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United States

36.9 million people worldwide are living with HIV-1. The disease remains incurable and

HIV-infected patients have increased risk of atherosclerosis. Inflammation is a key driver

of atherosclerosis, but no targeted molecular therapies have been developed to reduce

cardiovascular risk in people with HIV-1 (PWH). While the mechanism is unknown,

there are several important inflammatory signaling events that are implicated in the

development of chronic inflammation in PWH and in the inflammatory changes that

lead to atherosclerosis. Here we describe the pro-inflammatory state of HIV-1 infection

that leads to increased risk of cardiovascular disease, the role of the NLR Family Pyrin

Domain Containing 3 (NLRP3) inflammasome in HIV-1 infection, the role of the NLRP3

inflammasome in cardiovascular disease (CVD), and outline a model whereby HIV-1

infection can lead to atherosclerotic disease through NLRP3 inflammasome activation.

Our discussion highlights the literature supporting HIV-1 infection as a stimulator of the

NLRP3 inflammasome as a driver of atherosclerosis.
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INTRODUCTION

Human Immunodeficiency Virus (HIV-1) causes a chronic infection that impacts more than 36
million individuals worldwide. HIV-1 treatment with highly active antiretroviral therapy (ART)
can achieve virologic suppression leading to increased life expectancy in PWH. Still, PWH develop
age-related co-morbidities including atherosclerosis and cardiovascular disease (CVD) earlier
than their HIV-negative counterparts. This phenomenon is multifactorial including contributions
from higher behavioral risk factors, ART toxicity, and chronic inflammation (1–6). Inflammatory
signaling pathway activation has been described in the generation of chronic inflammation in
PWH and in cardiovascular disease. The NLRP3 inflammasome pathway is activated in HIV-1
infection contributing to chronic inflammation and has also been implicated in atherosclerotic
plaque formation. We present a potential role for NLRP3 inflammasome activation in chronic
inflammation contributing to increased rates of CVD in PWH.
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HIV-1 INFECTION AS A
PRO-INFLAMMATORY STATE

The early development of age-related co-morbidities in PWH can
in part be attributable to the observed persistent inflammation
and immune dysfunction seen in HIV-1 infection (1, 7, 8). HIV-1
infection creates a pro-inflammatory state marker by an increase
in senescent cells that secrete inflammatory mediators resulting
in low-level inflammation and increased T lymphocyte cell
turnover (1, 9). Senescent cells secrete inflammatory mediators
resulting in low-level inflammation and increased cell turnover
(1, 10–12). Desai and Landay propose a multifaceted model
for accelerated aging in HIV-1 infection (13): residual HIV-
1 replication in activated immune cells despite ART; HIV-
1 depletion of Th17 lymphocytes at GI epithelial mucosa
causes microbial translocation and antigenic burden; thymic
dysfunction causes loss of naïve T lymphocytes and regulatory
CD4+ T lymphocytes, suppressing T lymphocyte activation;
clonal expansion of activated immune cells with T lymphocyte
loss of CD28 and telomere shortening, causing non-functional,
senescent T lymphocytes (9, 14–17). Klatt et al. describe
fibrosis and dysfunction of lymphoid organs and co-infection by
pathogens such as cytomegalovirus (CMV) (4).

Both the viral reservoir and immune checkpoint molecule
dysregulation mark an important mechanism for HIV-1
persistence and residual inflammation. HIV-1 results in
productive infection of a small percentage of permissive cells
with abortive infection of non-permissive bystander cells
in lymphoid tissues (>95% CD4T cell population). These
bystander cells undergo pyroptosis, a programmed cell death,
which could re-activate latently infected cells, causing more
uninfected cells to die and sustain chronic inflammation (12, 18–
24). Additionally an immune checkpoint molecule, programmed
cell death protein 1 (PD-1) is highly expressed on CD4+ and
CD8+ T lymphocytes during HIV-1 infection, and does not
fully normalize on ART (12). On ART PD-1 levels correlate with
CD4+ T lymphocyte count and are upregulated by Interleukin-7
(IL-7). Immune checkpoint molecules, lymphocyte-activation
gene 3(LAG-3) and T cell immunoreceptor with Ig and ITIM
domains (TIGIT), were also markers of HIV-1 infected CD4+
T cells on ART suggesting a role for immune checkpoint
dysregulation in viral persistence.

