p = 0.0012; line indicates mean value +/−95% confidence interval). (E–H) Predicted
protein structure of CSE1L with the position of the variant amino acid highlighted in red.

3.3. Cse1l Expression

As Cse1l expression has not been well-described in the developing mouse embryo,
we characterized wild-type Cse1l gene expression using single-molecule RNAscope in situ
RNA hybridization at embryonic stages E10.5, E12.5, and E14.5 with a particular focus on
structures of the head (Figure 3). At all ages analyzed, Cse1l expression was quite high in all
the forebrain regions examined along the anterior to posterior axis. By E12.5, we observed
the expression to be particularly enriched in the ventricular zone. Expression was also
evident in the tongue, eyes, mandibular arch, nasal pits, and the future nasal epithelium.
Diffuse facial and eye expression of Cse1l was noted at E10.5 but became stronger and
more regionally defined at E12.5. A significant portion of this expression is consistent with
being part of the migrating neural crest cell population. This neural crest expression is also
consistent with many of the phenotypes we observe in anteater mutants (Figure 1). iSyTE
analysis [25–27] shows robust Cse1l expression in the mouse lens during development and
at adult stages (Figure S2). By E14.5, discrete regions of Cse1l expression were detected
in the tooth buds, salivary glands, and tongue (data not shown). Thus, the embryonic
craniofacial, ocular and neural expression of Cse1l is consistent with the tissues affected in
the anteater mutants.
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Figure 3. RNAscope shows wild-type Cse1l expression is localized to cortex and specific regions of
the face and eyes. (A–F) RNA expression of Cse1l in wild-type embryos is widespread throughout
the brain and face, and in later stages (G–I), becomes more localized around the lateral ventricles.

3.4. Anteater Mutants Do Not Survive Past Birth and Have a Variable Phenotype

We noted a nearly complete lack of homozygous anteater mutants at weaning (Figure 4,
Table 1). Those few mutants that did survive were much smaller than their wild-type
and heterozygote littermates but behaved normally (Supplementary Figure S3). Upon
dissection, the brain size and structure of these adult mutants appeared normal (Figure S3);
however, unilateral microphthalmia was apparent in at least one animal (Supplementary
Figure S3). Upon comparing the skulls of the few P28 mice that survived, we discovered
that the anteater skull was much smaller and at least one animal displayed unilateral
dysmorphia in the regions of the nasal bridge and eye socket (Supplementary Figure S3).

Figure 4. Survival of Cse1lant/ant mutants. Percent of mutants recovered from all embryos at each
stage analyzed with 25% Mendelian expectations show with blue dotted line.

The phenotypes we observed at E18.5 (Figure 1) are consistent with perinatal lethality,
but we performed dissections at a range of embryonic stages to assess survival through
organogenesis and saw near Mendelian ratios of Cse1lant/ant homozygous mutant through-
out development with a recovery of 73–96% of expected numbers of mutants (Figure 4).
Our analysis indicates slightly more statistically robust deviations from Mendelian expec-
tations at E14.5 which we attribute to the significantly large sample size (n = 216) as we
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also targeted this age for molecular analyses. Taken together, these data suggest to us the
Cse1lant/ant homozygous mutants are slightly less viable than control littermates during
embryonic development and almost completely absent by weaning ages.

Table 1. Survival of anteater mutants.

Cse1lant/wt x Cse1lant/wt wt/wt ant/wt ant/ant
(% of Expected) Total Chi2 p Value

E10.5 10 27 12 (96%) 50 0.712
E12.5 23 30 14 (84%) 67 0.207
E14.5 50 125 41 (76%) 216 0.047
E16.5 8 16 7 (90%) 31 0.953

E17.5, 18.5 9 18 6 (73%) 33 0.664
P28 70 133 6 (11%) 209 1.30 × 10−12

We performed a preliminary analysis of the Cse1lant/ant mutant skeletal system after
observing some of the obvious craniofacial phenotypes. We initially assessed skeletal
preparations of E18.5 mutants and littermate controls by measuring the length of their
long bones (Figure 5). The humerus, radius, ulna, femur, tibia, and fibula of mutant
embryos were all slightly shorter than their wild-type counterparts, but we note a wide
degree of variability in this sample set (n = 19 Cse1lwt/wt, 16 Cse1lant/wt, and 16 Cse1lant/ant).
Interestingly, all of these bones were markedly shorter in the Cse1lant/wt heterozygotes than
either wild-type or homozygous Cse1lant/ant mutant animals. We similarly measured the
length of the mandible and analyzed as a ratio to the overall length of the skull (n = 14
Cse1lwt/wt, 4 Cse1lant/wt, and 7 Cse1lant/ant; Figure 5M,N) to differentiate between generally
smaller embryos and discrete changes in skeletal lengths. We see an increase in this
ratio suggesting a small overall head relative to the mandible and a small decrease in
the homozygous mutant. The biological significance and mechanism of the larger, more
significant changes restricted to the heterozygotes remains unclear (Table 1).

