
REVIEW
published: 04 December 2020

doi: 10.3389/fneur.2020.573421

Frontiers in Neurology | www.frontiersin.org 1 December 2020 | Volume 11 | Article 573421

Edited by:

Linda Chang,

University of Maryland, Baltimore,

United States

Reviewed by:

Joseph R. Berger,

University of Pennsylvania,

United States

Sanjeev Kumar Bhoi,

All India Institute of Medical Sciences

Bhubaneswar, India

*Correspondence:

Juan Feng

juanfeng@cmu.edu.cn

Specialty section:

This article was submitted to

Neuroinfectious Diseases,

a section of the journal

Frontiers in Neurology

Received: 18 June 2020

Accepted: 03 November 2020

Published: 04 December 2020

Citation:

Yu H, Sun T and Feng J (2020)

Complications and Pathophysiology of

COVID-19 in the Nervous System.

Front. Neurol. 11:573421.

doi: 10.3389/fneur.2020.573421

Complications and Pathophysiology
of COVID-19 in the Nervous System
Haiyang Yu 1, Tong Sun 2 and Juan Feng 1*

1Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China, 2Department of Pediatrics,

Shengjing Hospital of China Medical University, Shenyang, China

The coronavirus disease (COVID-19) pandemic, caused by the severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2), has become a global public health threat.

Majority of the patients with COVID-19 have fever, cough, and fatigue. Critically ill

patients can develop dyspnea and acute respiratory distress syndrome. In addition to

respiratory symptoms, neurological damage also occurs in some patients. However,

the mechanisms by which SARS-CoV-2 invades the nervous system have not been

elucidated yet. In order to provide some reference for designing optimal therapeutic

strategies, we have discussed the complications and potential mechanisms of COVID-19

in the nervous system in this review.
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INTRODUCTION

Coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2), has spread worldwide (1). Because of the rapid spread of the virus and a sharp
increase in the number of confirmed cases, the World Health Organization declared it a pandemic
on March 11, 2020.

To date, seven human coronaviruses have been known to infect humans, three of which have
resulted in epidemics (2, 3). First, the severe acute respiratory syndrome (SARS), caused by the
SARS coronavirus (SARS-CoV), started in Asia and then spread across the world in 2002 and 2003
(4). This was followed by the Middle East respiratory syndrome (MERS), caused by the MERS
coronavirus (MERS-CoV), with a highmortality rate in 2012 (5). The current COVID-19 pandemic
is the third and is still attracting global attention.

SARS-CoV-2 is considered a member of the beta coronaviruses (β-CoVs) family, which also
contains SARS-CoV and MERS-CoV (6). The CoV family consists of enveloped, positive-sense
single-stranded RNA viruses. They are spherical or oval in shape with large glycoprotein spikes on
the surface and display a typical crown-like shape on negative staining when observed by electron
microscopy. The CoV family is divided into four subfamilies genotypically and serologically,
namely, α, β, γ, and δ-CoVs. Among them, α- and β-CoVs can cause human infection (7).
Generally, all human CoVs are zoonotic, and bats are the most likely natural hosts of CoVs (8).
Moreover, before CoVs infect humans, they need intermediate animal hosts of CoVs, which are
civet cats and dromedary camels for SARS-CoV andMERS-CoV, respectively (9, 10). The discovery
of pangolin CoVs and their similarity to SARS-CoV-2 indicate that pangolins may be the possible
intermediate hosts for SARS-CoV-2 (11).

Currently, patients with COVID-19 are the main sources of infection. However, asymptomatic
carriers have also been proven to excrete the virus and may be potential sources of infection (12).
Respiratory droplets and close contact are regarded as the main transmission routes. It has been
reported that SARS-CoV-2 may be isolated from the feces and urine. Therefore, attention should
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be paid to aerosol or contact transmission as a result of
environmental contamination by the feces and urine of infected
individuals (13). Since the population is generally susceptible to
SARS-CoV-2, COVID-19 has spread rapidly worldwide. Several
retrospective cohort studies have suggested that patients who are
older in age and have hypertension, high lactate dehydrogenase
level, high Sequential Organ Failure Assessment score, D-dimer
>1µg/mL, and cancer were more likely to show deterioration
and develop severe illness with a poor prognosis (14, 15). In
addition, male sex, severe illness, expectoration, muscle ache, and
decreased albumin were found to be independent risk factors
that could influence the clinical course of COVID-19 patients.
Furthermore, severely ill men with a heart injury, hyperglycemia,
and high-dose corticosteroid use may have a higher risk of death
(16, 17). Smokingmay be a high-risk factor for infection, too (18).