HIV-1 INFECTION AND CARDIOVASCULAR
DISEASE (CVD)

Cardiovascular disease is a major cause of morbidity and
mortality in PWH (25–32). The D:A:D (Data Collection on
Adverse Events of Anti-HIV Drugs) study estimates that 11%
of deaths among PWH are attributable to CVD (33) and the
Clinical and Virological Outcome of European Patients Infected
With HIV (EuroSIDA) study estimates that one third of clinical
events that are non-AIDS defining are related to cardiovascular

Abbreviations: PWH, people with HIV-1; hsCRP, high sensitivity C-reactive
protein; CVD, cardiovascular disease; ART, Antiretroviral therapy; NLRP3, NLR
Family Pyrin Domain Containing 3.

disease (34). Risk of CVD in PWH is multifactorial with possible
contributions from antiretroviral therapies (ART), increased
exposures to traditional risk factors and chronic inflammation
(35–39). In a meta-analysis, PWH when compared to HIV-1
uninfected control patients had an increased relative risk of CVD
(40, 41). The D:A:D study also showed an increased relative risk
of CVD with exposure the protease inhibitor drug class (33, 40)
that mostly was driven by the increased CVD risk associated with
ritonavir-boosted darunavir (42). The contribution of protease
inhibitors to CVD risk has been controversial and limited by
observational data. Nucleoside reverse transcriptase inhibitors
(NRTIs) such as stavudine and zidovudine are associated with
dyslipidemia, impaired insulin resistance, and greater carotid
intima-media thickness (cIMT) in the setting of hyperlipidemia
contributing to CVD risk (43–45). In the D:A:D trial abacavir was
associated with increased risk of CVD; however, this association
has not been observed in longitudinal data (40).

Higher rates of smoking, substance use and dyslipidemia
contribute to increased risk of CVD in PWH (42, 46–48). PWH
had 50% increased risk of acute myocardial infarction after
controlling for behavioral and Framingham risk factors such as
dyslipidemia, hypertension, and smoking suggesting additional
mechanisms for increased CVD in PWH (49). However, some
evidence suggests the association between smoking and CVD is
even stronger in PWH (48).

Inflammatory biomarkers demonstrate chronic inflammation
are associated with cardiovascular disease in PWH in large
clinical cohorts (7, 35, 46, 50, 50–54). Compared to uninfected
individuals PWH had 50% higher high sensitivity C-reactive
protein (hsCRP), 150% higher Interleukin-6 (IL-6), 90% higher
D-dimer, and 25% higher cystatin-C level. Inflammatory
biomarkers like IL-6, hsCRP, and D-dimer remain elevated in
PWH compared to uninfected controls despite ART treatment.
D-dimer, hsCRP, and IL-6 have been associated with increased
risk of CVD, and soluble CD14 (sCD14) has been associated
with microbial translocation (7). In the Multicenter AIDS
Cohort Study (MACS) of HIV+ men, IL-6, hsCRP, tumor
necrosis factor alpha (TNF-α), soluble CD14 (sCD14), and
soluble tumor necrosis factor receptor II (sTNFR II) were
markers of frailty in HIV-1 disease, establishing an association
with monocyte-macrophage immune activation in PWH (55).
Treatment intensification has not resulted in improvement in
HIV-1 viremia or inflammatory biomarkers (56, 57). Initiation
of ART in patients who are elite controllers, those who
spontaneously suppress HIV-1 viral load without ART, remains
controversial (58–60).

The HIV-1 pro-inflammatory state outlined in the prior
section also contributes to increased rates of CVD observed in
PWH. The formation of atherosclerotic plaques contributing
to CVD is an inflammatory process involving inflammatory
signaling leading to monocyte recruitment, migration, and
activation into pro-inflammatory foam cells (61, 62). HIV-1
proteins (nef, tat, and env) can induce inflammatory signals
activating macrophages facilitating foam cell transformation and
plaque formation (61).

