
© 2017 Fonseca-Santos et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php  
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you 

hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission 
for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

International Journal of Nanomedicine 2017:12 6883–6893

International Journal of Nanomedicine Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
6883

O r i g in  a l  R e s e a r c h

open access to scientific and medical research

Open Access Full Text Article

http://dx.doi.org/10.2147/IJN.S138629

Trans-resveratrol-loaded nonionic lamellar 
liquid-crystalline systems: structural, rheological, 
mechanical, textural, and bioadhesive 
characterization and evaluation of in vivo 
anti-inflammatory activity

Bruno Fonseca-Santos*
Cínthia Yuka Satake*
Giovana Maria Fioramonti 
Calixto*
Aline Martins dos Santos
Marlus Chorilli
School of Pharmaceutical Sciences, 
São Paulo State University (UNESP), 
Araraquara, São Paulo, Brazil

*These authors contributed equally 
to this work

Abstract: Resveratrol (Res) is a common phytoalexin present in a few edible materials, such as 

grape skin, peanuts, and red wine. Evidence has shown the beneficial effects of Res on human 

health, which may be attributed to its anti-inflammatory activity. However, the poor aqueous 

solubility of Res limits its therapeutic effectiveness. Therefore, the use of nanostructured 

delivery systems for Res, such as liquid-crystalline systems, could be beneficial. In this study, 

we aimed to develop, characterize, and determine the in vivo effectiveness of Res-loaded 

liquid-crystalline systems. Systems containing copaiba balsam oil, polyethylene glycol-40 

hydrogenated castor oil, and water were designed. Results of polarized light microscopy, small-

angle X-ray scattering, texture-profile analysis, and flow-rheology analysis showed that the 

Res-loaded liquid-crystalline system had a lamellar structure, textural and mechanical (hardness, 

compressibility, and adhesiveness) properties, and behaved as a non-Newtonian fluid, showing 

pseudoplastic behavior upon skin application. Furthermore, all liquid-crystalline systems 

presented bioadhesive properties that may have assisted in maintaining the anti-inflammatory 

activity of Res, since the topical application of the Res-loaded lamellar mesophase liquid 

crystals resulted in edema inhibition in a carrageenan-induced paw-inflammation mouse model. 

Therefore, Res-loaded lamellar mesophases represent a promising new therapeutic approach 

for inhibition of skin inflammation.
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Introduction
Skin diseases affect millions of people every day. Inflammatory conditions are known 

to be the major cause of skin diseases.1 Topical drug delivery has many advantages 

over other conventional routes of drug administration,2,3 because it can provide a 

noninvasive alternative to the parenteral route.4 The large surface area of skin and 

ease of access allows transdermal absorption of drugs.5

Several strategies are available to overcome the skin barrier, including the use of 

penetration enhancers, electroporation, iontophoresis, and nanocarrier systems.6–11 

In this aspect, liquid crystals have been developed for cutaneous delivery of drugs.12–19 

Liquid crystals are systems that can be formed using lipids and amphiphilic molecules, 

which spontaneously reorganize into three-dimensional structures, such as emulsions, 

microemulsions, or liquid-crystalline (LC) mesophases (lamellar, hexagonal, and 
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cubic), upon contact with water, and these unique internal 

structures can be loaded with drugs20 (Figure 1). The lamellar 

phase is formed from bilayers separated by layers of surfac-

tants and solvents, which form a one- or two-dimensional 

network. In the hexagonal phase, aggregates are formed by 

the arrangement of long cylinders that form two- or three-

dimensional structures. Lyotropic cubic phases have more 

complicated structures consisting of a curved, bicontinuous 

lipid bilayer that extends in three dimensions to generate two 

interpenetrating but noncontacting aqueous nanochannels.20 

LC systems (LCSs) have been shown to provide sustained 

release of drug molecules.21–25

Resveratrol (Res; trans-3,4′,5-trihydroxystilbene), a 

phytoalexin found in grapes, red wine, and fruit, is a potent 

antioxidant and anti-inflammatory agent.26–30 However, its 

poor aqueous solubility limits its therapeutic effectiveness. 