COVID-19 mainly manifests with fever, dry cough, and
fatigue. Few patients have symptoms of a stuffy or runny nose,
headache, myalgia, and diarrhea. Most of the critically ill patients
develop dyspnea or hypoxia 1 week after the onset of illness.
With rapid progression of the disease, acute respiratory distress
syndrome (ARDS), septic shock, and metabolic acidosis can
develop (19). According to the pathological findings from limited
autopsies and biopsies, SARS-CoV-2 can invade multiple tissues
and organs in addition to the lung, such as the spleen, liver,
heart, kidney, and brain (20, 21). Autopsy results have revealed
that SARS-CoV-2 RNA could be detected in the brain tissue
in 36.4% of fetal cases, which indicates the neurotropism and
potential for invasion of SARS-CoV-2 in the brain (22). Recently,
Zhang et al. were the first to prove that SARS-CoV-2 could
directly infect induced pluripotent stem cells–derived human
neural progenitor cells, and extensive viral replication and viral
particles were detected in the neurospheres and brain organoids
with SARS-CoV-2 infection. Additionally, they showed that
SARS-CoV-2 could productively infect the human brain (23).
A retrospective case series demonstrated that the neurological
symptoms include central nervous system (CNS) symptoms or
diseases (headache, dizziness, impaired consciousness, ataxia,
acute cerebrovascular disease, and epilepsy), peripheral nervous
system (PNS) symptoms (hyposmia, hypogeusia, hypopsia, and
neuralgia), and skeletal muscle symptoms (24). In this review, we
have discussed the principal COVID-19–related complications
and pathophysiology in the nervous system (Table 1, Figure 1).

COVID-19–RELATED COMPLICATIONS IN
THE NERVOUS SYSTEM

COVID-19–Related Complications in CNS
Viral Meningitis/Encephalitis
Viral infection can cause both meningitis and encephalitis,
which are inflammation of the meninges and brain parenchyma,

Abbreviations: COVID-19, Coronavirus disease 2019; SARS-CoV-2, Severe acute
respiratory syndrome coronavirus 2; ARDS, Acute respiratory distress syndrome;
CNS, Central nervous system; PNS, Peripheral nervous system; ADEM, Acute
disseminated encephalomyelitis; ANE, Acute necrotizing encephalopathy; ANM,
Acute necrotizing myelitis; GBS, Guillain-Barré syndrome; MSF, Miller Fisher
syndrome; BBB, Blood–brain barrier; PCR, Polymerase chain reaction; ACE2,
angiotensin-converting enzyme 2.

respectively (56). A man with COVID-19 exhibited meningeal
irritation signs (nuchal rigidity, Kernig sign, and Brudzinski
sign), along with positive extensor plantar response. After
excluding bacterial or tuberculous infections of the CNS, SARS-
CoV-2 encephalitis was diagnosed. However, SARS-CoV-2 in
the CSF specimen was negative, which might be due to the
extremely low titer of the virus in the CSF, or due to the lack of
a standardized test for SARS-CoV-2 detection in the CSF (25). In
Japan, a case report described the first patient who was sent to
the emergency department because of a convulsion accompanied
by unconsciousness and who was subsequently diagnosed with
aseptic encephalitis with the SARS-CoV-2 RNA detected in
the CSF (26). Similarly, in Los Angeles, a young woman
with COVID-19 showed symptoms of meningoencephalitis
without respiratory failure, and SARS-CoV-2 was found to be
positive in the CSF by reverse transcription–polymerase chain
reaction (PCR) (27, 28). In addition, two patients with acute
meningoencephalitis concomitant with SARS-CoV-2 infection
were reported in Switzerland, and a case of rhombencephalitis
was reported as a rare complication of acute COVID-19 infection
in the United Kingdom (29, 30).