In PWH, CVD has been associated with elevated
inflammatory markers. In the Strategies for Management
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of ART (SMART) trial, a randomized, controlled trial assessing
episodic ART therapy guided by CD4+ count compared to
continuous ART, the observed hazard ratio of cardiovascular
disease between the drug conservation group (episodic ART)
against the viral suppression group (continuous ART) was 1.6 (p
< 0.05) (50). This increase in CVD risk with episodic ART use
was associated with an increase in inflammatory markers such as
IL-6 (40, 63). Arterial inflammation is also modestly increased
in PWH (59) and correlates with circulating inflammatory
biomarkers such hsCRP and IL-6 but not with HIV-1 markers.
In PWH initiated on ART, reduction of HIV-1 RNA correlated
with decrease in D-dimer and IL-6 but not in hsCRP, while
hsCRP was associated with progression of HIV-1 and mortality
after adjustment for CD4+ count and HIV-1 viral load (64).
These studies suggest a role for HIV-1 related inflammation as a
contributor to CVD risk in PWH.

Decreasing inflammation represents an important therapeutic
strategy for CVD prevention (26, 65). In the JUPITER trial
patients with low LDL and high hsCRPwere randomized to statin
vs. placebo. Statin treatment had 44% relative risk reduction
(66, 67). In the SATURN-HIV trial of rosuvastain in PWH,
cIMT reduction on statin compared to placebo was independent
of the lipid lowering effects (66, 68). With long-term statin
use (48 weeks) almost all inflammatory markers decreased,
including sCD14. By contrast aspirin did not decrease markers
of inflammation including sCD14, IL-1 and D-dimer in a smaller
trial of 12 week follow-up (69). Table 1 summarizes therpies
that have been tested to reduce inflammation as a cause of
atherosclerosis in HIV-1 disease.

HIV-1 AND THE NLRP3 INFLAMMASOME

Activity of the NLRP3 inflammasome contributes to the chronic,
pro-inflammatory state in PWH (70–75). The inflammasome is
part of the disease through the innate immune system activated
by pattern recognition receptors (76). The inflammasome
activates caspase-1, which cleaves prointerleukin-1β (pro-IL1β)
into the mature, secretory interleukin-1β (IL-1β). Inflammasome
activation also mediates pyroptosis or programmed cell death of
myeloid and lymphoid cells.

HIV-1 infection provides the first of two signals for NLRP3
inflammasome activation (77). Monocyte-derived macrophages
primed with HIV-1 have increased IL-1β production after
exposure to the second NLRP3 activation signal. HIV-1 virions
induce Toll-Like Receptors (TLRs) to stimulate pro-IL-1β
expression (71, 78). HIV-1 infection is required for activation
as, when exposed to ART, induction of pro-IL-1β and release
of IL-1β were decreased (78). HIV-1 and HCV virion induction
of TLRs may not be dependent on cell entry as induction of
the inflammasome was still seen in the presence of cell entry
inhibitors (71).

The NLRP3 inflammasome has been well-studied as a cause of
T lymphocyte cell death and activation through pyroptosis (19,
21, 22, 24, 79, 80). This has been demonstrated as infected CD4T
lymphocytes can stimulate bystander cell NLRP3 inflammasome
activation and stimulation of pyroptosis (19, 21, 22, 24). The

role of the NLRP3 inflammasome has been studied in HIV
pathogenesis in lymphoid tissue and in peripheral blood (81).
Peripheral blood monocytes in PWH were positive for an
inflammasome adaptor protein, ASC speck (apoptosis-associated
speck-like protein containing a caspase-recruitment domain),
not seen in healthy controls (82). ASC speck protein is a marker
for inflammasome activation, suggesting that in PWH activation
of pyroptotic cell death is responsible for progressive CD4+ T
lymphocyte death and contributes to chronic inflammation.

Inflammasome activation occurs during acuteHIV-1 infection
(83) and persists in immune non-responders, patients on ART
without CD4+ T lymphocyte recovery (CD4 < 350) (74). When
stimulated with lipopolysaccharide (LPS), a TLR signal for
inflammasome activation, upregulation of inflammasome genes
(NLRP3, caspase-1) was seen in both immune non-responders
and responders (CD4 > 500). Substance abuse enhances
inflammasome activation in PWH. Cocaine exposure to HIV-1
infected macrophages increases activity by potentially priming
the NLRP3 inflammasome by potentiating reactive oxygen
species (ROS) production (84, 85). By contrast, cannabis has
been demonstrated to reduce NLRP3 inflammasome activation
(86, 87).

