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Purpose. A nomogramwas constructed by combining clinical factors and a CT-based radiomics signature to discriminate between
high-grade clear cell renal cell carcinoma (ccRCC) and type 2 papillary renal cell carcinoma (pRCC). Methods. A total of 142
patients with 71 in high-grade ccRCC and seventy-one in type 2 pRCC were enrolled and split into a training cohort (n� 98) and
a testing cohort (n� 44). A clinical factor model containing patient demographics and CTimaging characteristics was designed. By
extracting the radiomics features from the precontrast phase, corticomedullary phase (CMP), and nephrographic phase (NP) CT
images, a radiomics signature was established, and a Rad-score was computed. By combining the Rad-score and significant clinical
factors using multivariate logistic regression analysis, a clinical radiomics nomogram was subsequently developed.-e diagnostic
performance of these three models was evaluated by using data from both the training and testing groups using a receiver
operating characteristic (ROC) curve analysis. Results. -e radiomics signature contained eight validated features from the CT
images. -e relative enhancement value of CMP (REV1) was an independent risk factor in the clinical factor model. -e area
under the curve (AUC) value of the clinical radiomics nomogram was 0.974 and 0.952 in the training and testing cohorts,
respectively. In the training cohort, the decision curves of the nomogram demonstrated an added overall net advantage compared
to the clinical factor model. Conclusion. A noninvasive prediction tool termed radiomics nomogram, combining clinical criteria
and the radiomics signature, may accurately predict high-grade ccRCC and type 2 pRCC before surgery. It also has some
importance in assisting clinicians in determining future treatment strategies.

1. Introduction

Approximately, 85% of renal tumors in adults are in the
form of renal cell carcinoma (RCC) [1]. Moreover, 70-80%,
10-20%, and 3-7% of RCCs are clear cell RCC (ccRCC),
papillary RCC (pRCC), and chromophobe RCC (chRCC),
respectively [2]. -e ccRCC is the most frequent subtype of
RCC, which is prone to vascular invasion and early me-
tastases. As a result, early detection and treatment are
critical. According to the Fuhrman nuclear grading system,
the ccRCC is categorized into four grades (i.e., I, II, III, and
IV) [3]. Compared to grades III and IV ccRCC, grades I and

II ccRCC are low-grade tumors with better prognoses. -e
incidence of pRCC is second only to ccRCC, and pRCC was
initially divided into types 1 and 2 based on morphological
and immunohistochemical characteristics by Delahunt et al.
[4]. Previous research has shown that type 2 pRCC has
a higher pathological stage, higher nuclear grade, and poor
prognosis [5, 6]. -ere are significant differences in prog-
nosis between ccRCC and pRCC. -e ccRCC has a poor
prognosis, and the 5-year survival rate is significantly lower
than pRCC [7, 8].

Surgical excision is the primary treatment for renal cell
carcinoma (RCC). However, the surgical method varies
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according to the RCC subtype. -e ccRCC typically ne-
cessitates surgical removal of the entire kidney, whereas
pRCC allows preservation of the nephron [9–11]. In addi-
tion, new targeted therapies and drugs are being used in
clinical care [12, 13]. However, ccRCC and pRCC respond
differently to targeted therapy, especially for high-grade
ccRCC and type 2 pRCC. High-grade ccRCC and type 2
pRCC are advanced RCCs that are often lost to surgery and
can only be treated with medication. However, different
drugs are used for the two subtypes of RCC, so accurately
identifying the tumor subtype before drug administration
will help develop a treatment strategy.

Pathological biopsy by percutaneous puncture is an
excellent way to differentiate between high-grade ccRCC and
type 2 pRCC but it is invasive and most commonly causes
bleeding. Many studies have recently focused on this
problem. Young et al. [8] have proposed that multiphasic
MDCT may help differentiate ccRCC from oncocytoma,
pRCC, and chRCC. Similarly, Sun et al. [14] demonstrated
that studies using dynamic contrast-enhanced MRI, ccRCC,
and non-ccRCC had different enhancement patterns. Liang
et al. [15] energy spectrum CT parameters could identify
high-grade ccRCC and type 2 pRCC. Nevertheless, on
regular CT or MRI images, these two tumor types have
similar imaging features. By imaging features alone, it is
challenging to distinguish high-grade ccRCC from type
2 pRCC.