Acute Disseminated Encephalomyelitis
Acute disseminated encephalomyelitis (ADEM) is an idiopathic
CNS demyelinating disease, which is often postviral and is
common in children, although it can occur at any age. The first
case of COVID-19–related ADEM was reported in a 40-year-
old woman, and magnetic resonance imaging (MRI) revealed
fluid-attenuated inversion recovery (FLAIR) hyperintensities in
the subcortical and deep white matter (31). A 51-year-old
woman developed a coma and impaired unilateral oculocephalic
response weeks after a SARS-CoV-2 infection. Her MRI
demonstrated acute multifocal demyelinating lesions, and the
clinical examination and CSF analysis were consistent with an
acute demyelinating event (32). Furthermore, the autopsy of a
71-year-old patient diagnosed with COVID-19 showed scattered
clusters of macrophages, axonal injury, and a perivascular
ADEM-like appearance in the subcortical white matter (33).

Encephalopathy
In a retrospective study of 113 deceased patients with COVID-
19, Chen et al. reported that 20% of cases demonstrated hypoxic
encephalopathy, which is a higher proportion when compared
with recovered patients (34). Elderly patients with chronic
conditions are more susceptible to COVID-19, and patients with
prior neurological conditions and acute respiratory symptoms
are at an increased risk of encephalopathy. A 74-year-old man
presented with symptoms of encephalopathy including headache
and altered mental status and was diagnosed with COVID-19.
As the CSF examination was normal, the neurological symptoms
were not due to meningitis or encephalitis (35). Similarly, a
72-year-old man also presented with COVID-19 infection and
encephalopathy. Subsequent CSF studies showed no evidence of a
CNS infection. However, electroencephalography (EEG) revealed
diffuse slowing consistent with an encephalopathy (36).
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TABLE 1 | Clinical manifestations and auxiliary examination findings of COVID-19 related complications in the nervous system.

Complication Clinical manifestations Auxiliary examination References

COVID-19–RELATED COMPLICATIONS IN THE NERVOUS SYSTEM

Viral meningitis/encephalitis Headache

Altered mental status, meningeal

irritation signs

CSF: positive PCR assay for SARS-CoV-2

Increased lymphocytes and proteins

MRI: FLAIR hyperintensity

EEG: slowing

(25–30)

Acute disseminated

encephalomyelitis (ADEM)

Multifocal deficits MRI: FLAIR hyperintensity, multifocal demyelinating lesions

Autopsy: ADEM-like appearance in the subcortical

white matter

(31–33)

Encephalopathy Headache,

altered mental status

CSF: negative PCR assay for SARS-CoV-2

EEG: diffuse slowing

(34–36)

Acute necrotizing encephalopathy

(ANE)

Altered mental status CT: hypoattenuation

MRI: T2 FLAIR hyperintensity with internal hemorrhage

(37)

Cerebrovascular disease Sensory or motor dysfunction CT/MRI: ischemic or hemorrhagic change (38–40)

Epilepsy Seizures CSF: negative PCR assay for SARS-CoV-2

EEG: semirhythmic, irregular, high-amplitude delta waves

(41–43)

Acute myelitis Flaccid paralysis, hypesthesia

Urinary and bowel dysfunction

MRI: T2 hyperintensity (31, 44, 45)

Hyposmia and hypogeusia Loss of a sense of smell and taste Questionnaire-based survey

Cross-sectional study

(46–49)

Guillain-Barré syndrome (GBS) Flaccid paralysis CSF: negative PCR assay for SARS-CoV-2

MRI: enhancement of affected nerve roots

EMG: decreased recruitment

(50–53)

Miller Fisher syndrome (MSF) Ophthalmoplegia, ataxia, and areflexia MRI: relative enlargement, T2 hyperintensity, and

enhancement of the affected CN

Anti-GD1b antibody positive

(54, 55)

COVID-19, coronavirus disease; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; CSF, cerebrospinal fluid; CT, computed tomography; MRI, magnetic resonance imaging;

PCR, polymerase chain reaction; EEG, electroencephalography; EMG, electromyography.

Acute Necrotizing Encephalopathy
Notably, Poyiadji et al. reported the first case of SARS-
CoV-2 infection associated with acute hemorrhagic necrotizing
encephalopathy. Acute necrotizing encephalopathy (ANE) is a
rare encephalopathy that has been associated with influenza
or other viral infections, which results in breakdown of the
blood–brain barrier (BBB), without direct viral invasion or
parainfectious demyelination. Imaging features are characterized
by multifocal symmetric lesions in the thalami. However, the
brain stem, cerebral white matter, and cerebellum may also be
affected (37).