CVD AND THE NLRP3 INFLAMMASOME

Several studies implicate the NLRP3 inflammasome in the
pathogenesis of atherosclerosis (88). The role of the NLRP3
inflammasome in atherosclerosis was demonstrated using low-
density lipoprotein (LDL) receptor deficient mice, a model for
familial hypercholesterolemia (89). After lethally irradiated bone
marrow was reconstituted with wild-type, NLRP3-, ASC-, or
IL1α/β-deficient bone marrow, mice had lower levels of IL-18
and IL-1 family cytokines and showed decreased atherosclerosis.
IL-1β release was observed after 24-h incubation with LDL even
in the absence of other known NLRP3 inflammasome primers
suggesting a role for cholesterol in both priming and activation
of the inflammasome pathway.

Interestingly, in an in vivo model ApoE−/−, Nlrp3−/−,
ApoE−/−, Asc−/−, ApoE−/−, and caspase-1−/− double-deficient
mice fed a high-fat diet failed to demonstrate differences in
atherosclerosis progression and phenotype of the plaque (90).
The differences in these findings could be attributed to the use
of different mouse models and a potential role of IL-1α, which
can be generated independently of the NLRP3 inflammasome.
These contradictory results have also been attributed to different
diets as in the Menu et al. study mice were fed 1.25% cholesterol
(HFD) diet which could have overwhelmed genetic differences as
compared to the 0.15% cholesterol diet (western diet) (91).

Inflammasome activity in plaque generation is further
supported by the presence of activated caspase-1 in atheromatous
plaques and caspase knockout models in ApoE−/− mice (114–
116). Caspase knockout in ApoE−/− mice decreased the size of
atherosclerotic lesion size in the aortic arch, intra-lesion IFN-
γ and plasma levels of IL-1β and IL-1α. In ASC−/− mice, the
NLRP3 inflammasome contributes to atherogenesis by triggering
maturity of IL-1β and IL-18 in atherosclerotic plaques after
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TABLE 1 | Drugs with anti-inflammatory properties to reduce atherosclerosis in HIV disease.

Mechanism of action Drug examples References Notes

COAGULATION

COX-1 pathway inhibition Aspirin (69, 92) No differences in soluble markers (sCD14, IL-6, sCD163, D-dimer) or T-cell or monocyte

activation.

Adenosine reuptake inhibitor Dipyramidole (93) Decreased CD4+ T-cell activation in pooled analysis. No changes in soluble markers

(sCD14, IL-6, sCD163, CRP, IL-10, sCD27, D-dimer)

Factor Xa inhibitor Edoxaban (94) No differences in inflammation (IL-6, TNF-RI, IL-1β, sCD163, sCD14, or monocyte

activation markers. Lowered D-dimer and thrombin antithrombin (TAT).

Coagulation inhibition

Factor IIa inhibitor

Dabigatran (95, 96) Attenuated atherosclerotic plaque formation, decreased collagen content and ROS

production, observed improved endothelial function

METABOLISM

Inhibits dihydrofolate reductase

enzyme Inhibits binding of IL1β

to its surface receptor

Methotrexate (97, 98) No significant effect on endothelial function or inflammatory biomarkers (hs-CRP, IL-6,

IP-10, sCD163, sCD14, D-dimer, fibrinogen, VCAM) associated with decreased CD8+

T-cells, saw more safety events (Hsue) LDMTX with some effect on brachial artery US that

correlated with decreased D-dimer

HMGCoA enzyme inhibition Statins (99, 100) Decreased sCD14 and IP-10 levels, decreased activated T-cells (Funderberg); Reduction

in non-calcified plaque volume and high-risk coronary plaques (Lo); Reducing ASCVD risk,

ongoing REPRIEVE trial

Inhibition of ATP-citrate lyase

and activation of AMP activated

protein kinase in the liver

Bempedoic acid (101–103) Prevention of atherosclerotic plaque development and associated inflammation; lowers