In recent years, advances in radiomics have improved
the prediction and categorization of cancer, particularly
kidney tumors. Deng et al. [16] found that CT texture
analysis helped distinguish pRCC from ccRCC and pre-
dicted the Fuhrman grading. Wang et al. [11] showed that
radiomics features could be extracted from multisequence
MRI to differentiate between ccRCC, pRCC, and chRCC.Ma
et al. [17] also found that a radiomics nomogram based on
enhanced CT images could differentiate renal angiomyoli-
poma with minimal fat from ccRCC. Only a few studies have
used CT-based radiomics nomograms to distinguish type 2
pRCC from high-grade ccRCC. In the present study, we
quantitatively evaluated radiomics signatures using the Rad-
score value of each patient and established a CT-based
radiomics nomogram for differentiating type 2 pRCC
from high-grade ccRCC by integrating both the Rad-score
and conventional imaging features.

2. Materials and Methods

2.1. Patients. -e retrospective study was approved by the
ethics review board of our hospital, and patient informed
consent was waived due to the retrospective nature of this
study. Patients who underwent both precontrast and
contrast-enhanced CT scans between February 2013 and
November 2021 for RCC diagnosis at -e First Affiliated
Hospital of Anhui Medical University were considered. -e
inclusion criteria included the following: (1) all patients who
were diagnosed with high-grade ccRCC or type 2 pRCC by
pathology; (2) patients who had a preoperative unenhanced
and contrast-enhanced CT examination with diagnostic
image quality; and (3) patients who had complete

clinicopathological data. -e exclusion criteria included the
following: (1) patients with a pathological diagnosis of low-
grade ccRCC or type 1 pRCC; (2) patients who had other
tumors; and (3) patients who had undergone radiotherapy or
chemotherapy before CT examination.

2.2. Image Acquisition on CT. All patients underwent CT
examination, including a precontrast phase, cortico-
medullary phase (CMP, obtained 30 s after contrast in-
jection), nephrographic phase (NP, obtained 80 s after
contrast injection), and excretory phase (EP, obtained 180 s
after contrast injection). -e contrast agent (320mg/mL,
Omnipaque, GE Healthcare) was injected via peripheral
veins at a dose of 1.5mL/kg of body weight and a flow rate of
3.0mL/s. Table 1 displays the CTscan parameters utilized in
this study.

2.3. Evaluation of CT Scan Characteristics. Two radiologists
(reader 1, Y.G. with 5 years of experience in abdominal CT
diagnosis; reader 2, X.W. with eight years of experience in
abdominal CT diagnosis) reviewed the axial CT images
independently without prior knowledge of the patient’s
clinicopathological findings. -ese include the following
characteristics of the tumors: maximum diameter, shape
(round or not round), location (left or right), boundary (well
defined or blurred), calcification (present or not present,
defined as “areas with high CT values in non-contrast en-
hanced CT”), necrosis (present or not present, defined as
“the nonenhanced area in the tumor that is more than 50%
of the tumor”), renal vein invasion (present or not present,
defined as “the tumor tissue observed in the renal vein and
inferior vena cava”), and lymph node metastasis (present or
not present, defined as “the perirenal and retroperitoneal
lymph nodes with the short-axis diameter greater than
10mm”) [18]. Final decision was reached by consensus if
there was disagreement between the two radiologists.

Tumor enhancement was measured in different scan
phases by selecting the appropriate region of interest (ROI)
within the tumor. Since tumors are enhanced and their
heterogeneous components are evident in CMP, all ROIs
were first selected using the CMP images.-e ROIs included
only the notable features of the tumors, avoiding elements
such as necrosis, calcification, and visible vascularity in the
images. Reader 1 performed three nonoverlapping ROIs,
separate measurements using three different ROIs on the
tumor, and obtained the final value by averaging the three
measurements. To reduce the enhancement variation due to
the blood circulation differences in individual patients and
other factors related to scanning operations, similar mea-
surements were obtained in the kidney cortical section on
the same side of the tumor and were used as the references
for normalizing the enhancement measurement. An illus-
tration of this method is shown in Figure 1.

