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Abstract

Background: The APOE ε4 allele is the most significant common genetic risk factor for late-onset Alzheimer’s disease
(LOAD). The region surrounding APOE on chromosome 19 has also shown consistent association with LOAD. However,
no common variants in the region remain significant after adjusting for APOE genotype. We report a rare
variant association analysis of genes in the vicinity of APOE with cerebrospinal fluid (CSF) and neuroimaging
biomarkers of LOAD.

Methods: Whole genome sequencing (WGS) was performed on 817 blood DNA samples from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI). Sequence data from 757 non-Hispanic Caucasian participants was used
in the present analysis. We extracted all rare variants (MAF (minor allele frequency) < 0.05) within a 312 kb
window in APOE’s vicinity encompassing 12 genes. We assessed CSF and neuroimaging (MRI and PET) biomarkers as
LOAD-related quantitative endophenotypes. Gene-based analyses of rare variants were performed using the optimal
Sequence Kernel Association Test (SKAT-O).

Results: A total of 3,334 rare variants (MAF < 0.05) were found within the APOE region. Among them, 72 rare
non-synonymous variants were observed. Eight genes spanning the APOE region were significantly associated
with CSF Aβ1-42 (p < 1.0 × 10−3). After controlling for APOE genotype and adjusting for multiple comparisons,
4 genes (CBLC, BCAM, APOE, and RELB) remained significant. Whole-brain surface-based analysis identified
highly significant clusters associated with rare variants of CBLC in the temporal lobe region including the
entorhinal cortex, as well as frontal lobe regions. Whole-brain voxel-wise analysis of amyloid PET identified
significant clusters in the bilateral frontal and parietal lobes showing associations of rare variants of RELB
with cortical amyloid burden.
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Conclusions: Rare variants within genes spanning the APOE region are significantly associated with LOAD-related CSF
Aβ1-42 and neuroimaging biomarkers after adjusting for APOE genotype. These findings warrant further investigation
and illustrate the role of next generation sequencing and quantitative endophenotypes in assessing rare variants which
may help explain missing heritability in AD and other complex diseases.
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Background
The number of individuals with late-onset Alzheimer’s
disease (LOAD) is rapidly increasing and predicted to
triple by 2050 with the increasing population of aging
adults [1]. The heritability of LOAD was predicted to be
up to 80% based on twin studies [2] and large-scale
genome-wide association studies (GWAS) have recently
led to the identification and confirmation of approxi-
mately 22 LOAD-associated genes including APOE
(Apolipoprotein E), the best established and most
significant susceptibility gene for LOAD [3]. The
association of APOE with LOAD has been replicated
and validated in many studies from different populations
[4]. The APOE ε4 allele increases an individual’s risk for
developing LOAD and also reduces age-at-onset in
patients with LOAD in a dose-dependent manner, while
the APOE ε2 allele appears to reduce the risk for LOAD
[5]. Furthermore, GWAS studies have repeatedly identi-
fied several susceptibility loci for LOAD near the 19q13
on the chromosome 19 including APOE and TOMM40
(translocase of outer mitochondrial membrane 40
homolog) [3, 6]. In particular, TOMM40 has the second
most significant SNP (single nucleotide polymorphism)
associated with LOAD and multiple LOAD-related
neuroimaging phenotypes in the 19q13 region [7–9].
However, conditional analyses strongly suggested that this
effect is due to APOE [10, 11]. As APOE and TOMM40
are in strong linkage disequilibrium (LD), it is not easy to
attribute an APOE-independent role of TOMM40 in the
risk of LOAD development, although TOMM40 is
essential for protein trafficking into mitochondria and
mitochondrial dysfunction has been widely implicated in
LOAD pathophysiology. Several groups investigated the
association between a variable length poly-T polymorph-
ism (poly-T) at rs10524523 within TOMM40 and LOAD,
and yielded contrasting results [12–16]. Recently, Jun et
al. comprehensively evaluated the association of risk
and age at onset of LOAD with common SNPs (MAF
(minor allele frequency) > 5%) and poly-T repeat in
the APOE region using approximately 23,000 cases
and controls, and found no significant independent
association after adjusting for APOE genotype [16].
Highly significant results, after adjusting for APOE
genotype, are unlikely in view of the very strong LD
in this region.