LDL, total cholesterol, apolipoprotein B, hs-CRP- unclear clinical effect

CYTOKINE SIGNALING

mAB blocking IL-1β Canakinumab (104, 105) Lower rates of recurrent CVD independent of lipid lowering, higher incidence of fatal

infection, expensive therapy Decreased rates of hs-CRP, IL-6 and sCD163, no impact on

T cell activation or monocyte subsets Decreased arterial inflammation on FDG-PET

mAB binding IL-6 Tocilizumab (106) Expensive therapy, effective for treatment of Castleman disease; reduced levels of

secretory phospholipase A2-IIA, lipoprotein (a), fibrinogen, D-dimers, elevated

paraoxonase; increased LDL and triglyceride levels

Jak-inhibitors Ruxolitinib/tofacitinib/

baricitinib

(107) Ruxolitinib with no decrease IL-6 levels, decrease in sCD14, increase in circulating T- cells

IL-1R Anakinra (108) Improved myocardial deformation; decreased hs-CRP at time of NSTE-ACS

TNF-alpha inhibitors Infliximab—

Etanercept—

Adalimumab

(109) Increased total cholesterol and HDL levels in RA patients; no change in CRP levels,

potentiated response to acetylcholine

COINFECTIONS

Competitive inhibitor of

deoxyguanosine triphosphate

inhibiting viral DNA polymerases

Valgancyclovir (110) Reduced CD8 activation, no significant difference in CRP

GUT MICROBIOME

Alteration of microbiome Probiotics (111, 112) Increase in Th17 cell subsets; Lipopolyscharide binding protein and hs-CRP decrease with

probiotics in PWH, not sCD14 and D-dimer; Increase in serum serotonin, decreased

tryptophan in plasma, reduction in CD38 and HLA-DR expression on PBMCs

Antibiotic rifaximin (113) No effect on LPS (lipopolysaccharide) and sCD14 at 2 weeks, decrease LPS in cirrhotic

patients

vascular injury (117, 118). InASC−/− mice neointimal formation
was attenuated and decreased IL-1β and IL-18 expression was
observed in the plaques compared to wild type. Inhibition of
NLRP3 inflammasome with arglabin, a plant-based metabolite
inhibitor of the NLRP3 inflammasome, showed decreased
atherosclerotic lesions in apolipoE2-Ki mice fed a high fat diet
(118, 119).

Other activating factors have been identified.
Trimethylamine-N-oxide (TMAO), a by-product of choline
and L-carnitine metabolism, promotes the formation of foam
cells from macrophages in a process mediated by inflammasome
activity (120). TMAO stimulated thioredoxin-interactive protein
(TXNIP)-NLRP3 inflammasome activity in human umbilical

vein endothelial cells causing release of IL-1β and IL-18 in
a dose and time dependent manner. LPS-exposed THP-1
macrophages induced Lectin-like oxLDL receptor-1 (LOX-1)
expression, generation of ROS, auto-phagosome formation and
damage to mitochondrial DNA (121). LOX-1 inhibition resulted
in attenuated NLRP3 inflammasome activity consistent with
decreased atherosclerotic plaque burden in LOX-1 deletion in
mice fed a high fat diet.

Oxidative stress-responsive transcription factor NF-E2 related
2 (Nrf2) also has a role in inflammasome activation and
atherosclerosis (122, 123). Nrf2-/ApoE-mice showed attenuation
of atherosclerosis without change in lipid metabolism or
foam cell transformation when compared to Nrf2+/ApoE−
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mice. Cholesterol crystals triggered production of IL-1α and
IL-1β in Nrf2+/+ dendritic cells, not observed in Nrf2
deficient dendritic cells. In NLRP3-deficient and caspase1−/−

macrophages, cholesterol crystal-induced IL-1β production was
reduced. Neutralization of IL-1α and IL-1β by induction of
neutralizing antibodies resulted in reduced atherosclerosis in
Nrf2+/+ ApoE−/− but not in Nrf2−/− ApoE −/− mice. These
results suggest that the observed Nrf2 effects on atherogenesis
are from its role in inflammasome activation and IL-1
production (122).