In addition, oral administration of Res is challenging, owing 

to its low bioavailability in vivo because of its poor solubility, 

and thus peak plasma levels decrease rapidly.31–33 Therefore, 

topical application of Res may be convenient for cutaneous 

local delivery. However, limited aqueous solubility decreases 

its topical therapeutic effectiveness, because it decreases its 

skin penetration.34

The use of nanostructured delivery for Res, such as LCSs, 

could be advantageous, because these systems can be 

administered easily. In addition, they possess good textural, 

sensory, and bioadhesive properties. Moreover, they can 

solubilize both lipophilic and hydrophilic drugs and increase 

the skin permeation of the drug.19,25,35 In this study, we 

aimed to develop, characterize the physicochemical proper-

ties, and evaluate the in vivo effectiveness of Res-loaded 

lamellar LCSs.

Materials and methods
Chemicals and reagents
Copaiba balsam oil, polyethylene glycol (PEG)-40 hydro-

genated castor oil, trans-Res with 99.9% purity, and 

λ-carrageenan were purchased from Sigma-Aldrich (St 

Louis, MO, USA), PharmaSpecial, (Itapevi, SP, Brazil), 

Galena (Portland, OR, USA), and Sigma-Aldrich, respec-

tively. Water was purified and deionized using a Milli-Q 

system obtained from Merck Millipore (Billerica, MA, 

USA). All other reagents were commercially available and 

used without further purification.

Ternary-phase diagram
A ternary-phase diagram was constructed point to point using 

copaiba oil as the oily phase (O) and hydrogenated castor 

oil as the surfactant (S), in proportions of each component 

generating 100% of a total formulation. Mixtures of O and S 

were titrated with deionized water to reach a final amount of 

2 g. Then, all vials were heated in a water bath at 45°C with 

vigorous stirring using a glass rod for 5 minutes. The vials 

were closed and allowed to stand in the dark for 24 hours at 

25°C±0.5°C. Then, they were visually examined, and clas-

sified as phase separation (PS), transparent viscous system 

(TVS), or transparent liquid system (TLS).

Polarized light microscopy
A small amount of the formulations was placed on a glass 

slide, covered with a coverslip, and examined by polarized 

light microscopy (PLM) to evaluate the homogeneity of the 

dispersion and detect the presence of anisotropy. The test 

was performed at 25°C±0.5°C, and photomicrographs were 

obtained at magnification of 40×.

Figure 1 Schematic representation of lamellar, hexagonal, and cubic liquid-crystal mesophases formed by surfactant-molecule self-assembly.
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Small-angle X-ray scattering
This test was performed at the National Synchrotron Light 

Laboratory (LNLS, Campinas, Brazil), using a small-angle 

X-ray scattering (SAXS)-1 beamline. This beamline was 

equipped with a monochromator (λ=1.488 Å), Pilatus 300K 

vertical detector (Dectris, Baden, Switzerland) located 1.5 m 

from the sample, and a multichannel analyzer to collect 

SAXS data in a range of q=0.1–5 nm. All measurements 

were performed at room temperature (20°C–25°C) under the 

same conditions to calibrate the sample-to-detector distance. 

Transmission of Kapton tape and mica-sheet corrections 

was carried out. Parasitic scattering, produced by slits, was 

subtracted from the total scattering intensity. Analysis time 

was 30–45 seconds.

Continuous shear (flow) rheology
Flow measurements were carried out using a controlled-stress 

AR2000 rheometer (TA Instruments, New Castle, DE, USA) 

with cone–plate geometry (diameter 40 mm, truncation angle 

2°, gap, 52 μm) or plate geometry (diameter 40 mm, gap 

200 μm) according to the consistency of each formulation. All 

measurements were carried out in triplicate at 32°C±0.1°C. 