-e ROIs selected in CMP were propagated into the
precontrast phase andNP images to obtain an average tumor
attenuation value (TAV) in each phase. -e cortex atten-
uation value (CAV) was calculated using the average CT
value of the reference area for each corresponding scan
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phase. By subtracting the values of the same ROI in the
precontrast phase, the tumor enhancement value (TEV) and
the cortex enhancement value (CEV) were calculated:
TEVx �TAVx−TAV0 and CEVx �CAVx−CAV0, where x
stands for the phase (0, precontrast phase; 1, CMP; 2, NP).
-e ratio of TEV to CEV was used to define the relative
enhancement value (REV) : REVx �TEVx/CEVx, which
represents the degree of enhancement within the tumor
relative to the renal cortex [19].

2.4. Construction of the Clinical Factor Model. -e differ-
ences in clinical factors, which include clinical data and CT
features, between the high-grade ccRCC and type 2 pRCC
were compared using univariate analysis. A multivariate
logistic regression analysis was then applied to establish
a clinical factor model using the significant variables ob-
tained in the univariate analysis. For each independent
factor, odds ratios (OR) were estimated as a relative risk
estimate with a 95% confidence interval (CI).

2.5. Tumor Image Segmentation in �ree-Dimensional and
Feature Extraction from Radiomics. Figure 2 shows the
fundamental steps of a radiomics model for kidney tumors.
-e ITK-SNAP software (version 3.8, http://www.itksnap.org)

was used to segment tumors in three-dimension (3-D). On the
precontrast phase, CMP, and NP images, tumor borders were
drawn using the ROI tool 1-2mm away from the tumor
border. Figure S1 displays an illustration of manual segmen-
tation in a kidney tumor.

-e PHIgo Workstation (General Electric Company,
USA) was used to perform the feature extraction. Before
features could be extracted from the ROIs of the three phase
images, normalization and image resampling had to be
carried out because the images were taken from three
scanners with varied parameters. -e image data are nor-
malized using a z-score in the following formula:

z �
x − μ
σ

, (1)

where μ is the mean of the entire set of data and σ is the
standard deviation of the actual data. Furthermore, using B-
spline interpolation sampling technology, all CT images were
resampled to 1.0×1.0×1.0mm3 voxels to standardize the slice
thickness. -e precontrast phase, CMP, and NP images, each
contained 1595 radiomics features that were extracted.

Typically, inter- and intraclass correlation coefficients
(ICC) were used to evaluate the radiomics feature extraction
process’ inter-observer reliability and intraobserver re-
peatability. -e CT images of a total of 20 cases

Table 1: A CT scan parameters.

Manufacturer Siemens General Electric Philips
Scanner model Sensation 64 Discovery 750 Brilliance
Sequence Axial Axial Axial
Gantry rotation time (s) 0.5 0.5 0.5
Tube voltage (kV) 120 120 120
Tube current (mA) 200 250–400 180–450
Detector collimation (mm) 64× 0.6 64× 0.625 64× 0.625
Matrix 512× 512 512× 512 512× 512
Pitch 1.0 1.375 1.0
Slice thickness (mm) 5 5 5
Corticomedullary phase (s) 30 30 30
Nephrographic phase (s) 80 80 80
Excretory phase (s) 180 180 180
s, second; kV, kilovolt; mA, milliampere; mm, millimeter.

(a) (b) (c)

Figure 1: Example of selection the region of interest (ROI) for tumor and reference region. (a), (b), and (c) correspond to the image in the
precontrast phase, corticomedullary phase (CMP), and nephrographic phase (NP), respectively. -e red circle is for the tumor in three
phases. -e red oval represents the region in the kidney cortical section used as the reference. -ese ROIs were consistent for the three scan
phases.
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(10 high-grade ccRCC and ten types 2 pRCC) were randomly
selected from the patient cohort for ROI segmentation by
both readers. Reader 1 repeated the identical procedures two
weeks later to assess the degree of feature extraction
matching. -e extracted features are considered to have
good consistency when the ICC value is greater than 0.75
and the remaining image segmentation will be carried out by
reader one alone.