Cerebrovascular Disease
Cerebrovascular disease has been associated with an increased
disease severity in patients with COVID-19 (38), and is
also emerging as an important complication of COVID-19.
Mao et al. reported that patients with a severe infection
were more likely to develop neurological manifestations later
in the course of the illness, especially acute cerebrovascular
disease and impaired consciousness (24). However, Avula
et al. reported four patients with PCR-confirmed SARS-CoV-
2 infection, who presented with an acute ischemic stroke,
and all four cases presented with a cerebrovascular accident
in a relatively early stage of the illness (39). Moreover, two
cases of cerebral hemorrhage have been reported by Al Saiegh
et al. (40).

Epilepsy
In Italy, Vollono et al. reported a patient with COVID-19
whose primary symptom was a focal status epilepticus in the
context of a predisposing but well-controlled postencephalitic
epilepsy. Although the patient exhibited no fever or respiratory
symptoms, the diagnostic hypothesis of a SARS-CoV-2 infection
could be made on the basis of the worsening or recurrence
of paroxysmal neurological events. Therefore, it is possible to
hypothesize that SARS-CoV-2 could trigger seizures through
a neurotropic pathogenic mechanism (41). However, a man
without any history of epilepsy developed multiple episodes
of seizures after infection with SARS-CoV-2 (42). In addition,
an infant with both COVID-19 and rhinovirus infections also
presented with seizures, although no changes were observed in
the EEG (43).

Spinal Cord Injury
Besides involvement of the brain, SARS-CoV-2 can also damage
the spinal cord. On admission to hospital, a 66-year-old man
with COVID-19 presented with acute flaccid paralysis of bilateral
lower limbs and urinary and bowel incontinence. He was
diagnosed with postinfectious acute myelitis (31). In addition,
a case of multifocal transverse myelitis has also been reported.
After recovering from COVID-19, a 60-year-old man developed
progressive weakness of the lower limbs and bladder dysfunction.
Two days later, he showed hypesthesia below the Th9 level and
a moderate spastic paraparesis. MRI of the spine revealed T2
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FIGURE 1 | Complications and pathophysiology of COVID-19 in the nervous system [The illustrations are provided by Servier Medical Art (https://smart.servier.com/)

licensed under a Creative Commons Attribution 3.0 Unported License].

signal hyperintensity of the thoracic spinal cord at the Th9 level,
suggesting acute transverse myelitis (44). Moreover, a 69-year-
old womanwas diagnosed with acute necrotizingmyelitis (ANM)
based on the clinical symptoms and MRI manifestations (45).

COVID-19–Related Complications in the
PNS
Hyposmia and Hypogeusia
In many countries, patients with COVID-19 have reported a
loss of the sense of smell and taste. In South Korea, hyposmia
was quite frequent among patients with mild COVID-19, and
accompanying symptoms such as hypogeusia appeared in most
of the patients with hyposmia (46). In Italy, a cross-sectional
survey proved that olfactory and taste disorders were present in
the early stages of the SARS-CoV-2 infection (47). Furthermore,
researchers from France noticed that hyposmia and hypogeusia
were reported during the early phase of the COVID-19 outbreak,
and they investigated the utility of these symptoms for the
early diagnosis of COVID-19 (48). Therefore, for patients with
mild and inconspicuous symptoms and those in the early phase
of illness, social distancing should be strongly implemented to
prevent disease transmission (49).

Guillain-Barré Syndrome and Its Variants
Guillain-Barré syndrome (GBS) is an autoimmune-induced
neuropathy, which mainly targets the peripheral nerves and their

spinal roots. It is usually caused by an infection or immune
stimulation that induces an aberrant autoimmune response
(57). Several cases of GBS have been reported in patients with
COVID-19 (50–53). However, additional epidemiological data
are necessary to support a causal relationship between GBS
and COVID-19.

Miller Fisher syndrome (MSF) is a variant of GBS and
is an acute peripheral neuropathy that is manifested with a
triad of ophthalmoplegia, ataxia, and areflexia. A 36-year-old
man infected with SARS-CoV-2 showed diplopia due to cranial
nerve (CN) III palsy. MRI revealed relative enlargement, T2
hyperintensity, and enhancement of the affected CN III (54).
Similarly, a 50-year-old man presented with the triad of MSF
and was positive for one of the antibodies to gangliosides (GD1b
antibodies) (55).