Up to 50% of LOAD heritability remain unexplained
by all of the known LOAD susceptibility genes
including APOE and a substantial missing heritability
for LOAD remains to be identified [17]. The advent
of high throughput next generation sequencing such
as whole genome sequencing (WGS) to identify vari-
ation in human genes has created unprecedented op-
portunities to discover genetic factors that influence
disease risk in the field of human genetics [18, 19].
Several recent reports show that deep re-sequencing
of GWAS-implicated loci and WGS-based association
studies can identify independent functional rare vari-
ants with large effects on diseases including LOAD
pathogenesis [20–22].
Two neuropathological hallmarks of the AD brain

are extracellular amyloid-β plaques and intracellular
neurofibrillary tangles. Studies have shown decreased
concentrations of the CSF Aβ1–42 peptide and
increased concentrations of total tau (t-tau) and
hyperphosphorylated tau (p-tau) in AD compared
with cognitively normal elders [23, 24]. Here we
performed a gene-based association analysis of rare
variants within genes in the vicinity of APOE with
cerebrospinal fluid (CSF) and LOAD-related neuroim-
aging markers using a WGS data set (N = 757) from
the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) cohort. Our results strongly suggest rare vari-
ants in the region surrounding APOE on chromosome
19 were significantly associated with LOAD-related
CSF Aβ1-42 and neuroimaging biomarkers.

Methods
Study participants
All individuals included in this study were participants
of the longitudinal Alzheimer’s Disease Neuroimaging
Initiative (ADNI) initiated in 2004, especially its
subsequent extensions (ADNI-GO/2). Information about
ADNI has been published previously and can be found
at http://www.adni-info.org [25, 26]. All data were
downloaded from the ADNI data repository (http://
www.loni.usc.edu/ADNI/). All participants provided
written informed consent at the time of enrollment for
imaging and genetic sample collection and study proto-
cols were approved by each participating sites’ Institu-
tional Review Board (IRB).
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For the control for population substructure, we
restricted our analyses to participants with non-Hispanic
Caucasian ancestry determined by using HapMap 3
genotype data and the multidimensional scaling (MDS)
analysis (http://www.hapmap.org) [18, 19, 27]. Partici-
pants aged 55–90 to be used in this analysis include 259
cognitively normal older individuals (CN), 219 individ-
uals with early mild cognitive impairment (MCI), 232
individuals diagnosed with late MCI, and 47 individuals
diagnosed with AD.

Whole genome sequencing (WGS) analysis
WGS data from 817 ADNI participants were downloaded
from the ADNI data repository (http://www.loni.usc.edu/
ADNI/). An established next generation sequencing
analysis pipeline based on GATK previously described
was used to process ADNI WGS data performed on
blood-derived genomic DNA samples and sequenced
on the Illumina HiSeq2000 using paired-end read
chemistry and read lengths of 100 bp at 30-40X cover-
age (http://www.illumina.com) [28]. We extracted all
variants (SNPs and short indels) within a 312 kb region
in APOE’s vicinity including 12 genes.

Neuroimaging analysis
T1-weighted brain MRI scans were processed using
previously described automated MRI analysis tech-
niques [29], whole-brain voxel-based morphometry
(VBM) and FreeSurfer software [30, 31]. [18F]Florbeta-
pir PET scans were pre-processed as described [30]
and intensity normalized by the whole cerebellum.
These normalizations yielded standardized uptake
value ratio (SUVR) images [32].

Statistical analysis
The SKAT-O software was used to perform a gene-
based association analysis of all WGS-identified rare
SNPs and short indels (MAF < 0.05) in the APOE
cluster region [33]. We performed an association
analysis first using only all SNPs and second using
all SNPs plus short indels. Baseline CSF measure-
ments (Amyloid-β 1–42 peptide (Aβ1-42), total tau
(t-tau), and tau phosphorylated at the threonine 181
(p-tau181p)) were downloaded [34]. GWAS of CSF
biomarkers found that several SNPs in TOMM40
and APOE are significantly associated with Aβ1-42
[34]. Thus, for the CSF analysis, we used CSF Aβ1-42
as a quantitative phenotype and age, gender, and
APOE genotype as covariates. For the neuroimaging
analysis, age, gender, year of education, MRI field
strength, total intracranial volume (ICV), and APOE
genotype were as covariates. We considered associa-
tions with p < 0.0042 (=0.05/12) to be significant in
order to control for multiple comparisons.

Results
Sequencing of chromosome 19q13 region
Within a 312 kb window in APOE’s vicinity spanning 12
genes, we found 683 common variants (618 SNPs and
65 indels) and 3,334 rare variants (3,040 SNPs and 294
indels) (Table 1). Among 4,017 variants, there are 147
exonic and 2,159 intronic variants. Of 147 exonic
variants, we found 1 frameshift and 3 nonframeshift
indels, 72 nonsynonymous and 51 synonymous SNPs,
and 20 unknown variants.