2.6. Construction of the Radiomics Signature. Additional
feature selection occurred before creating the radiomics
signature to avoid overfitting. First, characteristics from the
training cohort with an ICC >0.75 were preserved. Second,
statistically insignificant factors were eliminated using
univariate logistic analysis. -e least absolute shrinkage and
selection operator (LASSO) regression model was then
utilized to identify the most valuable variables. A radiomics
score (Rad-score) was finally derived based on radiomics
properties to build the radiomics signature using multi-
variate logistic regression.

2.7. Construction of the Radiomics Nomogram and Perfor-
mance Evaluation of Different Models. By merging the sig-
nificant variables of clinical considerations and the Rad-
score, a clinical radiomics nomogram was created. Cali-
bration curves were utilized to assess the nomogram’s cal-
ibration. -e goodness-of-fit of the nomogram was assessed
using the Hosmer–Lemeshow test. -e area under the re-
ceiver operator characteristic (ROC) curve was used to assess
the diagnostic performance of the clinical factors model, the
radiomics signature model, and the clinical radiomics no-
mogram in differentiating high-grade ccRCC from type 2
pRCC in both the training and testing cohorts. A decision
curve analysis (DCA) was performed to measure the clinical
effectiveness of the radiomics nomogram by estimating the
net benefit of a threshold possibility range throughout the
training and testing groups.

2.8. Statistical Analysis. -e SPSS (version 25.0, IBM) and
IPM (version 2.4.0, General Electric Company) statistical
packages were used for statistical analysis. A univariate
analysis was performed to assess the differences in clinical
variables between high-grade ccRCC and type 2 pRCC. For
categorical variables, the Chi-square or Fisher exact tests
were utilized. -e one-sample Kolmogorov–Smirnov test
was used to examine whether the numerical variables had
a normal distribution. Normally, distributed data are
expressed as the mean, standard deviation (M± SD), and
non-normally distributed data are defined as the median
(IQR), 25th, and 75th percentiles. An independent sample t
test was used for data conforming to a normal distribution.

In contrast, a Mann–Whitney U test (a nonparametric
rank-sum test) was used for data conforming to a non-
normal distribution. -e ROC curve analysis was performed
to determine the area-under-the-curve (AUC), accuracy,
specificity, and sensitivity to evaluate the model’s perfor-
mance. -e Delong test model was used for the statistical
comparison of ROC curves. A two-sided p< 0.05 was
considered significant.

3. Results

3.1. Clinical Factors of the Patients and Construction of the
Clinical Factor Model. Our study eventually enrolled 142
patients, including 71 high-grade ccRCC patients (54 males
and 17 females) and 71 type 2 pRCC patients (55 males and
16 females). Patients were randomly divided into the
training (n� 98) and testing (n� 44) cohorts in a 7 : 3 ratio.
Table 2 displays the clinical factors data from the training
and testing cohorts. TEV1, TEV2, REV1, and REV2 were
statistically significant in differentiating high-grade ccRCC
and type 2 pRCC using the univariate analysis with data in
the training group (both p< 0.001). -ese four statistically
significant clinical factors identified above were then sub-
jected to the multivariate logistic regression analyses. -e p
value were 0.179, 0.718, <0.001, and 0.812 using TEV1,
TEV2, REV1, and REV2, respectively. REV1 acts as an
independent predictor. A higher value (OR, 1.053; 95%CI;

CT images

ROI segmentation

Features extraction

Features selection

Modeling and analysis

First-order features

Second-order features

High-order features

Figure 2: Schematic representation of a radiomics study of renal
tumors.
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1.031–1.077) indicates a higher likelihood of high-grade
ccRCC.