Samples of the formulations were carefully applied to the 

lower plate to minimize the shear. Then, they were incubated 

to equilibrate for 2 minutes prior to analysis. The shear rate 

ranged from 0 to 100 reciprocal second for the upward curve 

and from 100–0 reciprocal second for the downward curve 

for a duration of 120 seconds for each stage, separated by an 

interval of 10 seconds. Consistency and flow indices were 

determined from the power law in Equation 1 for quantitative 

analysis of flow behavior:

	 τ γ= k * n

� (1)

where τ is the shear stress, γ  the shear rate, k the consistency 

index, and n the flow index.

Texture-profile analysis
Texture-profile analysis (TPA) was carried out to deter-

mine the mechanical properties of the formulations, such 

as hardness, compressibility, adhesion, and cohesion. 

Samples (50 g) were weighed and placed into 50 mL coni-

cal centrifuge tubes (Falcon). Then, they were centrifuged 

in a Sorvall TC6 centrifuge (Thermo Fisher Scientific, 

Waltham, MA, USA) at 2,665× g for 4 minutes to ensure 

uniformity of surface and remove air bubbles. These tubes 

were then transferred to a thermostatic bath set at 32°C to 

mimic skin temperature. A  TA.XT Plus texture analyzer 

(Stable Micro Systems, Surrey, UK) was programmed to 

compress the sample uniaxially at 1 mm/s until a predefined 

depth (10 mm), and then return to the surface at a speed 

of 0.5 mm/second. After 5 seconds, a second compression 

was applied under the same conditions. All samples were 

analyzed in triplicate.

In vitro evaluation of bioadhesion
Dermatomed pig-ear skin (300 μm) was incubated for 

approximately 30 minutes in a petri dish containing 0.9% 

saline solution. The formulations were placed in conical 

centrifuge tubes, which were maintained in a thermostatic 

bath at 32°C. Pig-ear skin was fixed with elastic rubber to the 

cylindrical probe. The cylindrical probe was lowered to allow 

the skin to be in contact with the sample surface. Contact 

time was 60 seconds, then the probe was removed. The force 

required to detach the skin from the sample was determined 

from the force versus time curve. This experiment was per-

formed in triplicate using texture-analysis equipment.

In vivo evaluation of anti-inflammatory 
activity
In vivo evaluation was performed in male Swiss mice 

weighing 25–35 g. The mice were kept in a temperature-

controlled environment (22°C) under 12-hour light–dark 

cycles, and provided with free access to food and water, 

except during the experiments. The experimental protocol 

was performed in accordance with the Guide for the Care 

and Use of Laboratory Animals36 and the ethical principles 

for animal experimentation established by the Brazilian Com-

mittee for Animal Experimentation. This investigation was 

approved by the animal experimentation ethics committee 

of the School of Pharmaceutical Sciences, São Paulo State 

University (protocol CEUA number 71/2015), and complied 

with international laws.

Mice were subdivided into seven groups (five per group): 

group I mice were not treated (negative control), group II 

received topical dexamethasone (positive control), group III 

received CB-23 formulation without drug, group IV received 

CB-23R formulation, group V received CB-24 formula-

tion without drug, group VI received CB-24R formulation 

loaded with Res, and group VII received free Res dissolved 

in avocado oil.

Paw edema was induced by intraplantar injection of 

100  μL of 1% (w:v) λ-carrageenan into the paws of the 

mice. After 30 minutes, 100 mg of dexamethasone cream 

or formulation was applied to the paw. After 6 hours, paw 

diameters were measured using a digital caliper. Data were 

plotted using GraphPad Prism version 6.0, and one-way 
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analysis of variance was performed followed by Dunnett’s 

test (α=0.05). Inhibition of edema was calculated:

	
% Inhibition 1

Test Basal

Control Basal
= −

−
×

−














100.
�

(2)