Statistical analysis is presented separately (Table 2).
We also performed a histological analysis of the developing forebrain at ages E12.5,

E14.5, and E16.5. These sections displayed highly variable eye and brain structural ab-
normalities (Figure 6A–F). The most striking brain phenotypes included widening of the
base of the third ventricle, loss of midline structure, and a loss of a distinct sulcus between
the medial and lateral ganglionic eminences. Eye defects were the most commonly noted
histological phenotype (Figure 6G). Retina development appeared to be largely complete,
but eye morphology was grossly disturbed in mutants at all ages, sometimes presenting
on a unilateral basis. In some cases, the eye was exposed to the lateral ventricles, while in
other instances, the eye was completely internalized (Figure 6H–J).

3.5. Forebrain Patterning Is Not Consistently Perturbed in Anteater Mutants

The wide variability of phenotypes in Cse1lant/ant mutants presents significant chal-
lenges to any rigorous molecular mechanistic studies. However, due to the various brain
phenotypes observed in the anteater mutants, we did analyze a number of brain patterning
markers in the mutants (Figure 7). ASCL1 has been shown to play critical roles in neural
progenitor specification, differentiation, and growth in the telencephalon [28]. Analysis of
ASCL1 in the anteater mutants and wild-type controls at E12.5 and E14.5 did not reveal any
drastic variation in expression, indicating that these progenitor programs were relatively
unaffected (Figure 7A,B). Because the phenotypes in the Cse1lant/ant mutant medial and
lateral ganglionic eminences (MGE, LGE) were one of the most striking brain phenotypes,
we analyzed GSX2 expression. GSX2 is expressed as an early patterning marker of the
MGE and LGE, but is expressed most highly at the dorsal LGE [24,29]. The levels of this
patterning marker also appeared unchanged among the Cse1lant/ant mutants we observed
in comparison to wild-type controls at ages E12.5 and E14.5 (Figure 7C,D). Ventral fore-
brain patterning also appeared affected in Cse1lant/ant mutants, thus we investigated the
expression of NKX2.1 in wild-type and mutant brains at E12.5 and E14.5 as it is required
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for ventral telencephalon patterning, playing an integral role in maintaining the MGE [30].
Our evaluation of NKX2.1 expression in Cse1lant/ant mutants did not reveal a difference
from the wild-type controls’ expression pattern (Figure 7E,F). Finally, we also assessed the
spatial patterning of OLIG2, a marker of the ventricular zone (VZ) of the ventral telen-
cephalon, including the VZ of the MGE [31], but did not see distinct patterning differences
(Figure 7G,H). We concluded that, despite some of the terminal phenotypes, there were
not consistent and highly penetrant molecular hallmarks of aberrant neural patterning in
Cse1lant/ant mutants.

Figure 5. Cse1l mutant skeletal analysis. Wild-type Cse1lwt/wt (A,D), Cse1lant/wt (B,E) and Cse1lant/ant

(C,F) skull and limb skeletal preparations. (G–L) Lengths shown for humerus (G), radius (H), ulna
(I), femur (J), tibia (K), and fibula (L). Measurements as outlined in (M) are quantified and shown
in (N).
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Table 2. Statistical Analysis of Skeletal Elements.