3.2. Features Extraction, Selection, and Construction of
Radiomics Signature. From the precontrast phase, CMP,
and NP CT images, a total of 4785 radiomics features were
extracted, with 3678 of them having ICCs greater than 0.75,
demonstrating good inter- and intraobserver consistency.
Univariate correlation analysis revealed significant

differences in 427 radiomic characteristics between high-
grade ccRCC and type 2 pRCC. Eight significant features
were obtained by successively importing these features into
the LASSO logistic regression model to identify the most
vital features (Figure 3). Finally, eight features were used to
construct the radiomics signature. In the training group, the
AUC was 0.968 (95% CI 0.941–0.990); in the testing cohort,
it was 0.936 (95% CI 0.876–0.986). -e Rad-score was
computed using the formula given below:

Rad − score � − 0.4531 +(−0.8374 × P original glszm SmallAreaLowGrayLeveIEmphasis)

+(−0.6712 × P wavelet HLH glcm ClusterShade)

+(−1.1904 × CMP wavelet HLL glszm SizeZoneNonUniformityNormalized)

+(−1.2775 × CMP_wavelet_LHH_glcm_ClusterShade)

+(1.2992 × CMP_wavelet_LLL_firstorder_InterquartquartileRange)

+(0.4960 × CMP_wavelet_LLL_glcm_InverseVariance)

+(−0.8209 × NP_log_sigma 1 0mm_3D_glszm_SizeZoneNonUniformityNormalized)

+(0.7470 × NP_wavelet_LLL_firstorder_InterquartileRange).

(2)

Table 2: Clinical factors in the training cohort and testing cohort.

Clinical factors
Training cohort (n� 98) p Testing cohort (n� 44) p

ccRCC pRCC ccRCC pRCC
Gender 0.628 0.296
Male 39 (80%) 37 (76%) 15 (68%) 18 (82%)
Female 10 (20%) 12 (24%) 7 (32%) 4 (18%)

Age (years) 61 (54–65) 57 (51–67) 0.719 54 (50–66) 61 (55–71) 0.208
Maximum diameter (cm) 6.8 (4.7–8.9) 6.1 (4.5–7.5) 0.216 6.4 (4.1–8.3) 5.5 (3.4–7.5) 0.291
Shape 0.225 0.066
Round 23 (47%) 26 (53%) 6 12
Not round 26 (53%) 23 (47%) 16 10

Location 0.417 0.226
Left 25 (51%) 29 (59%) 8 (36%) 12 (55%)
Right 24 (49%) 20 (41%) 14 (64%) 10 (45%)

Boundary 0.065 0.033
Clear 16 (33%) 25 (51%) 6 (27%) 13 (59%)
Blurred 33 (67%) 24 (49%) 16 (73%) 9 (41%)

Calcification 0.258 0.240
Present 11 (22%) 16 (33%) 2 (9%) 6 (27%)
Absent 38 (78%) 33 (67%) 20 (91%) 16 (73%)

Necrosis 0.051 0.531
Present 38 (78%) 20 (41%) 15 (68%) 13 (59%)
Absent 11 (22%) 29 (59%) 7 (32%) 9 (41%)

Renal vein invasion 0.798 0.750
Present 10 (20%) 9 (18%) 8 (36%) 7 (32%)
Absent 39 (80%) 40 (82%) 14 (64%) 15 (62%)

Lymph node metastasis 0.647 0.757
Present 14 (29%) 12 (24%) 9 (41%) 8 (36%)
Absent 35 (71%) 37 (76%) 13 (59%) 14 (64%)

TEV1 (HU) 70 (48–84) 22 (17–34) <0.001 59 (26–112) 15 (9–19) <0.001
TEV2 (HU) 72 (58–83) 40 (26–57) <0.001 81 (53–104) 27 (19–37) <0.001
REV1 0.77 (0.58–0.91) 0.25 (0.17–0.38) <0.001 0.64 (0.29–0.95) 0.17 (0.11–0.27) <0.001
REV2 0.60 (0.50–0.73) 0.31 (0.22–0.49) <0.001 0.65 (0.52–0.76) 0.26 (0.18–0.36) <0.001
TEV, tumor enhancement value; REV, relative enhancement value; 1, corticomedullary phase; 2, nephrographic phase.
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3.3. Establishment of the Radiomics Nomogram and Perfor-
mance Evaluation among Different Models. A clinical
radiomics nomogram was developed by integrating the
REV1 and the Rad-score, two essential clinical parameters

using the data in the training cohort (Figure 4). Multivariate
logistic regression was used to generate the radiomics no-
mogram score (Nomo-score). -e formula for calculating
the Nomo-score for this study is given below:

Nomo − score � − 2.4533 + Rad − score × 0.2284 + REV1 × 4.5795. (3)

Figure 5 depicts the calibration curves for the clinical
radiomics nomogram showing good calibration with data in
both training and testing groups. Table 3 displays the dis-
criminatory efficiencies of the clinical factors model,
radiomics signature, and clinical radiomics nomogram. In
both the training and testing cohorts, the AUC values for the
clinical radiomics nomogram were higher than those of the
radiomics signature and the clinical factors model
(p � 0.062, 0.010; p � 0.210, 0.070). Figure 6 compares the
accuracies of the three models in differentiating high-grade
ccRCC from type 2 pRCC using the ROC curves based on
the training and testing cohorts. -e decision curves
demonstrated that when compared to the clinical factors and
radiomics signature, the clinical radiomics nomogram
added a more significant overall benefit in distinguishing
between high-grade ccRCC and type 2 pRCC in most of the
training cohorts within reasonable threshold probabilities.
-e DCA values for the three models in the training cohort
are shown in Figure 7.

4. Discussion

-e two most frequent malignant renal tumors are ccRCC
and pRCC. Earlier studies reported that type 2 pRCC is more

malignant than type 1 pRCC and that type 2 pRCC is more
severe [20]. Zhu et al. [19] showed that the enhancement of
high-grade ccRCC is lower than that of low-grade ccRCC.
Both high-grade ccRCC and type 2 pRCC often had
prominent necrosis and some imaging findings overlapped.
When high-grade ccRCC and type 2 pRCC progress to an
advanced stage where surgery is impossible to remove, the
two tumors are treated with different drugs [21]. As a result,
differentiating between high-grade ccRCC and type 2 pRCC
is clinically significant. Our research found that a CT-based
radiomics nomogram integrating clinical variables and
radiomics signatures had a high predictive value in di-
agnosing high-grade ccRCC and type 2 pRCC, with AUC
values of 0.974 and 0.952 in the training and testing groups,
respectively.

Various clinical and imaging features help distinguish
high-grade ccRCC from type 2 pRCC [15, 22, 23]. Several
clinical characteristics were included in our analysis, al-
though most did not differ statistically between high-grade
ccRCC and type 2 pRCC. TEV1, TEV2, REV1, and REV2
were statistically substantially different in identifying these
two tumors (p< 0.001), confirming earlier research findings.
According to Zhang et al. [22] and Liang et al. [15], ccRCC
wasmore enhanced than pRCC because of the high degree of
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malignancy and the abundance of tumor neovascularization.
In our study, necrosis, boundary, lymph node metastasis,
and renal vein invasion were not statistically different

between the two tumors. Delahunt et al. [4] and Waldert
et al. [24] showed that type 2 pRCC was more malignant
than ccRCC. -is is most likely because they did not classify
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ccRCC. Low-grade ccRCC is less aggressive than high-grade
ccRCC, and its occurrence is much higher than that of high-
grade ccRCC.

Radiomics is an emerging research modality for studies
of kidney tumors [11, 25, 26]. Erdim et al. [25] found that

enhanced CT texture analysis based on machine learning
could be used to identify benign and malignant tumors in
the kidney with accuracy and an AUC value of 91.7% and
0.916, respectively. Wang et al. [11] studied 77 patients with
RCC who underwent routine MRI preoperatively. -ese
patients had 32 cases of ccRCC, 23 cases of pRCC, and 22
cases of chRCC, and a total of 39 radiomics features were
extracted from the MRI images. ROC curves were created to
demonstrate the diagnostic efficacy, and the results showed
AUC values ranging from 0.631 to 0.951 for distinguishing
ccRCC from chRCC; 0.688–0.955 for differentiating pRCC
from chRCC; and 0.747–0.890 for differentiating ccRCC
from pRCC. Nie et al. [27] selected 99 patients for a pre-
operative CT examination and separated them into a train-
ing cohort (n= 80) and a testing cohort (n= 19) to create
a radiomics nomogram for discriminating renal angio-
myolipoma with minimal fat from homogeneous ccRCC. A
total of 14 useful features that were extracted from CMP and
NP were used to build a radiomics nomogram. -e training
cohort (AUC, 0.896; 95% CI, 0.810–0.983) and the testing
cohort (AUC, 0.949; 95% CI, 0.856–1.000) demonstrated the
radiomics nomogram’s good discriminatory efficacy. Its
discriminating power was greater than that of the radiomics
signature and the clinical factors model.