Association of rare variants near the APOE region with
CSF Aβ1-42
Gene-based association analysis of rare SNPs near the
APOE region identified three genes (TOMM40, APOE, and
APOC1) that achieved a genome-wide significant
association with CSF Aβ1-42 (p < 5 × 10−7) (Table 2) and the
most significant association was between APOC1 and CSF
Aβ1-42. After controlling for APOE genotype and adjusting
for multiple comparisons based on a Bonferroni threshold
(p < 0.05/12 = 0.0042), 4 genes (CBLC, BCAM, APOE, and
RELB) remain significant. The strongest significant asso-
ciation was observed at the BCAM gene (p = 0.0006).
There were about 10% short indels of all rare variants
near the APOE region. The results of gene-based
association of both rare SNPs and short indels near
the APOE region with CSF Aβ1-42 were almost same
as the association results of only rare SNPs (Table 2).

Association of rare variants near the APOE region with
neuroimaging (MRI, PET)
To examine the LOAD-related neuroimaging biomarker
association of all rare variants in 3 genes (CBLC, BCAM,

Table 1 Number of common and rare variants (SNPs and Indels)
of 12 genes near the APOE region

Gene Common variant (MAF≥ 5%) Rare variant (MAF < 5%)

SNP Indel SNP Indel

BCL3 67 9 408 42

CBLC 28 5 361 52

BCAM 41 2 327 25

PVRL2 190 29 513 65

TOMM40 32 2 154 11

APOE 13 1 51 3

APOC1 23 2 102 7

APOC1P1 21 3 113 9

APOC4 19 4 90 13

APOC2 27 2 61 3

CLPTM1 105 7 456 34

RELB 52 7 404 30

Total 618 65 3,040 294
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and RELB) significantly associated with CSF Aβ1-42 after
adjusting for APOE genotype, a detailed whole-brain
multivariate analysis of cortical thickness (MRI) and
amyloid-β burden ([18F]-florbetapir PET) was performed
to detect brain regions of associations of a single
polygenic risk score. A single polygenic risk score was
determined by collapsing all rare variants and counting

minor alleles with a dominant genetic model. Figure 1
displays the results of the main effect of all rare variants
after adjusting for APOE genotype in a surface-based
cortical thickness whole brain analysis. Highly significant
clusters associated with the risk score were found in
temporal lobes including the entorhinal cortex, where
AD pathology primarily begins, frontal lobe regions for

Table 2 Gene-based association results (p-values) of rare variants (MAF < 5%; SNPs and Indels) of genes near the APOE region with
CSF biomarker Aβ1-42 with and without adjusting for APOE genotypes

Gene SNP + Indel SNP

p-value p-value adjusted for APOE genotype p-value p-value adjusted for APOE genotype

BCL3 8.38E-04 0.0056 7.60E-04 0.0054

CBLC 7.07E-05 0.0011 7.35E-05 0.0013

BCAM 1.97E-04 0.0005 2.49E-04 0.0006

PVRL2 3.55E-05 0.3842 4.40E-05 0.4605

TOMM40 6.84E-07 0.0922 5.01E-07 0.0880

APOE 3.35E-10 0.0039 4.08E-07 0.0036

APOC1 6.18E-11 0.2394 2.85E-11 0.1636

APOC1P1 4.43E-02 0.0145 6.16E-02 0.0097

APOC4 2.11E-02 0.2062 1.60E-02 0.1642

APOC2 2.23E-01 0.5363 1.64E-01 0.5102

CLPTM1 1.02E-02 0.0438 9.12E-03 0.0377

RELB 2.36E-04 0.0053 1.51E-04 0.0042

Fig. 1 Surface-based whole-brain analysis results. A whole-brain multivariate analysis of cortical thickness was performed on a vertex-by-vertex basis to
visualize the topography of genetic association in an unbiased manner. Statistical maps were thresholded using a random field theory adjustment to a
corrected significance level of p = 0.05. a CBLC. b RELB. c BCAM. d CBLC + RELB + BCAM

The Author(s) BMC Medical Genomics 2017, 10(Suppl 1):29 Page 48 of 75



CBLC, and temporal lobe regions for BCAM and RELB,
where subjects having high risk scores showed thinner
mean cortical thickness compared with the participants
having lower risk scores. A polygenic risk score of all
rare variants in 3 genes (CBLC, BCAM, RELB) was
associated with multifocal brain atrophy, predominantly
in the temporal and bilateral frontal lobes (Fig. 1d). Fig. 2
shows the association of all rare variants in RELB with
cortical amyloid burden from voxel-wise analysis of the
effect of rare variants on amyloid accumulation
measured by [18F]-florbetapir PET at a voxel-wise
threshold of p < 0.005 (uncorrected). The color scale
indicates regions where the risk scores were associated
with higher amyloid burden after adjusting for APOE
genotype. The significant clusters were observed in the
bilateral frontal and parietal lobes.