Atherosclerosis is also associated with endothelial
dysfunction. Endothelial senescence, which is linked to CV
diseases, is associated with NLRP3 activation (124). Induction
of endothelial cell senescence with bleomycin showed increased
IL-1β and caspase-1. IL-1β promoted endothelial cell senescence
as indicated by upregulation of p53/p21 expression.

Inflammasome activity in CVD is also modulated by
separate cardiovascular risk factors including hyperglycemia,
obesity and hyperuricemia (125). IL-1β is elevated in patients
with high blood pressure and type 2 diabetes mellitus (118,
126). In type 2 diabetes use of γ-tocotrienol to inhibit
the NLRP3 inflammasome can delay disease progression
(127). Diabetic rats showed significantly increased NLRP3
inflammasome activation (118, 128). When animals were given
rosuvastatin both NLRP3 inflammasome and MAPK expression
was decreased, with associated decrease in cardiac fibrosis,
suggesting a potential role for the NLRP3 inflammasome in
diabetic cardiomyopathy.

There is literature supporting the role of the NLRP3 in
hypertension. Attenuation of NLRP3 and caspase by chronic
inhibition of NF-kB attenuates high salt induced hypertension
(129). In a murine model of hypertension, a highly selective
SGK1 inhibitor, EMD638683, was shown to suppress IL-1β
release, NLRP3 expression, and caspase-1 activation which
was associated by reduced transformation of fibroblasts to
myofibroblasts (130). These effects on cardiac fibrosis were not

observed with supplementation of exogenous IL-1β suggesting
NLRP3 and IL-1β have a role in hypertensive cardiac damage.

The NLRP3 inflammasome and the associated inflammatory
response have a role in the pathophysiology of a myocardial
infarction (MI) (131, 132). During MI, release of cellular debris
and production of reactive oxygen species activate the NLRP3
inflammasome leading to development of cardiomyopathy.
Sandanger et al. demonstrate the role of the inflammasome in a
murine myocardial ischemia-reperfusion injury, demonstrating
NLRP3, IL-1β, and IL-18 mRNA expression was increased
in cardiac fibroblasts post-MI (131). Cardiac fibroblasts had
dose-dependent mRNA expression of NLRP3 and IL-1β when
incubated with TLR2 and TLR4 ligands; this was blocked
when incubated with NF-kB inhibitor. Post-MI, NLRP3−/−

mice demonstrated improved cardiac function and reduced
infarct size compared with wild type after reperfusion. NLRP3
inflammasome activation may play a cardioprotective role in
ischemia-reperfusion injury (133). IL-1β neutralizing antibodies
and anakinra, an IL-1 receptor antagonist, showed reduced
cardiac hypertrophy and myocardial dysfunction post-MI; this
suggests potential therapeutic interventions to ameliorate cardiac
dysfunction post-MI (118, 134, 135).

Therapeutic interventions targeting reduction of
inflammation to reduce CVD risk have been tested. The
JUPITER trial was a primary-prevention trial randomizing
patients with a low LDL cholesterol (<130 mg/dL) but elevated
hsCRP (>2.0 mg/L) to receive rosuvastatin or placebo (67).
Rosuvastatin was associated with reduction in cardiovascular
risk (hazard ratio 0.56), lower LDL, and hsCRP. Simvastatin
reduced NLRP3 activation in a diabetic rat model (136). In
addition to lowering LDL, statins may decrease CVD by
decreasing inflammasome activity.

The NLRP3 inflammasome is also a potential therapeutic
target. NLRP3 inflammasome inhibitors show potential in
murine models. Arglabin, showed decreased IL-1β plasma levels
and decreased atherosclerotic lesion size in an ApoE knockout