COVID-19–RELATED PATHOPHYSIOLOGY
IN THE NERVOUS SYSTEM

Direct Invasion
CoVs can invade the CNS through direct hematogenous and
neural propagation (58). In case of hematogenous dissemination,
CoVs in the airways can pass through the epithelial barrier
reaching the blood or lymph circulation and then propagate
toward the CNS. The BBB is composed of endothelial cells that
interact with pericytes, astrocytes, microglia, and neurons in the
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neurovascular unit and regulate the permeability of the BBB
and consequently maintain the integrity of the CNS (59). The
diameter of the SARS-CoV-2 is 60–140 nm, making it easy for
the virus to bypass the BBB and gain entry into the CNS (60).

The other route for invasion by the CoVs into the CNS is
through neural dissemination, possibly by the polarization of
neurons. This transport can be retrograde or antegrade and is
facilitated by dynein and kinesin (61). Hyposmia in patients
with COVID-19 may due to “conductive” loss or “neural” loss
(62). Rapid recovery of normal olfaction in patients suggests
a “conductive” loss, called olfactory cleft syndrome, and is
associated with mucosal obstruction of the olfactory cleft (63).
Fodoulian et al. showed that angiotensin-converting enzyme 2
(ACE2) and transmembrane serine protease 2 are predominantly
expressed in the non-neuronal cells of the olfactory epithelium
and olfactory bulb in both mice and humans (64). Recently,
neuropilin-1 (NRP1) was found to be expressed in the olfactory
epithelium. Therefore, both ACE2 and NRP1 may be involved
in the transmission of SARS-CoV-2 from the olfactory nerves to
the CNS (65). Additionally,Wang et al. reported that SARS-CoV-
2 could infect mature and immature olfactory neurons along
with the supporting sustentacular cells in hamsters, and this may
contribute to the unique olfactory dysfunction of COVID-19
(66). Although the olfactory bulb is important in early virologic
control, several studies have proven that the olfactory route is an
important pathway for viral entry into the CNS (67).

Angiotensin-Converting Enzyme 2
Similar to the SARS-CoV, SARS-CoV-2 can infect humans by
targeting ACE2 via its spike protein. SARS-CoV-2 displays more
specificity in recognizing ACE2 and has a stronger binding
affinity with ACE2 due to the presence of a receptor-binding
domain (68). ACE2 has multiple physiological roles, such as
cell proliferation, blood pressure regulation, and inflammatory
response. ACE2 is widely expressed in the lungs, kidneys,
guts, cardiovascular system, and even the CNS, indicating that
SARS-CoV-2 may affect multiple organs and systems (69).
In the brain, ACE2 is expressed in the neurons, astroglia
cells, microglia cells, and endothelial cells (70). ACE2 is
a negative regulator of the renin–angiotensin system, all
components of which are present in the brain (71). Depletion
of ACE2 increases the expression of angiotensin II, leading to
vasoconstriction, sodium and water retention, elevated blood
pressure, proinflammatory, and procoagulation effects (72). As
SARS-CoV-2 binds to ACE2, some patients may demonstrate
unusually high blood pressure and an increased risk of acute
cerebrovascular disease. Given that SARS-CoV-2 targets ACE2 as
the receptor, preventing the binding of SARS-CoV-2 with ACE2
may be a potential therapeutic strategy for preventing damage to
multiple organs (73).

Hypoxic Injury
Severe patients with COVID-19 may develop ARDS,
characterized by a serious shortness of breath and hypoxemia
(19). The neuro-invasive potential of SARS-CoV2 may play a
role in the respiratory failure seen in patients with COVID-19
(74). Hypoxia can cause a series of pathological changes in

multiple organs. Pathological findings of COVID-19 associated
with ARDS show pulmonary edema with hyaline membrane
formation, which can lead to gas exchange disorders and hypoxia
in the CNS (21). Hypoxia induces an excessive accumulation of
anaerobic metabolites in the mitochondria and acid metabolites
in brain, leading to edema of the brain cells and obstruction of
the cerebral blood flow (75). The guidelines for the diagnosis
and treatment of COVID-19 (trial version 8 in Chinese)
(Supplementary Material 1) described the pathological changes
consisting of brain congestion, edema, and degeneration of a
part of the neurons on autopsy, which are similar to those seen
in infection with SARS (76). Thus, severe hypoxia may be a
high-risk factor for hypoxic encephalopathy and ischemic stroke,
causing serious damage to the nervous system.