Genotype Mean (st. dev) ANOVA F Statistic
(p Value) Comparison Tukey’s Multiple

Comparison-Adjusted p Value *

Humerus wt/wt 2641 (168.3) 8.01 (0.001) wt vs. ant/wt 0.001
ant/wt 2385 (80.94) ant/wt vs. ant/ant 0.156
ant/ant 2511 (261.2) wt vs. ant/ant 0.108

Radius wt/wt 2369 (204.2) 6.56 (0.003) wt vs. ant/wt 0.002
ant/wt 2133 (83.8) ant/wt vs. ant/ant 0.498
ant/ant 2294 (252.3) wt vs. ant/ant 0.059

Ulna wt/wt 2877 (213.4) 6.71 (0.003) wt vs. ant/wt 0.002
ant/wt 2597 (140.6) ant/wt vs. ant/ant 0.083
ant/ant 2773 (299.2) wt vs. ant/ant 0.369

Femur wt/wt 2108 (159.7) 7.96 (0.001) wt vs. ant/wt 0.001
ant/wt 1894 (75.1) ant/wt vs. ant/ant 0.021
ant/ant 2055 (220.3) wt vs. ant/ant 0.614

Fibula wt/wt 2450 (224.5) 13.26 (<0.0001) wt vs. ant/wt <0.0001
ant/wt 2073 (111.6) ant/wt vs. ant/ant 0.004
ant/ant 2337 (283.1) wt vs. ant/ant 0.294

Tibia wt/wt 2613 (197.0) 7.34 (0.002) wt vs. ant/wt 0.001
ant/wt 2346 (108.5) ant/wt vs. ant/ant 0.486
ant/ant 2531 (283.3) wt vs. ant/ant 0.040

Mandible/
Skull Ratio

wt/wt 0.987 (0.011) 4.311 (0.026) wt vs. ant/wt 0.243
ant/wt 0.996 (0.008) ant/wt vs. ant/ant 0.022
ant/ant 0.978 (0.008) wt vs. ant/ant 0.168

* The mean length of each indicated bone is shown along with the statistical analysis of the differences in length between wild-type (wt/wt),
Cse1l heterozygotes (ant/wt), and Cse1l homozygous mutants (ant/ant).

Figure 6. Histology of Cse1lant/ant mutants reveals eye and brain structural abnormalities. Cse1lwt/wt

at E12.5 (A), E14/5 (C) and E16.5 (E) and Cse1lant/ant mutants at E12.5 (B), E14.5 (D), and E16.5 (F)
show a range of phenotypes quantified in (G). (H–P) Detailed view of ocular (I,J), third ventricle
(L,M) and ganglionic eminence (O,P) Cse1lant/ant mutant phenotypes.
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Figure 7. Marker analysis of forebrain shows that patterning is not disrupted perturbed in Cse1lant/ant

mutants. (A–H) Patterning markers in the developing forebrain show no difference in regionalization
at E14.5 (I,J). pHH3 staining shows some mislocalized proliferating cells in mutant cortex. (L,M) Mu-
tants show a slight decrease in TBR2 staining (O,P) and no increase in CC3 staining. Quantification
of pHH3 (K), TBR2 (N) and CC3-apoptosis data (Q) (p values are the result of unpaired t tests). Scale
bars are 500 µm in (A–H) and 100 µm (I–P).

We next examined neurogenesis patterns and analyzed pHH3 expression as a marker
of cells actively undergoing mitosis [32,33] at both E12.5 and E14.5. Quantification of prolif-
erating cells in just the VZ revealed no difference between wild-type and Cse1lant/ant mutant
groups at either age. However, several of the Cse1lant/ant mutant samples presented an
aberrant distribution of proliferative cells in the intermediate zone (IZ) at E14.5 compared
to the appropriately VZ-restricted mitoses in the wild-type samples (Figure 7I–K). TBR2 is
a marker of intermediate progenitor cells [34], and we compared the expression of TBR2 in
Cse1lant/ant mutant and wild-type control tissue. We observed no quantifiable difference at
E14.5 (Figure 7L–N). We next considered the possibility of increased cell death in Cse1lant/ant

mutants but observed no difference in CC3 expression between Cse1lant/ant mutants and
wild-type controls by immunofluorescence at E12.5 and E14.5 (Figure 7O–Q). Thus, there
are signs that neural development is perturbed when levels of CSE1L protein are reduced
in Cse1lant/ant mutants, but the variability and incomplete penetrance of this allele present
significant barriers to a more complete understanding of these effects.

We next took a global transcriptomic approach and performed RNA-Seq analysis of
wild-type heads compared to Cse1lant/ant mutant heads at E10.5 (n = 3 control and 3 mutant)
with the hypothesis that an earlier molecular phenotype might be more penetrant than the
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histological and immunohistochemical analyses presented above. This analysis showed
that Cse1l was indeed expressed at lower levels in mutant as compared to wild-type, but
the analysis did not identify any other genes or pathways with significantly disrupted
expression levels (Supplementary Figure S4 and Table S2). We suspect that this is due to the
wide phenotypic spectrum of Cse1lant/ant mutants, which did not allow a common affected
gene and/or network to rise above background.