FIGURE 1 | Model for HIV-1 infection and NLRP3 inflammasome activation to drive atherosclerosis. A model is shown in which HIV-1 infection of a CD4+ T cell can

stimulate the NLRP3 inflammasome. This results in IL-1β secretion which impacts on various cell types including endothelial cells, macrophages, monocytes, and

smooth muscle, signaling through soluble factors including chemokines, cytokines, adhesion molecules, matrix metalloproteinases. The activation of these factors can

potentiate progression of atherosclerotic disease.
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(119). MCC950, a selective inhibitor of NLRP3, demonstrated
decreased plasma IL-1β levels and decreased atherosclerotic
plaque size and volume (137). The CANTOS trial randomized
patients with past MI and elevated hsCRP on optimal lipid
lowering therapy to receive canakinumab, amonoclonal antibody
targeting IL-1β, or placebo (104). A 15% reduction in major
CV events was observed without change in LDL cholesterol.
The benefit of this therapy associated with higher risk of fatal
infection. Subsequently numerous reports have implicated a role
of targeting IL-1β in reducing atherosclerotic disease (104, 138–
148). Most recently, Li et al. demonstrated that treatment with
VX-765, an NLRP3 inflammasome inhibitor, halted progression
of atherosclerosis and reduced vascular smooth muscle cells
(VSMCs) pyroptosis (149).

HIV, NLRP3 INFLAMMASOME, AND CVD

An emerging literature supports the role of the NLRP3
inflammasome as a driver of CVD in HIV-1 disease (150,
151). Yearley et al. demonstrated that in SIV-infected rhesus
macaques, IL-18 secretion as a marker of NLRP3 inflammasome
activity was associated with atherosclerotic progression (152).
Further, they observed that the IL-18 was observed to be
associated with macrophages, not T lymphocytes, suggesting
the activation of alternative cell types in response to HIV-1
infection of T lymphocytes. Kearns et al. demonstrated that
expression of HIV-1 transcripts can drive atherosclerosis through
activation of caspase-1 in inflammatory monocytes. They further
demonstrated that IL-18 levels were higher in HIV-1 infected
patients with atherosclerotic disease and that these levels were
correlated with monocyte/macrophage activation markers.

In a follow up study to the CANTOS trial, Hsue et al.
demonstrated that a single dose of canakinumab reduced
numerous inflammatory markers including cytokine production
and atrial inflammation in PWH (105). This study and others
suggest that inflammasome targeted therapeutic interventions
reduction of cardiovascular events demonstrate a crucial role
for this pathway in the pathogenesis of CVD in PWH. Hoel
et al. evaluated PWH and demonstrated that soluble markers
of interleukin 1 (IL-1Ra) levels were associated with a 1.5-fold
increased risk of first-time myocardial infarction (153).

CONCLUSIONS

Here we describe the evidence supporting HIV-1 infection
as a chronic and pro-inflammatory state that is associated

with increased risk of atherosclerosis. We review the evidence
defining the role of HIV-1 infection in activation of the
NLRP3 inflammasome and the role of NLRP3 activation
in the development of atherosclerosis. HIV-1 infection can
mediate NLRP3 inflammasome activation, thus potentiating a
pro-inflammatory state and increasing risk of atherosclerosis.
Figure 1 demonstrates a model whereby HIV-1 infection
can stimulate the NLRP3 inflammasome to result in IL-
1β secretion which impacts on various cell types including
endothelial cells, macrophages, monocytes, and smooth muscle,
signaling through soluble factors including chemokines,
cytokines, adhesion molecules, matrix metalloproteinases
to result in progression of atherosclerotic disease. HIV-1
chronic inflammation, in concert with other factors, can
drive inflammation including that seen in cardiovascular
disease and that targeting this pathway can have important
therapeutic benefits.

We present the data implicating the NLRP3 inflammasome
as a signaling pathway that is both activated by HIV-1
infection and that drives the development of atherosclerosis
in PWH. Gaps exist in our understanding to establish clear
links between HIV-1 infection, NLRP3 inflammasome activation,
and atherosclerotic disease with the approach of developing
targeting therapies to reduce the inflammatory signaling
that drives this important comorbidity. Animals studies of
humanized mice that connect the risk of HIV-1 infection,
NLRP3 activation, and the development of atherosclerosis
are necessary.

The above studies highlight the importance of cardiovascular
risk in PWH and the need for mechanistic understanding behind
targeted therapies. Care of PWH should continue to focus
on approaches to reduce cardiovascular risk in PWH through
lifestyle modifications, tight lipid, hypertension, and glycemic
control, while seeking to further identify biomarkers with linked
clinical outcomes.
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