Coagulopathy
Zhang et al. reported that coagulopathy and antiphospholipid
antibodies were present in three patients with COVID-19
(77). Moreover, a retrospective analysis revealed that abnormal
coagulation results, including markedly elevated D-dimer and
fibrin degradation product levels, as well as a longer prothrombin
time and activated partial thromboplastin time, are associated
with poor prognosis. Additionally, disseminated intravascular
coagulation is more commonly associated with COVID-19
deaths (78). The hypercoagulability seen in patients with
COVID-19 may predispose to a stroke (79). Consequently,
anticoagulant treatment may decrease the mortality in severe
COVID-19 patients with coagulopathy (80).

Inflammatory Response
ARDS is the principal cause of death in patients with COVID-19
(19). One of the main mechanisms of ARDS is a cytokine storm,
which is a deadly systemic inflammatory response, characterized
by the release of large amounts of proinflammatory cytokines and
chemokines by immune effector cells, including interleukin 2 (IL-
2), IL-6, IL-7, IL-10, and IL-1β, as well as interferon γ, tumor
necrosis factor α (TNF-α), GCSF, IP10, MCP1, and MIP1A (19,
81). Cytokine storm can induce an immune attack in the body,
causing multiple organ failure and ARDS (82). Additionally,
previous studies have shown that the coronavirus can induce
proinflammatory cytokine signals from astrocytes and microglia
cells, releasing a large amount of inflammatory factors such as
IL-6, IL-12, IL-15, IL-1β, and TNF-α. This is also one of the
pathophysiological processes responsible for CNS damage caused
by inflammatory factors (83). Given the substantial increase
in the proinflammatory cytokines, therapies such as plasma
exchange and the IL-6 receptor-targeted monoclonal antibody
are used to ameliorate the inflammatory response (84, 85).
Furthermore, Lianhuaqingwen, a traditional Chinese medicine,
has been proven to exert anti-inflammatory activity against
SARS-CoV-2 in vitro (86).

Immune Dysfunction
In severe patients with COVID-19, peripheral CD4+ T and
CD8+ T cell numbers are significantly reduced, although
are in a hyperactivated state. Moreover, there are high
concentrations of proinflammatory CCR6+ Th17 in CD4+
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T cells and cytotoxic granules in CD8+ T cells, suggesting
that the overactivation of T cells is associated with immune
injury in severe patients (21). In addition, a significant and
progressive decrease in the lymphocytes is considered a sign
of severity (87). Neutralizing antibodies in convalescent plasma
were used to treat five critically ill patients with COVID-19
and ARDS, and their clinical status improved (88). However,
Wang et al. found that severe patients had an increased
immunoglobulin G (IgG) response and higher levels of IgG,
especially anti–spike IgG (anti–S-IgG) neutralizing antibodies
(89). This suggested that antibody-dependent enhancement
(ADE) was present in SARS-CoV-2 infection, similar to what
has been observed in multiple viral infections (90). ADE can
promote cellular uptake of virus–antibody complexes (virus-
anti–S-IgG) by interacting with the Fc receptor or other
receptors, leading to enhanced invasion of the virus (91).
Therefore, immune system can be activated by a viral infection,
and activation of the immune cells in the brainmay cause chronic
inflammation and neurological damage (92). Furthermore,
immune dysfunction after SARS-CoV-2 infection can result in a
series of postinfectious diseases, such as ADEM, ANE, ANM, and
GBS and its variants.

DISCUSSION

The pandemic of COVID-19 has become a global concern,
and the respiratory system is not the only system involved in
this disease. In this review, we discussed the main neurological
complications and potential mechanisms of COVID-19.
Neurological manifestations including hyposmia and hypogeusia
may be the first symptoms of COVID-19 and may help in early

detection, diagnosis, isolation, and treatment. With disease
progression, more severe neurological symptoms may appear
in critically ill patients, such as encephalitis, encephalopathy,
and acute cerebrovascular disease. Nevertheless, the full clinical
spectrum of neurological symptoms in patients with COVID-19
remains to be characterized. Neurologists should pay attention
to these neurological manifestations and follow them up for
possible neurological sequelae. It is exciting to see that several
vaccines for COVID-19 are in clinical trials (NCT04398147;
NCT04456595; NCT04466085; NCT04368728), although there
are still no effective drugs to treat COVID-19 (93). Therefore,
people across the world still need to make a huge effort to combat
the COVID-19 pandemic.
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