Association of common SNPs near the APOE region with
CSF Aβ1-42
The association analysis of common SNPs near the
APOE region was performed using PLINK set-based
tests and permutation while considering the linkage
disequilibrium structure of SNPs and identified one
significant gene (BCL3) passed a Bonferroni threshold
after adjusting for APOE genotype (p = 0.0005; Table 3).
The association results remain almost unchanged when
both common SNPs and short indels were used.

Discussion and Conclusions
We show for the first time to our knowledge that
rare variants within genes near the APOE region are
significantly associated with a LOAD biomarker CSF
Aβ1-42 after adjusting for APOE genotype. Our results
indicated that four genes (CBLC, BCAM, APOE, and
RELB) remained significant after correcting for mul-
tiple comparisons. In addition, gene-based association
analysis of common variants identified one significant
gene BCL3. Whole-brain surface-based analysis identi-
fied highly significant clusters associated with rare

variants of CBLC in temporal lobe regions including
the entorhinal cortex and frontal lobe regions.
BCL3 (B-cell CLL/lymphoma 3) gene functions as a

transcriptional co-activator involved in cell replication
and apoptosis that activates through its association with
NF-κB homodimers [35]. BCL3 gene is associated with
genetic linkage with late-onset Familial Alzheimer’s
disease as well as chronic lymphocytic leukemia [36–38].
RELB (RELB proto-oncogene, NF-κB subunit) gene is a
member of NF-κB family of transcriptional factors.
Among its related pathways are immune system and
interleukin-3, 5 and GM-CSF signaling. NF-κB plays a
central role in the inflammatory and immune responses
and controls cell proliferation and protects the cell from
apoptosis [39]. NF-κB is a major transcription factor and
activated in AD patients. Amyloid beta accumulation is
a potential activator of NF-κB in primary neurons [40].
CBLC (Cbl proto-oncogene C, E3 ubiquitin protein
ligase) gene is the member of the Cbl family of E3
ubiquitin ligases. Cbl proteins play an important role in
cell signaling through the ubiquitination and subsequent
downregulation of the tyrosine kinases. BCAM (basal
cell adhesion molecule) gene encodes a glycoprotein
expressed on cell surfaces [41]. BCAM is a member of
the immunoglobulin superfamily and a receptor for the
extracellular matrix protein, laminin α-5. BCAM may
play a role in intracellular signaling. BCAM is related to
the Lutheran glycoprotein, which is a specific marker of
brain capillary endothelium, which forms the blood
brain barrier (BBB) in vivo [42, 43].
ADNI is a unique cohort and the only large WGS data

set of LOAD with CSF Aβ1-42 and neuroimaging data
also available. However, a limitation of the present report
is that we used a modest sample size (n = 757) of whole
genome sequencing data for genetic analysis. Therefore,
validation in independent and larger cohorts is
warranted.
In conclusion, we used whole genome sequencing to

perform an association analysis of rare variants within
genes near the APOE region with CSF Aβ1-42 and

Fig. 2 Voxel-wise analysis results of [18F]Florbetapir positron emission tomography (PET). A whole-brain analysis of cerebral amyloid deposition
was performed on a voxel-by-voxel basis to visualize the topography of genetic association (RELB) in an unbiased manner. Figure is displayed at
an uncorrected p value <0.005 and minimum voxel size (k) = 27 voxels

The Author(s) BMC Medical Genomics 2017, 10(Suppl 1):29 Page 49 of 75



neuroimaging biomarkers of LOAD. Importantly, our
results implicate this region or these genes contain
additional explanatory information with regard to LOAD
endophenotypes above and beyond that conferred by
APOE genotype. Overall, combining whole genome
sequencing and LOAD-related quantitative endopheno-
types adds to the growing understanding of the genetics
of LOAD and holds promise for discovery of rare
variants involved in neurodegeneration and other brain
disorders, further nominating novel potential diagnostic
and therapeutic targets.
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