Results and discussion
Ternary-phase diagram
Surfactants are amphiphilic molecules that form aggregates 

in solution. Supramolecular interactions can determine the 

size and shape of the self-assembled aggregates. Various 

mesophases, such as micelles, lamellar, bicontinuous, and 

reverse micelles, can be generated.37,38 Several studies have 

shown the ability of amphiphilic molecules, water, and oil 

to form LC mesophases.35,39,40

Figure 2 shows the ternary-phase diagram of water (W), 

oil (O), and surfactant (S) mixtures. A large region at the 

upper vertex showed transparent liquid systems (TLSs) 

with high concentrations of S up to 65%, independent of 

the O:W ratio. The decrease in the concentration of S, with 

W and O proportions up to 10 and 70%, respectively, led to 

the formation of TLSs.

The dilution of the TLS region led to the formation 

of a viscous system, like a gel, with a proportion of W of 

35%–60% and O ratio up to 60%. When S concentration 

was below 15%, phase separation occurred. Moreover, with 

the decrease in O and increase in W ratio up to 60%, these 

regions increased.

Phase behavior showed that we were able to obtain a 

readily flowing system by combining S, O, and W. In addition, 

the degree of organization of the system increased when W 

was added, resulting in a rigid and viscous matrix. This 

transition could be attributed to the increase in packing and 

hydration of the hydrophilic heads of S, which reduced the 

curvature of the interface droplets of the microemulsion.39 

Moreover, the subsequent hydration of S generated a large 

repulsive force between the head groups, increasing the 

distances between the lamellar mesophase until a hexagonal 

mesophase was formed.41–43

The different geometries of the amphiphilic molecules 

and their resultant self-assembled structures that were formed 

in the presence of a solvent can be understood using the 

critical packing parameter (CPP) concept.44 CPP is often 

defined using Equation 3:

	
CPP =

×
v

a l �
(3)

where v is the volume of the hydrophobic tail, a the polar 

head-group area, and l the length of the hydrophobic chain 

of the surfactant.

Hydrocarbon chains tend to associate with each other 

upon contact with water to minimize their contact with the 

Figure 2 Ternary-phase diagram of copaiba oil as the oily phase (O), hydrogenated castor oil as the surfactant (S), and water (W).
Note: Red points indicate the selected formulations.
Abbreviations: PS, phase separation; VSs, viscous systems; TLSs, transparent liquid systems.
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aqueous phase; therefore, micelles are formed because of 

both the increased curvature and hydrocarbon chain-packing 

density.45 A change in CPP values can roughly predict the 

order of the surfactant transition associated with the change 

in the curvature of the water or oil interface.46 Increasing the 

number of water molecules increases the CPP value, owing 

to an increase in the volume of the lipophilic moiety and a 

reduction in the chain length and head-group area.47

Selection of formulations
Transparent or translucent viscous system formations and 

low-viscosity transparent or translucent system formations 

were observed over a wide range (Figure 2). These features 

are important in the design of nanostructured systems for 

topical application. Certain flow resistance of the formu-

lations is required to facilitate skin-product application. 

Compositions of the studied formulations are shown in 

Table 1. Res (0.1%, w:w) was loaded into the oil phase of 

the formulations. Then, these Res-loaded (CB-23R, CB-24R, 

and CB-25R) and unloaded (CB-23, CB-24, and CB-25) 

formulations were characterized by PLM, SAXS, rheological 

techniques, and bioadhesion studies.

Visual inspection, PLM, and SAXS
Both the translucent visual aspect and viscosity of the for-

mulations were dependent on the water content (Figure 3A). 

PLM showed that formulations were anisotropic and com-

posed of lamellar LC mesophases, as Malta crosses were 

observed in all formulations48 (Figure 3B). Anisotropic 

materials have optical properties that change with the ori-

entation of the incident light in nonequivalent directions, 

like the lamellar mesophase. The lamellar phase consists 

of bilayers that are separated by layers of surfactants and 

solvents, forming a one- or two-dimensional network.43 The 

photomicrographs also showed that the structure of the LC 

mesophases was not altered by Res loading.