3.6. Cse1l Is Required for Proper Pax6 Regulation in the Eye and Brain

Pax6 mutations have been shown to cause developmental anomalies of the brain and
eyes [35,36]. Because the most common phenotypes observed in the Cse1lant/ant mutant
included the brain and eyes, we hypothesized that changes in regulation of Pax6 may play
a role in the Cse1lant/ant phenotype. We performed immunofluorescence staining for Pax6 on
wild-type and Cse1lant/ant mutants at E14.5 and saw lower expression in the eyes of virtually
all the Cse1lant/ant mutants examined, as well as a generally expanded distribution of Pax6-
positive cells in the cortex (Figure 8). Upon quantification, we measured a significant
expansion of the PAX6-positive region (p < 0.001) as well as a significantly thinner cortex
among Cse1lant/ant mutants as compared to wild-type controls (p < 0.001; Figure 8J). In
addition, we observed an increased density of Pax6-positive cells in the Cse1lant/ant cortex
(p = 0.078; Figure 8K).

Figure 8. Cse1l is required for wild-type PAX6 expression in the brain. Cse1lant/ant mutants as
compared to Cse1lwt/wt (A,E) show an increase in the domain of PAX6 expression in the E14.5 cortex
(B–D,F–I), as well as a decrease in cortical thickness (J). These combine for a higher density of PAX6-
positive cells in the mutant cortex (K). Lines in E indicate the areas measured for cortical thickness
(longer) and the PAX6 expression quantified and shown in (I,J).

We next sought to determine whether this impact on Pax6 expression in the brain
extended to the eyes of Cse1lant/ant mutants. We employed immunofluorescence at E10.5 to
characterize Pax6 and Lhx2 expression in wild-type and Cse1lant/ant mutant eyes. Lhx2 is a
well-known gene critical for the formation of the optic cup [37]. We observed a frequent
decrease in Pax6 expression in the presumptive eye region of Cse1lant/ant mutants, while
Lhx2 was markedly unperturbed (Figure 9).
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Figure 9. Pax6, but not Lhx2 expression is decreased in anteater mutant eyes. Immunohistochemistry
for PAX6 (A–F) and LHX2 (G–L) indicates a marked reduction in PAX6 in Cse1lant/ant mutants (B–F),
but not LHX2 (H–L).

Interestingly, as the eye phenotypes are the most consistent phenotype in the Cse1lant/ant

animals, we also noted that some of the heterozygous Cse1l CRISPR animals had congenital
eye abnormalities at weaning. These animals displayed a range of conditions including
microphthalmia (Figure 10A), anopthalmia (Figure 10B), and cataracts (Figure 10C).

Figure 10. Cse1l CRISPR null heterozygotes may display ophthalmic abnormalities including mi-
crophthalmia (B), anophthalmia (C), and early-onset cataracts (D). Wild-type shown in (A).

The variability in phenotypes is so broad we considered the possibility that a genetic
modifier is present in the colony. However, we performed a pedigree analysis of phenotyp-
ically similar mutants recovered from dissections separated by more than three years (e.g.,
Supplementary Figure S5A,C,M,O). The frequent backcrossing to C57BL/6J throughout
multiple generations suggests the anteater phenotype is not likely due to a modifier, as
it would be extremely unlikely for an unlinked modifier to segregate closely enough to
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Cse1l through these crosses to affect the phenotypes we see. The frequent backcrossing and
intercrossing suggests these mice are nearly congenic. We therefore suggest the variability
is more likely due to small stochastic changes in CSE1L protein function and/or level(s) in
relevant cell types.