-e nomogram, which combines several risk factors, is
a simple and effective statistical prediction tool that is
commonly used to evaluate medicine prognosis and out-
comes [28]. Huang et al. [29] used a nomogram that in-
corporated clinical parameters with a radiomics signature to
predict disease-free survival in non-small lung cancer. -e
diagnostic efficiency of the nomogram outperformed that of
clinical variables alone. Our study attempts to develop
a nomogram based on REV1 and Rad-score with AUC
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Figure 6: -e radiomics nomogram, radiomics signature, and clinical factors model receiver operating characteristic (ROC) curves for
training (a) and testing (b) cohorts.
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Figure 7: Decision curve analysis (DCA) for the clinical factorsmodel
(blue line), radiomics signature (yellow line), and clinical radiomics
nomogram (green line).-e Y axis indicates the net benefit; the X axis
indicates probability thresholds.-e clinical radiomics nomogram and
radiomics signature outperformed the clinical factors model in dis-
tinguishing high-grade clear cell renal cell carcinoma (ccRCC) from
type 2 papillary renal cell carcinoma (pRCC).
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values of 0.974 and 0.952 in the training and testing groups
to predict the likelihood of high-grade ccRCC. -e AUC
values for the model developed solely on clinical features in
the training and testing groups were 0.921 and 0.872, re-
spectively. -e strong diagnostic performance of the no-
mogram over clinical characteristics alone would imply that
the Rad-score has higher diagnostic utility in separating
high-grade ccRCC from type 2 pRCC.

Comparing our analysis to earlier radiomics research
reveals several distinctions and advancements. First, because
high-grade ccRCC and type 2 pRCC typically have many
overlapping radiological appearances in CT images, our
study focused on separating the two. Second, four of the
eight radiomics features collected from the three scanning
phases originated from the CMP images, suggesting that the
CMP images are more effective at distinguishing high-grade
ccRCC from type 2 pRCC than the other two phases. -ird,
by combining clinical variables with radiomics features, this
study constructed the radiomics nomogram, allowing for
a more thorough assessment of tumor characteristics and
more dependable outcomes. Finally, most previous studies
perform their texture analysis of tumors in one dimension.
In contrast, we analyzed the tumor using all tumor di-
mensions and gathered additional characteristics. In com-
parison to earlier studies that had only a few dozen acquired
features, we obtained over 1,000 extracted from the 3D
analysis. In addition, our sample was derived from nu-
merous centers, making it the most considerable sample size
for radiomics-based identification of high-grade ccRCC and
type 2 pRCC.

Our study is not without limitations. First, the retro-
spective nature of our study implied that bias might be
introduced in the sample selection and overestimate of
diagnostic accuracy might occur, so external validation will
be included in future studies. Second, for tumor analysis, we
exclusively extracted radiomic features from precontrast
phase, CMP, and NP imaging. Further features may be taken
from CT four-phase images in the future to gain more
radiomics information about the tumor.-ird, the images in
our research were acquired from a range of CT scanners
manufactured by different companies. Although images
have been standardized before feature extraction, the po-
tential for error data consistency still exists. Fourth, manual
3D ROI segmentation is time-consuming and complex,
especially for tumors with enormous size and/or indistinct
borders. Further study should be directed towards estab-
lishing a more reliable and reproducible automatic seg-
mentation method for renal cancers.

5. Conclusion

For a CT-based radiomics nomogram comprising the pre-
contrast phase, CMP, and NP images, our study concludes
that combining clinical considerations with radiomics
characteristics is crucial. Our radiomics nomogram has good
diagnostic performance and can preoperatively discriminate
between type 2 pRCC and high-grade ccRCC. As a new
research method, radiomics nomograms require extensive
validation before they can be used clinically.
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