Figure 3C shows the intensity of the scattering patterns 

and scattering vector modulus (q 1/nm). Curves of SAXS 

data are shown in Figure 3. Table 2 shows peak position 

Table 1 Composition of the studied formulations

Formulation Content (%)

Oil phase Aqueous phase Surfactant

CB-23 40 20 40
CB-24 30 30 40
CB-25 20 40 40

Figure 3 Characterization of the liquid-crystalline dispersions.
Notes: (A) Macroscopic appearance, (B) photomicrographs obtained by polarized light microscopy (figures were obtained at 40× magnification and the enlarged area at 
250× magnification), and (C) small-angle X-ray scattering patterns of the samples.
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(q) values, interplanar distances, and their relationships. 

For a lamellar LC structure, the relationship between the 

calculated correlation distances for each Bragg peak follows 

the ratio 1:2:3.49–51 Although a peak was found in the SAXS 

data, no correlation was found with the Bragg distances. 

We suggest that the formed systems were in transition, 

suggestive of mixing formation with hexagonal mesophase, 

for samples CB-24 and CB-25. Similar studies have shown 

that Res loading into lamellar structures does not affect the 

structural organization of the mesophase of the system.51,52 

The parameters of the microstructure lattice are represented 

by the distance between planes (d, lamellar structures)53 and 

d-values were 14–19 nm.

Continuous shear (flow) rheology
Flow data are shown in Figure 4, and mathematical param-

eters in Table 3. These data showed that all formulations 

exhibited non-Newtonian flow, because there was no linear 

relationship between the shear stress and shear rate. More-

over, the flow index showed that all formulations had 

pseudoplastic flow (n,1).54

These features are preferable for topical application, 

because when a force is not applied upon the formulation, 

ie, when the formulation is kept at rest in the package, it 

has high viscosity. However, when a force is applied, eg, at 

the time of application of the formulation on the skin, the 

formulation viscosity decreases, because the molecules align 

toward the flow; therefore, the formulation is better spread 

at the site of action. In addition, after formulation applica-

tion, ie, when the force application ceases, the formulation 

has the ability to recover its initial high viscosity, and thus it 

remains at the site of action for a longer time.55 As such, the 

addition of cosurfactants, salts, or other components, such as 

drugs, may influence the characteristics of LC mesophases, 

such as viscosity, via interference with the electrostatic 

interactions or chemical bonds between components of the 

formulation.56–58

It is noteworthy that the incorporation of Res decreased 

the consistency index (k) of all formulations, which dem-

onstrated that this drug affected molecular bonds between 

formulation components, resulting in a decrease in viscosity. 

Matos et al59 reported that emulsions containing Res exhib-

ited viscosities slightly lower than that of the Res-unloaded 

emulsion. Fujimura et al52 also observed that Res incorpora-

tion decreased the viscosity of an LCS containing silicone 

glycol copolymer as a surfactant, polyether-functional 

siloxane as an oily phase, and Carbopol 974P dispersion as 

an aqueous phase.

Texture-profile analysis
TPA was approved only for the formulations CB-23 and 

CB-24, because these formulations exhibited mechanical 

resistance to flow. The CB-25 formulation did not show 

mechanical resistance to compression; therefore, it was 

impossible to analyze. TPA results are shown in Table 4.

TPA showed that drug incorporation decreased the 

mechanical properties of the formulations, including hard-

ness, compressibility, adhesiveness, and cohesiveness. Hard-

ness, compressibility, and adhesiveness showed significant 

differences (P,0.05) between mean values of the different 

formulations and those of the drug-loaded and unloaded 

formulations. However, no difference was observed for 

mean values of cohesiveness (P.0.05).