4. Discussion

CSE1L functions in nuclear transport as a re-exporter of importin-α, and it has been
implicated in a wide range of cellular processes including cell cycle control, chromosome
stability, apoptosis, and even direct gene regulation. While Cse1l has been shown to be
critical for embryonic development, further study in organogenesis has proved elusive due
to the early embryonic lethality [21]. Here, we have described the anteater mutant, shown
that it is a novel hypomorphic allele of Cse1l, and used the model to demonstrate a role
for Cse1l in mouse brain and eye formation. Upon discovering the anteater mutant in a
forward genetic screen, we noted a decrease in mutant survival at weaning as well as a
decrease in adult size, weaning weight and skull size, and embryonic long bone length. We
observed a variable range of phenotypes including eye, brain, and facial dysmorphologies.
The affected tissues and Cse1l expression patterns suggest that one particularly affected cell
population is likely the neural crest. Further analysis of the phenotypes or the underlying
molecular mechanisms has been significantly hampered by the wide range of phenotypes
present in the mutants. The most consistent phenotype in both Cse1lant/ant mutants and the
adult Cse1lnull/wt mice is an eye phenotype. This is in line with robust expression of Cse1l in
lens development, as indicated by iSyTE analysis of the lens transcriptome and proteome.
We next showed that Pax6 is generally upregulated in Cse1lant/ant mutant brains and that the
PAX6-positive region of the cortex is expanded in the mutants, while the overall thickness
of Cse1lant/ant mutant cortex is decreased (Figure 6). However, the opposite pattern was very
frequent for Pax6 expression in the presumptive Cse1lant/ant eye, as Pax6 expression was
clearly diminished while Lhx2 expression remained unchanged (Figure 7). The presence of
robust LHX2 expression in the presumptive Cse1lant/ant eye tissue serves to indicate that
absence/severe reduction in PAX6 is not reflective of a complete absence of eye tissue.
Because of this difference in expression, we conclude that Cse1l plays a role in the regulation
of Pax6 in the developing brain and eye.

Because of CSE1L’s integral function in nuclear transport, it plays an important role
in mediating a variety of cellular programs and signal transduction pathways. CSE1L
functions as the exporter of importin-α; it has been shown in Xenopus laevis that disruption
in levels of importin-α can have striking consequences in the developing embryo [38].
CSE1L interacts with various members of the Ras/Raf/MEK/ERK pathway, the PI3K
pathway, and the cAMP pathway, serving as a hub for various signal transduction path-
ways [11,39,40]. Notably, CSE1L induces the phosphorylation of MITF, a gene involved in
eye development [11,41]. Through MITF regulation, Cse1l mediates cell survival, prolifera-
tion, melanogenesis, and metastasis [42–44]. PAX6 and MITF have been shown to interact
in a network arbitrating the counterbalanced developmental programs of retinogenesis
and presumptive RPE melanogenesis [40,45,46]. These systems must be intricately synchro-
nized to facilitate proper development of the eye. While the interaction of MITF and CSE1L
is tantalizing, it does not account for the downregulation of Pax6 upon CSE1L decrease.

Our research introduced a fascinating role for Cse1l in the regulation of Pax6 in the
developing brain and eyes, and we propose a mechanism to explain this regulation. The
epigenetic effect of Cse1l on gene expression must also be considered. Cse1l downregulation
was shown to influence the expression of a variety of transcription factors and affect the
activation of silenced genes without altering their methylation status [16]. The function
and regulation of Pax6 are known to be impacted by epigenetic modification, including
the gene’s methylation [47]. It is feasible that the elusive epigenetic control Cse1l exerts is
the mechanism by which it is able to mediate Pax6 expression in various tissues during
development. This regulation of Pax6 by Cse1l may explain the early onset cataracts and
microphthalmia in Cse1lnull/wt mice, as well as the range of eye abnormalities in the anteater



J. Dev. Biol. 2021, 9, 27 16 of 18

mutants [48,49]. In the future, it will be interesting to learn what effect the downregulation
of Cse1l will have on its various signaling pathway interactors. While the early lethality of
the Cse1l null mouse has formerly precluded this study, the anteater mouse now provides an
excellent means of elucidating these interactions, as we have shown that it is a functional
hypomorphic allele. Further detailed characterization of retinogenesis and melanogeneis
in the developing eye in the context of Cse1l mutations may also shed light on the complex
mechanism regulating Pax6 and MITF interactions. In addition, the development of a
Cse1l conditional mouse model will be extremely beneficial to elucidate the effect of Cse1l
on specific tissues and should mitigate the phenotypic variability we observed in our
study. Understanding Cse1l’s role in specific regions of the brain and face will contribute
to our further understanding of the fine-tuned control of gene expression by nuclear
transport regulation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jdb9030027/s1, Figure S1: A null allele of Cse1l; Figure S2: Cse1l expression in embryonic and
adult mouse lens; Figure S3: Cse1lant/ant mutants that survive are small and dysmorphic; Figure S4:
RNA-Seq differential expression analysis; Figure S5: The variable anteater phenotype is not likely due
to a modifier; Table S1: anteater exome analysis; Table S2: RNA-Seq analysis.
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