The hardness of materials expresses their resistance 

to deformation, ie, the maximum force required to cause 

deformation of a sample.60 Compressibility is defined as 

the work required to deform the formulation during the first 

compression of the probe.61 The increase in water content 

and drug loading into the formulation led to the formation 

of a less packed network, owing to the interpenetration and 

entanglement into the lamellar mesophase. This phenomenon 

may have decreased hardness and compressibility values.

Adhesiveness is the work required to overcome the 

attractive forces between the surface of the sample and the 

surface of the probe.61,62 High adhesiveness and cohesiveness 

of the gel formulations ensure prolonged adhesion of the 

formulation to the biological surfaces and complete structural 

recovery following application.61–63 Certain characteristics 

are desirable for topical products, including patient accept-

ability, spreadability, adhesiveness, resistance to rubbing off, 

Table 2 Peak positions (q) of the SAXS curves, interplanar distances (d), and classification of formulations

Formulation Peak positions q (1/nm-1) Peak ratios d (nm) Mesophase

q1 q2 q3 q4 d2:d1 d3:d2 d4:d1

CB-23 0.47 0.95 – – 2.0 – – 14.8 Lamellar
CB-24 0.32 0.42 0.86 1.29 1.31 2.0 4.0 19.6 Lamellar/hexagonal
CB-25 0.32 0.43 0.86 1.29 1.31 2.0 4.0 19.6 Lamellar/hexagonal

Abbreviation: SAXS, small-angle X-ray scattering.
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capacity to enhance drug release, and (when needed) ability 

to facilitate drug permeation into the skin.64–66 Moreover, 

these mechanical characteristics provide information about 

the interactions among system components67 that is important 

in developing bioadhesive topical formulations.18

Bioadhesion studies
Bioadhesive systems are advantageous, because they can pro-

long the residence time of the drug at the site of application – 

the skin. This prolonged contact decreases the frequency of 

application of the product, increases the bioavailability of 

Figure 4 Flow rheograms of unloaded and Res-loaded formulations.
Notes: (A) Flow rheograms of unloaded formulations; (B) flow rheograms of Res-loaded formulations. The closed symbols represent up curves, and open symbols represent 
down curves. The standard deviations were omitted for clarity; however, in all cases, coefficients of variation of triplicate analyses were less than 10%. Analysis was carried 
out at 32°C±0.5°C.
Abbreviation: Res, resveratrol.
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the drug, and improve the consumer’s adherence to product 

application.68–70

Bioadhesive force values are shown in Table 4. Bioadhe-

sive force showed significant differences (P,0.05) between 

mean values of the different formulations and between those 

of the loaded and unloaded formulations. No difference 

was observed between CB-25 and CB-25R (P.0.05). Drug 

loading slightly decreased mechanical and bioadhesive 

properties. As previously reported, addition of water or 

drug may alter the molecular structure and arrangement of 

lamellar mesophases.

Polymer dispersions, such as hydrogels, have been studied 

intensively for skin bioadhesion in topical cutaneous drug 

delivery,70–77 and showed good results for bioadhesion.78–80 

The developed LCSs showed similar values, and thus these 

LCSs are good candidates as topical cutaneous drug-delivery 

systems, because these amphiphilic systems have shown 

bioadhesive ability, biocompatibility, and controlled release 

of drugs.13,15–19,35,51,52,81–87

In vivo anti-inflammatory effects
Guest molecules reside in an interconnected network and 

become part of the nanostructured architecture of the 

LC matrix.20,88–90 Biological effects of the nanostructured 

systems were assessed using biological assays. Res has 

received considerable attention in several in vitro and in vivo 

studies, owing to its biological activities, particularly in skin 

disorders.29 Furthermore, Res should be delivered to the site 

of action to attain an ideal response, intensify its therapeutic 

effects, and reduce its side effects.30

The anti-inflammatory effects of the vehicles (CB-23 

and CB-24) and loaded formulations (CB-23R and CB-24R) 

were evaluated in vivo. Figure 5 shows the anti-inflammatory 

activity of Res incorporated in the lamellar mesophase. 

The incorporation of Res into LC mesophases affected its 

intrinsic anti-inflammatory activity, as evidenced by edema 

inhibition in mouse paws.

The negative control and unloaded formulations showed 

a statistically significant difference in activity compared 

to the dexamethasone group (P,0.01). No significant dif-

ference was observed between free-Res and Res-loaded 

LCSs (P.0.05). The maximal inhibition of inflammation 

was 63.4%, 27.4%, 42.2%, and 43.1% for dexamethasone, 

free Res, CB-23R, and CB-24R, respectively. The anti-

inflammatory activity of Res-loaded systems was less than 

that of dexamethasone (0.5%, w:w) as a positive control.

Furthermore, lamellar phases formed by lipids are com-

parable to the structure of the cell membrane; therefore, they 

are exploited as model cell membranes.91 As such, lamellar 

phases have been used as simple model systems for cell 

membranes to study the process of membrane fusion.92,93

Several assumptions can be made about the mechanism 

by which the lamellar mesophase affects drug penetration 

into the skin. First, the structural similarity between this 

system and skin cells may be responsible for the increase 

in drug penetration into deep layers of the skin after topical 

application.12 Second, the surfactant or oil molecules can 

diffuse on the skin surface and act as permeation enhancers 

of Res, because they disrupt the lipid structure of the stratum 

corneum.94 This facilitates diffusion across the barrier, which 

normally limits the penetration of substances. Moreover, this 

system may increase the solubility of the drug in the skin, 

which increases the partition coefficient of the drug between 

the skin and the vehicle.95,96

Table 3 Flow index (n) and consistency index (k) of all formu
lations obtained from the power law (n=3)

Formulations n k (Pa sn)

CB-23 0.019±0.011 472.270±20.044
CB-23R 0.369±0.026 98.264±10.429
CB-24 0.287±0.012 301.222±15.235
CB-24R 0.645±0.023 58.965±5.685
CB-25 0.826±0.013 2.392±0.136

Table 4 Mechanical and bioadhesion properties of the loaded and unloaded formulations (n=3)

Formulation Mechanical parameters Bioadhesive 
force (mN)Hardness 

(mN)
Compressibility 
(mN/s)

Adhesiveness 
(mN/s)

Cohesiveness 
(dimensionless)

CB-23 599.7±25.0a,c 8,225.0±210.9d,f 6,590.8±284.6g,i 0.817±0.044 94.972±5.646j,l,m

CB-23R 361.3±51.4a,c 4,932.3±75.7d,f 2,234.6±71.3g,i 0.752±0.004 80.565±5.551j,l,m

CB-24 188.3±10.1b,c 2,369.7±227.6e,f 1,627.5±73.9h,i 0.826±0.034 38.648±1.880k,l,m

CB-24R 86.0±1.0b,c 1,366.3±70.8d,f 910.7±3.5h,i 0.737±0.052 20.303±0.319k,l,m

CB-25 * * * * 5.524±0.062l

CB-25R * * * * 5.021±0.108m

Notes: *It was not possible to collect these data. The same superscript letters indicate statistically significant differences between the means (P,0.05).

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2017:12 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

6891

Trans-resveratrol-loaded liquid-crystalline systems

Conclusion
It was possible to develop Res-loaded lamellar LCSs con-

taining copaiba balsam oil (20%–40% w:w), PEG-40 

hydrogenated castor oil (40% w:w), and purified water 

(20%–40% w:w). Rheological and TPA data showed that 

both Res-loaded and unloaded LCSs had proper character-

istics for skin administration, such as pseudoplasticity and 

adhesiveness. Moreover, all LCSs were as bioadhesive as 

conceptualized bioadhesive formulations, and in particular 

these LCSs were able to maintain the anti-inflammatory 

activity of Res. Therefore, it is feasible to conclude that these 

systems can be used for optimization of drug delivery into 

the skin for treatment of inflammatory skin diseases.
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